Quality Assessment of the Bidirectional Reflectance Distribution Function for NIR Imagery Sequences from UAV
Abstract
:1. Introduction
2. Characteristic Radiometric Correction with the BRDF Function
2.1. Empirical Models of Radiometric Correction
- ρ—modeled reflectance
- θi—incident illumination zenith angle
- θr—reflection view zenith angle
- φ—relative azimuth angle
- a, b, c, d—free parameters
2.2. Proposed Methodology of Radiometric Correction of UAV NIR Images
3. Materials and Methods
3.1. Test Area
3.2. Data Acquisition
4. Results of the Image Quality Assessment
- DN—the pixel value
- i—the pixel number in band k
- k—number of the spectral band
- N—number of observations
- —the correlation coefficient between original and corrected images
- —the covariance between original and corrected images
- —standard deviation of the original image
- —standard deviation of the corrected image
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Honkavaara, E.; Hakala, T.; Markelin, L.; Rosnell, T.; Saari, H.; Mäkynen, J. A process for radiometric correction of UAV image blocks. Photogramm. Fernerkund. Geoinf. 2012, 2, 115–127. [Google Scholar] [CrossRef]
- Kedzierski, M.; Wierzbicki, D. Radiometric quality assessment of images acquired by UAV’s in various lighting and weather conditions. Measurement 2015, 76, 156–169. [Google Scholar] [CrossRef]
- Lucht, W.; Roujean, J.L. Considerations in the parametric modeling of BRDF and albedo from multiangular satellite sensor observations. Remote Sens. Rev. 2000, 18, 343–379. [Google Scholar] [CrossRef]
- Markelin, L.; Honkavaara, E.; Peltoniemi, J.; Suomalainen, J.; Ahokas, E. Radiometric evaluation of digital aerial cameras. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2006, 36, 6. [Google Scholar]
- Chandelier, L.; Martinoty, G. Radiometric aerial triangulation for the equalization of digital aerial images and orthoimages. Photogramm. Eng. Remote Sens. 2009, 75, 193–200. [Google Scholar] [CrossRef]
- Krolewicz, S. Impact of the BRDF phenomenon on object brightness within an air photo block. Arch. Fotogram. Kartogr. Teledetekcji 2010, 21, 201–210. [Google Scholar]
- Haest, B.; Biesemans, J.; Horsten, W.; Everaerts, J.; Van Camp, N.; Van Valckenborgh, J. Radiometric calibration of digital photogrammetric camera image data. In Proceedings of the ASPRS 2009 Annual Conference, Baltimore, MD, USA, 9–13 March 2009. [Google Scholar]
- Grenzdörffer, G.J.; Niemeyer, F. UAV based BRDF-measurements of agricultural surfaces with pfiffikus. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2011, 38, 229–234. [Google Scholar] [CrossRef]
- Bryant, R.; Qi, J.; Moran, M.S.; Ni, W. Comparison of BRDF models with a fuzzy inference system for correction of bidirectional effects. Remote Sens. Environ. 2003, 88, 221–232. [Google Scholar] [CrossRef]
- Cabot, F.; Qi, J.; Moran, M.S.; Dedieu, G. Test of surface bidirectional reflectance models with surface measurements: results and consequences for the use of remotely sensed data. In Proceedings of the Sixth International Symposium on Physical Measurements and Signatures in Remote Sensing, Val d’Isere, France, 17–21 January 1994. [Google Scholar]
- Lucht, W.; Lewis, P. Theoretical noise sensitivity of BRDF and albedo retrieval from the EOS-MODIS and MISR sensors with respect to angular sampling. Int. J. Remote. Sens. 2000, 21, 81–98. [Google Scholar] [CrossRef]
- Strahler, A.H. Vegetation canopy reflectance modeling—Recent developments and remote sensing perspectives. Remote Sens. Rev. 1997, 15, 179–194. [Google Scholar] [CrossRef]
- Yun, S.I.; Kim, K.S. Sky Luminance Measurements Using CCD Camera and Comparisons with Calculation Models for Predicting Indoor Illuminance. Sustainability 2018, 10, 1556. [Google Scholar] [CrossRef]
- Yang, G.; Li, C.; Wang, Y.; Yuan, H.; Feng, H.; Xu, B.; Yang, X. The DOM Generation and Precise Radiometric Calibration of a UAV-Mounted Miniature Snapshot Hyperspectral Imager. Remote Sens. 2017, 9, 642. [Google Scholar] [CrossRef]
- Nicodemus, F.E. Reflectance nomenclature and directional reflectance and emissivity. Appl. Opt. 1970, 9, 1474–1475. [Google Scholar] [CrossRef] [PubMed]
- Jaglarz, J.; Duraj, R. Geometryczny Pomiar Funkcji BRDF. Available online: https://suw.biblos.pk.edu.pl/resourceDetailsRPK&rId=5990 (accessed on 22 August 2018).
- Hakala, T.; Honkavaara, E.; Saari, H.; Mäkynen, J.; Kaivosoja, J.; Pesonen, L.; Pölönen, I. Spectral imaging from UAVs under varying illumination conditions. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, XL-1/W2, 189–194. [Google Scholar] [CrossRef]
- Schowengerdt, R.A. Remote Sensing: Models and Methods for Image Processing, 3rd ed.; Academic Press Inc.: San Diego, CA, USA, 2007; pp. 52–53. [Google Scholar]
- Honkavaara, E.; Hakala, T.; Kirjasniemi, J.; Lindfors, A.; Mäkynen, J.; Nurminen, K.; Ruokokoski, P.; Saari, H.; Markelin, L. New light-weight stereosopic spectrometric airborne imaging technology for high-resolution environmental remote sensing case studies in water quality mapping. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 1, 139–144. [Google Scholar] [CrossRef]
- Beisl, U.; Woodhouse, N. Correction of atmospheric and bidirectional effects in multispectral ADS40 images for mapping purposes. Int. Intl. Arch. Photogramm. Remote Sens. 2004, B7, 1682–1750. [Google Scholar]
- Beisl, U.; Telaar, J.; von Schönemark, M. Atmospheric Correction, Reflectance Calibration and BRDF Correction for ADS40 Image Data. In Proceedings of the XXI ISPRS Congress, Commission VII, Beijing, China, 3–11 July 2008. [Google Scholar]
- Chavez, P.S. Atmospheric, solar, and M.T.F. corrections for ERTS digital imagery. Proc. Am. Soc Photogramm. 1975, 68, 69. [Google Scholar]
- Chavez, P.S., Jr. An Improved Dark-Object Subtraction Technique for Atmospheric Scattering Correction of Multispectral Data. Remote Sens. Environ. 1988, 24, 459–479. [Google Scholar] [CrossRef]
- Beisl, U.; Woodhouse, N.; Lu, S. Radiometric processing scheme for multispectral ADS40 data for mapping purposes. In Proceedings of the ASPRS 2006 Annual Conference, Reno, Nevada, 1–5 May 2006; American Society for Photogrammetry and Remote Sensing: Bethesda, MD, USA, 2006. ISBN 1-57083-081-9. [Google Scholar]
- Walthall, C.L.; Norman, J.M.; Welles, J.M.; Campbell, G.; Blad, B.L. Simple equation to approximate the bidirectional reflectance from vegetative canopies and bare soil surfaces. Appl. Opt. 1985, 24, 383. [Google Scholar] [CrossRef] [PubMed]
- Nilson, T.; Kuusk, A. A reflectance model for the homogeneous plant canopy and its inversion. Remote Sens. Environ. 1989, 27, 157–167. [Google Scholar] [CrossRef]
- Honkavaara, E.; Saari, H.; Kaivosoja, J.; Pölönen, I.; Hakala, T.; Litkey, P.; Mäkynen, J.; Pesonen, L. Processing and assessment of spectrometric, stereoscopic imagery collected using a lightweight UAV spectral camera for precision agriculture. Remote Sens. 2013, 5, 5006–5039. [Google Scholar] [CrossRef] [Green Version]
- Kedzierski, M.; Fryśkowska, A.; Wierzbicki, D. Opracowania Fotogrametryczne z Niskiego Pułapu; Military University of Technology Press: Warszawa, Poland, 2014; pp. 37–38. ISBN 978-83-7938-047-3. (In Polish) [Google Scholar]
- Fryskowska, A.; Kedzierski, M.; Grochala, A.; Braula, A. Calibration of low cost RGB and NIR UAV cameras. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 817–821. [Google Scholar] [CrossRef]
- Wierzbicki, D.; Fryskowska, A.; Kedzierski, M.; Wojtkowska, M.; Delis, P. Method of radiometric quality assessment of NIR images acquired with a custom sensor mounted on an unmanned aerial vehicle. J. Appl. Remote Sens. 2018, 12, 015008. [Google Scholar] [CrossRef]
- Trimble UAS. Trimble UX5 Aerial Imaging Solution Vegetation Monitoring Frequently Asked Questions, Trimble Navigation Limited, KlaasPauly, (2013). Available online: http://surveypartners.trimble.com (accessed on 19 April 2018).
- Markelin, L.; Honkavaara, E.; Schlaepfer, D.; Bovet, S.T.; Korpela, I. Assessment of radiometric correction methods for ADS40 imagery. Photogramm. Fernerkund. Geoinform. 2012, 3, 251–266. [Google Scholar] [CrossRef] [PubMed]
- Wald, L.; Ranchin, T.; Mangolini, M. Fusion of satellite images of different resolutions: Assessing the quality of resulting images. Photogramm. Eng. Remote Sens. 1997, 63, 691–699. [Google Scholar]
- Aiazzi, B.; Alparone, L.; Baronti, S. Context driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2300–2312. [Google Scholar] [CrossRef]
- Cakir, L.H.; Khorram, S. Pixel Level Fusion of Panchromatic and Multispectral Images Based on Correspondence Analysis. Photogramm. Eng. Remote Sens. 2008, 74, 183–192. [Google Scholar] [CrossRef]
- Näsi, R.; Viljanen, N.; Oliveira, R.; Kaivosoja, J.; Niemeläinen, O.; Hakala, T.; Honkavaara, E. Optimizing radiometric processing and feature extraction of drone based hyperspectral frame format imagery for estimation of yield quantity and quality of a grass sward. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 1305–1310. [Google Scholar] [CrossRef]
- Hasan, S.; Jansa, J.; Pfeifer, N. BRDF-based correction of colorized aerial LiDAR point clouds. In Proceedings of the 2015 Joint Urban Remote Sensing Event (JURSE), Lausanne, Switzerland, 30 March–1 April 2015; IEEE: Piscataway, NJ, USA, 2015. [Google Scholar]
Sensor | Sony NEX5T with the Black Filter–Tylicz 2016 150 m |
---|---|
Acquisition date | 3 March 2016 |
Acquisition time | 13:23–13:55 |
Number of images | 264 |
Spatial resolution (m) | 0.05 m |
DN bit range 8 bit | 8 bit |
Solar zenith Angle (°) | 60.88–63.85 |
Solar azimuth Angle (°) | 210.72–219.04 |
Sensor | Sony NEX5T with the Black Filter—Tylicz 2017 300 m |
---|---|
Acquisition date | 27 February 2017 |
Acquisition time | 14:38–15:08 |
Number of images | 108 |
Spatial resolution (m) | 0.10 m |
DN bit range 8 bit | 8 bit |
Solar zenith Angle (°) | 69.79–73.62 |
Solar azimuth Angle (°) | 228.78–235.47 |
Band 1 | Band 2 | Band 3 | |
---|---|---|---|
Tylicz 150 m NIR (March 2016) | 4.9 | 5.1 | 7.6 |
Tylicz 300 m NIR (February 2017) | 8.7 | 2.9 | 9.7 |
Band 1 | Band 2 | Band 3 | |
---|---|---|---|
Tylicz 150 m NIR (March 2016) | 0.98 | 0.98 | 0.99 |
Tylicz 300 m NIR (February 2017) | 0.98 | 0.99 | 0.99 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wierzbicki, D.; Kedzierski, M.; Fryskowska, A.; Jasinski, J. Quality Assessment of the Bidirectional Reflectance Distribution Function for NIR Imagery Sequences from UAV. Remote Sens. 2018, 10, 1348. https://doi.org/10.3390/rs10091348
Wierzbicki D, Kedzierski M, Fryskowska A, Jasinski J. Quality Assessment of the Bidirectional Reflectance Distribution Function for NIR Imagery Sequences from UAV. Remote Sensing. 2018; 10(9):1348. https://doi.org/10.3390/rs10091348
Chicago/Turabian StyleWierzbicki, Damian, Michal Kedzierski, Anna Fryskowska, and Janusz Jasinski. 2018. "Quality Assessment of the Bidirectional Reflectance Distribution Function for NIR Imagery Sequences from UAV" Remote Sensing 10, no. 9: 1348. https://doi.org/10.3390/rs10091348
APA StyleWierzbicki, D., Kedzierski, M., Fryskowska, A., & Jasinski, J. (2018). Quality Assessment of the Bidirectional Reflectance Distribution Function for NIR Imagery Sequences from UAV. Remote Sensing, 10(9), 1348. https://doi.org/10.3390/rs10091348