An Improved Seeded Region Growing-Based Seamline Network Generation Method
Abstract
1. Introduction
2. Materials and Methods
2.1. Obtaining Effective Areas and Overlap Regions between Images
2.2. Generation of the Seamline and the Corresponding Cut Result
- 1:
- Seed1 ← ABC
- 2:
- Seed2 ← ADC
- 3:
- S ← Φ
- 4:
- IfS does not generate
- 5:
- Do seed growing using Seed1 and Seed2 simultaneously to generate S
- 6:
- return S
2.3. Determination of Each Image’s EMP
2.4. Vectorization to Generate the Seamline Network
3. Results
3.1. Experiment 1
3.2. Experiment 2
3.3. Comparative Experiments
4. Discussion
4.1. The Relationship between Processing Time, Accuracy, and the Down-Sampling Rate
4.2. The Data Type of Template Matrix
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chon, J.; Kim, H.; Lin, C.S. Seam-line determination for image mosaicking: A technique minimizing the maximum local mismatch and the global cost. ISPRS J. Photogramm. Remote Sens. 2010, 65, 86–92. [Google Scholar] [CrossRef]
- Afek, Y.; Brand, A. Mosaicking of Orthorctified Aerial Image. Photogramm. Eng. Remote Sens. 1998, 64, 115–125. [Google Scholar]
- Peleg, S.; Rousso, B.; Ravacha, A.; Zomet, A. Mosaicing on Adaptive Manifolds. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1144–1154. [Google Scholar] [CrossRef]
- Hu, F.; Li, T.; Geng, Z. Constraints-based graph embedding optimal surveillance-video mosaicking. In Proceedings of the First Asian Conference on Pattern Recognition, Beijing, China, 28 November 2011; pp. 311–315. [Google Scholar]
- Brown, M.; Lowe, D.G. Automatic Panoramic Image Stitching using Invariant Features. Int. J. Comput. Vis. 2007, 74, 59–73. [Google Scholar] [CrossRef]
- Xandri, R.; Pérez, F.; Palà, V.; Arbiol, R. Automatic generation of seamless mosaics over extensive areas from high resolution imagery. In Proceedings of the 9th World Multi-Conference on Systemics, Cybernetics and Informatics, Informatics, Orlando, FL, USA, 13 July 2005; pp. 1–6. [Google Scholar]
- Yang, Y.; Gao, Y.; Li, H.; Han, Y. An Algorithm for Remote Sensing Image Mosaic Based on Valid Area. In Proceedings of the IEEE International Symposium on Image and Data Fusion, Tengchong, China, 9–11 August 2011; pp. 1–4. [Google Scholar]
- Wang, D.; Wan, Y.; Xiao, J.; Lai, X.; Huang, W.; Xu, J. Aerial Image Mosaicking with the Aid of Vector Roads. Photogramm. Eng. Remote Sens. 2012, 78, 1141–1150. [Google Scholar] [CrossRef]
- Chen, Q.; Sun, M.; Hu, X.; Zhang, Z. Automatic Seamline Network Generation for Urban Orthophoto Mosaicking with the Use of a Digital Surface Model. Remote Sens. 2014, 6, 12334–12359. [Google Scholar] [CrossRef]
- Pang, S.; Sun, M.; Hu, X.; Zhang, Z. SGM-based seamline determination for urban orthophoto mosaicking. ISPRS J. Photogramm. Remote Sens. 2016, 112, 1–12. [Google Scholar] [CrossRef]
- Hsu, S.; Kumar, R. Automated mosaics via topology inference. Comput. Graph. Appl. IEEE 2002, 22, 44–54. [Google Scholar] [CrossRef]
- Ma, H.C.; Sun, J. Intelligent optimization of seam-line finding for orthophoto mosaicking with LiDAR point clouds. J. Zhejiang Univ. Sci. C 2011, 12, 417–429. [Google Scholar] [CrossRef]
- Pan, J.; Wang, M.; Li, D.; Li, J. Automatic Generation of Seamline Network Using Area Voronoi Diagrams with Overlap. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1737–1744. [Google Scholar] [CrossRef]
- Mills, S.; Mcleod, P. Global seamline networks for orthomosaic generation via local search. ISPRS J. Photogramm. Remote Sens. 2013, 75, 101–111. [Google Scholar] [CrossRef]
- Pan, J.; Wang, M.; Ma, D.; Zhou, Q.; Li, J. Seamline Network Refinement Based on Area Voronoi Diagrams with Overlap. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1658–1666. [Google Scholar] [CrossRef]
- Fernandez, E.; Garfinkel, R.; Arbiol, R. Mosaicking of Aerial Photographic Maps via Seams Defined by Bottleneck Shortest Paths. Oper. Res. 1998, 46, 293–304. [Google Scholar] [CrossRef]
- Kerschner, M. Seamline detection in colour orthoimage mosaicking by use of twin snakes. ISPRS J. Photogramm. Remote Sens. 2001, 56, 53–64. [Google Scholar] [CrossRef]
- Pan, J.; Wang, M.; Li, J.; Yuan, S.; Hu, F. Region change rate-driven seamline determination method. ISPRS J. Photogramm. Remote Sens. 2015, 105, 141–154. [Google Scholar] [CrossRef]
- Li, L.; Yao, J.; Liu, Y.; Yuan, W.; Shi, S.Z.; Yuan, S.G. Optimal Seamline Detection for Orthoimage Mosaicking by Combining Deep Convolutional Neural Network and Graph Cuts. Remote Sens. 2017, 9, 701. [Google Scholar] [CrossRef]
- Dong, Q.; Liu, J. Seamline Determination Based on PKGC Segmentation for Remote Sensing Image Mosaicking. Sensors 2017, 17, 1721. [Google Scholar] [CrossRef] [PubMed]
- Moradi, J.Y.; Pappas, M. A Boundary Tracking Optimization Algorithm for Constrained Nonlinear Problems. J. Mech. Des. 1978, 100, 292–296. [Google Scholar] [CrossRef]
- Pan, J.; Wang, M.; Li, Q. Fast mosaic algorithm based on scanning line filling. Sci. Surv. Mapp. 2006, 31, 8–9. [Google Scholar]
- Adams, R.; Bischof, L. Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 1994, 16, 641–647. [Google Scholar] [CrossRef]
- Chen, R.X.; Zhao, Z.M.; Pan, J. A Fast Method of Vectorization for RS Classified Raster Map. J. Remote Sens. 2006, 10, 326–331. [Google Scholar]
- Wan, Y.; Wang, D.; Xiao, J.; Lai, X.; Xu, J. Automatic determination of seamlines for aerial image mosaicking based on vector roads alone. ISPRS J. Photogramm. Remote Sens. 2013, 76, 1–10. [Google Scholar] [CrossRef]
- Du, P.; Tan, K.; Xing, X. A novel binary tree support vector machine for hyperspectral remote sensing image classification. Opt. Commun. 2012, 285, 3054–3060. [Google Scholar] [CrossRef]
- Stehman, S.V. Selecting and interpreting measures of thematic classification accuracy. Remote Sens. Environ. 1997, 62, 77–89. [Google Scholar] [CrossRef]
In the Mosaic Area | Outside of the Mosaic Area | Total | |
---|---|---|---|
In effective areas in original images | X11 | X12 | S1 |
In invalid areas in original images | X21 | X22 | S2 |
Total | T1 | T2 | N |
Data | Method | T/ms | k | OA | E | M |
---|---|---|---|---|---|---|
Data Set 1 | This paper’s method | 17,347 | 1.0 | 1.0 | 0.0 | 0.0 |
Pan et al.’s (2014) method | 343 | 0.9801 | 0.9901 | 0.0001 | 0.0204 | |
Wan et al.’s (2013) method | 10,624 + Δ 1 | 1.0 | 1.0 | 0.0 | 0.0 | |
Data Set 2 | This paper’s method | 49,187 | 1.0 | 1.0 | 0.0 | 0.0 |
Pan et al.’s (2014) method | 725 | 0.9838 | 0.9919 | 0.0130 | 0.0026 | |
Wan et al.’s (2013) method | 13,885 + Δ 1 | 1.0 | 1.0 | 0.0 | 0.0 | |
The method in ERDAS | 55,750 | 1.0 | 1.0 | 0.0 | 0.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, J.; Fang, Z.; Chen, S.; Ge, H.; Hu, F.; Wang, M. An Improved Seeded Region Growing-Based Seamline Network Generation Method. Remote Sens. 2018, 10, 1065. https://doi.org/10.3390/rs10071065
Pan J, Fang Z, Chen S, Ge H, Hu F, Wang M. An Improved Seeded Region Growing-Based Seamline Network Generation Method. Remote Sensing. 2018; 10(7):1065. https://doi.org/10.3390/rs10071065
Chicago/Turabian StylePan, Jun, Zhonghao Fang, Shengtong Chen, Huan Ge, Fen Hu, and Mi Wang. 2018. "An Improved Seeded Region Growing-Based Seamline Network Generation Method" Remote Sensing 10, no. 7: 1065. https://doi.org/10.3390/rs10071065
APA StylePan, J., Fang, Z., Chen, S., Ge, H., Hu, F., & Wang, M. (2018). An Improved Seeded Region Growing-Based Seamline Network Generation Method. Remote Sensing, 10(7), 1065. https://doi.org/10.3390/rs10071065