Sampling Strategies to Improve Passive Optical Remote Sensing of River Bathymetry
Abstract
:1. Introduction
- Introduce sampling strategies for improving the accuracy of depth estimates by (a) truncating the calibration data set to exclude field observations beyond a specified maximum cutoff depth; and/or (b) stratifying the calibration data set such that all ranges of depths present in the river of interest are represented in equal proportions.
- Demonstrate how this type of sampling can be used to estimate the maximum detectable depth directly from an image, without field measurements of water column optical properties.
- Compare empirical, image-based estimates of to theoretical calculations based on irradiance profiles recorded in the field.
2. Materials and Methods
2.1. Study Areas and Field Data Collection
2.2. Remotely Sensed Data and Image Processing
2.3. Sampling Strategies for Improved Depth Retrieval
2.3.1. Optimal Band Ratio Analysis (OBRA) of Progressively Truncated Input Depths (OPTID)
2.3.2. Stratified Optimal Band Ratio Analysis (SOBRA)
2.4. Estimating the Maximum Detectable Depth
3. Results
3.1. OPTID of Hyperspectral Image Data and Field Spectra
3.2. SOBRA of Hyperspectral Image Data and Field Spectra
3.3. Image-Based Inference of the Maximum Detectable Depth
4. Discussion
4.1. OPTID: A Trade-Off between Signal Strength and Saturation
4.2. Stratified Optimal Band Ratio Analysis (SOBRA)
4.3. Alternative Approaches to Estimating the Maximum Detectable Depth
4.4. Extensions and Future Research
5. Conclusions
- OPTID can enhance bathymetric mapping by removing observations that exceed a sensor’s maximum detectable depth from the calibration data set.
- Stratification can improve the accuracy of depth estimates relative to standard OBRA by ensuring that all ranges of depths are represented in equal proportions.
- Wavelength selection via OBRA is robust, can adapt to the distribution of depths included in the calibration data set, and tends to identify bands that are sensitive to variations in depth but do not saturate in deeper water.
- Identifying an appropriate cutoff depth to optimize depth retrieval yields insight regarding the range of depths for which reliable image-derived estimates can be obtained by a particular sensor deployed above a specific river.
- Retaining enough of the field data to enable sufficient variation in depth is also critical for establishing strong relationships between the image-derived quantity X and d; a trade-off must be reached between signal strength and saturation.
- OPTID can be used to estimate the maximum detectable depth directly from an image as an inflection point on a plot of OBRA vs. cutoff depth. This approach was consistent with values calculated from measured irradiance profiles on the Deschutes River but had the important advantages of not requiring specialized optical instrumentation or a priori assumptions of detector sensitivity.
- Although spectrally based bathymetric mapping is constrained by a maximum detectable depth, OPTID provides a robust means of distinguishing between shallow areas where depth estimates might be reliable and could provide useful habitat information and deeper areas where depth estimates should be disregarded.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lyon, J.G.; Lunetta, R.S.; Williams, D.C. Airborne multispectral scanner data for evaluating bottom sediment types and water depths of the St. Marys River, Michigan. Photogramm. Eng. Remote Sens. 1992, 58, 951–956. [Google Scholar]
- Winterbottom, S.J.; Gilvear, D.J. Quantification of channel bed morphology in gravel-bed rivers using airborne multispectral imagery and aerial photography. Regul. Rivers Res. Manag. 1997, 13, 489–499. [Google Scholar] [CrossRef]
- Marcus, W.A.; Legleiter, C.J.; Aspinall, R.J.; Boardman, J.W.; Crabtree, R.L. High spatial resolution hyperspectral mapping of in-stream habitats, depths, and woody debris in mountain streams. Geomorphology 2003, 55, 363–380. [Google Scholar] [CrossRef]
- Legleiter, C.J.; Overstreet, B.T. Mapping gravel bed river bathymetry from space. J. Geophys. Res. Earth Surf. 2012, 117, F04024. [Google Scholar] [CrossRef]
- Williams, R.D.; Brasington, J.; Vericat, D.; Hicks, D.M. Hyperscale terrain modelling of braided rivers: Fusing mobile terrestrial laser scanning and optical bathymetric mapping. Earth Surf. Process. Landf. 2014, 39, 167–183. [Google Scholar] [CrossRef]
- Tamminga, A.; Hugenholtz, C.; Eaton, B.; Lapointe, M. Hyperspatial remote sensing of channel reach morphology and hydraulic fish habitat using an unmanned aerial vehicle (UAV): A first assessment in the context of river research and management. River Res. Appl. 2015, 31, 379–391. [Google Scholar] [CrossRef]
- Marcus, W.A.; Fonstad, M.A. Optical remote mapping of rivers at sub-meter resolutions and watershed extents. Earth Surf. Process. Landf. 2008, 33, 4–24. [Google Scholar] [CrossRef]
- Carbonneau, P.; Fonstad, M.A.; Marcus, W.A.; Dugdale, S.J. Making riverscapes real. Geomorphology 2011, 137, 74–86. [Google Scholar] [CrossRef]
- Fonstad, M.A.; Marcus, W.A. Remote sensing of stream depths with hydraulically assisted bathymetry (HAB) models. Geomorphology 2005, 72, 320–339. [Google Scholar] [CrossRef]
- Lejot, J.; Delacourt, C.; Piegay, H.; Fournier, T.; Tremelo, M.L.; Allemand, P. Very high spatial resolution imagery for channel bathymetry and topography from an unmanned mapping controlled platform. Earth Surf. Process. Landf. 2007, 32, 1705–1725. [Google Scholar] [CrossRef]
- Legleiter, C.J.; Kinzel, P.J.; Overstreet, B.T. Evaluating the potential for remote bathymetric mapping of a turbid, sand-bed river: 1. Field spectroscopy and radiative transfer modeling. Water Resour. Res. 2011, 47, W09531. [Google Scholar] [CrossRef]
- Legleiter, C.J.; Kinzel, P.J.; Overstreet, B.T. Evaluating the potential for remote bathymetric mapping of a turbid, sand-bed river: 2. Application to hyperspectral image data from the Platte River. Water Resour. Res. 2011, 47, W09532. [Google Scholar] [CrossRef]
- Hugue, F.; Lapointe, M.; Eaton, B.C.; Lepoutre, A. Satellite-based remote sensing of running water habitats at large riverscape scales: Tools to analyze habitat heterogeneity for river ecosystem management. Geomorphology 2016, 253, 353–369. [Google Scholar] [CrossRef]
- Bizzi, S.; Demarchi, L.; Grabowski, R.C.; Weissteiner, C.J.; Van de Bund, W. The use of remote sensing to characterise hydromorphological properties of European rivers. Aquat. Sci. 2016, 78, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Demarchi, L.; Bizzi, S.; Piégay, H. Regional hydromorphological characterization with continuous and automated remote sensing analysis based on VHR imagery and low-resolution LiDAR data. Earth Surf. Process. Landf. 2017, 42, 531–551. [Google Scholar] [CrossRef] [Green Version]
- Tamminga, A.D.; Eaton, B.C.; Hugenholtz, C.H. UAS-based remote sensing of fluvial change following an extreme flood event. Earth Surf. Process. Landf. 2015, 40, 1464–1476. [Google Scholar] [CrossRef]
- Whited, D.C.; Kimball, J.S.; Lorang, M.S.; Stanford, J.A. Estimation of juvenile salmon habitat in Pacific Rim rivers using multiscalar remote sensing and geospatial analysis. River Res. Appl. 2013, 29, 135–148. [Google Scholar] [CrossRef]
- Bjerklie, D.M.; Moller, D.; Smith, L.C.; Dingman, S.L. Estimating discharge in rivers using remotely sensed hydraulic information. J. Hydrol. 2005, 309, 191–209. [Google Scholar] [CrossRef]
- Johnson, E.D.; Cowen, E.A. Remote monitoring of volumetric discharge employing bathymetry determined from surface turbulence metrics. Water Resour. Res. 2016, 52, 2178–2193. [Google Scholar] [CrossRef] [Green Version]
- Legleiter, C.J.; Kinzel, P.J.; Nelson, J.M. Remote measurement of river discharge using thermal particle image velocimetry (PIV) and various sources of bathymetric information. J. Hydrol. 2017, 554, 490–506. [Google Scholar] [CrossRef]
- Durand, M.; Gleason, C.J.; Garambois, P.A.; Bjerklie, D.; Smith, L.C.; Roux, H.; Rodriguez, E.; Bates, P.D.; Pavelsky, T.M.; Monnier, J.; et al. An intercomparison of remote sensing river discharge estimation algorithms from measurements of river height, width, and slope. Water Resour. Res. 2016, 52, 4527–4549. [Google Scholar] [CrossRef] [Green Version]
- Kinzel, P.J.; Legleiter, C.J.; Nelson, J.M. Mapping river bathymetry with a small footprint green LiDAR: Applications and challenges. J. Am. Water Resour. Assoc. 2013, 49, 183–204. [Google Scholar] [CrossRef]
- Dietrich, J.T. Bathymetric Structure-from-Motion: Extracting shallow stream bathymetry from multi-view stereo photogrammetry. Earth Surf. Process. Landf. 2017, 42, 355–364. [Google Scholar] [CrossRef]
- Legleiter, C.J. Calibrating remotely sensed river bathymetry in the absence of field measurements: Flow REsistance Equation-Based Imaging of River Depths (FREEBIRD). Water Resour. Res. 2015, 51, 2865–2884. [Google Scholar] [CrossRef] [Green Version]
- Legleiter, C.J. Inferring river bathymetry via Image-to-Depth Quantile Transformation (IDQT). Water Resour. Res. 2016, 52, 3722–3741. [Google Scholar] [CrossRef]
- Mobley, C.D.; Sundman, L.K.; Davis, C.O.; Bowles, J.H.; Downes, T.V.; Leathers, R.A.; Montes, M.J.; Bissett, W.P.; Kohler, D.D.R.; Reid, R.P.; et al. Interpretation of hyperspectral remote-sensing imagery by spectrum matching and look-up tables. Appl. Opt. 2005, 44, 3576–3592. [Google Scholar] [CrossRef] [PubMed]
- Lyzenga, D.R. Passive Remote-Sensing Techniques for Mapping Water Depth and Bottom Features. Appl. Opt. 1978, 17, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Legleiter, C.J.; Roberts, D.A.; Marcus, W.A.; Fonstad, M.A. Passive optical remote sensing of river channel morphology and in-stream habitat: Physical basis and feasibility. Remote Sens. Environ. 2004, 93, 493–510. [Google Scholar] [CrossRef] [Green Version]
- Legleiter, C.J.; Roberts, D.A.; Lawrence, R.L. Spectrally based remote sensing of river bathymetry. Earth Surf. Process. Landf. 2009, 34, 1039–1059. [Google Scholar] [CrossRef] [Green Version]
- Dierssen, H.M.; Zimmerman, R.C.; Leathers, R.A.; Downes, T.V.; Davis, C.O. Ocean color remote sensing of seagrass and bathymetry in the Bahamas Banks by high-resolution airborne imagery. Limnol. Oceanogr. 2003, 48, 444–455. [Google Scholar] [CrossRef] [Green Version]
- Legleiter, C.J. Mapping river depth from publicly available aerial images. River Res. Appl. 2013, 29, 760–780. [Google Scholar] [CrossRef]
- Overstreet, B.T.; Legleiter, C.J. Removing sun glint from optical remote sensing images of shallow rivers. Earth Surf. Process. Landf. 2017, 42, 318–333. [Google Scholar] [CrossRef]
- Mark, D.M.; Church, M. On the misuse of regression in Earth science. J. Int. Assoc. Math. Geol. 1977, 9, 63–75. [Google Scholar] [CrossRef]
- Webster, R. Regression and functional relations. Eur. J. Soil Sci. 1997, 48, 557–566. [Google Scholar] [CrossRef]
- Philpot, W.D. Bathymetric mapping with passive multispectral imagery. Appl. Opt. 1989, 28, 1569–1578. [Google Scholar] [CrossRef] [PubMed]
- Legleiter, C.J.; Roberts, D.A. A forward image model for passive optical remote sensing of river bathymetry. Remote Sens. Environ. 2009, 113, 1025–1045. [Google Scholar] [CrossRef]
- Mishra, D.R.; Narumalani, S.; Rundquist, D.; Lawson, M. Characterizing the vertical diffuse attenuation coefficient for downwelling irradiance in coastal waters: Implications for water penetration by high resolution satellite data. ISPRS J. Photogramm. Remote Sens. 2005, 60, 48–64. [Google Scholar] [CrossRef]
- Legleiter, C.; Kinzel, P.; Overstreet, B. Hyperspectral image data and field measurements used for bathymetric mapping of the Deschutes River near Bend, OR. U.S. Geological Survey Data Release 2017. [Google Scholar] [CrossRef]
- Legleiter, C.; Overstreet, B. Hyperspectral image data and field measurements used for bathymetric mapping of the Snake River in Grand Teton National Park, WY. U.S. Geological Survey Data Release 2017. [Google Scholar] [CrossRef]
- U.S. Fish and Wildlife Service. Endangered and threatened wildlife and plants; threatened status for Oregon Spotted Frog; final rule. Federal Register 2014, 79, 51658–51710. [Google Scholar]
- Marston, R.A.; Mills, J.D.; Wrazien, D.R.; Bassett, B.; Splinter, D.K. Effects of Jackson Lake Dam on the Snake River and its floodplain, Grand Teton National Park, Wyoming, USA. Geomorphology 2005, 71, 79–98. [Google Scholar] [CrossRef]
- Erwin, S.O.; Schmidt, J.C.; Nelson, N.C. Downstream effects of impounding a natural lake: The Snake River downstream from Jackson Lake Dam, Wyoming, USA. Earth Surf. Process. Landf. 2011, 36, 1421–1434. [Google Scholar] [CrossRef]
- Nelson, N.C.; Erwin, S.O.; Schmidt, J.C. Spatial and temporal patterns in channel change on the Snake River downstream from Jackson Lake Dam, Wyoming. Geomorphology 2013, 200, 132–142. [Google Scholar] [CrossRef]
- Legleiter, C.J.; Overstreet, B.T.; Glennie, C.L.; Pan, Z.; Fernandez-Diaz, J.C.; Singhania, A. Evaluating the capabilities of the CASI hyperspectral imaging system and Aquarius bathymetric LiDAR for measuring channel morphology in two distinct river environments. Earth Surf. Process. Landf. 2016, 41, 344–363. [Google Scholar] [CrossRef]
- Legleiter, C.J.; Stegman, T.K.; Overstreet, B.T. Spectrally based mapping of riverbed composition. Geomorphology 2016, 264, 61–79. [Google Scholar] [CrossRef]
- ITRES. CASI-1500H. 2018. Available online: http://www.itres.com/imagers/ (accessed on 11 June 2018).
- ReSe. ATCOR 4: Atmospheric & Topographic Correction for Wide FOV Airborne Optical Scanner Data. Available online: http://www.rese.ch/products/atcor/atcor4/ (accessed on 11 June 2018).
- Pineiro, G.; Perelman, S.; Guerschman, J.P.; Paruelo, J.M. How to evaluate models: Observed vs. predicted or predicted vs. observed? Ecol. Model. 2008, 216, 316–322. [Google Scholar] [CrossRef]
- Wettle, M.; Brando, V.E.; Dekker, A.G. A methodology for retrieval of environmental noise equivalent spectra applied to four Hyperion scenes of the same tropical coral reef. Remote Sens. Environ. 2004, 93, 188–197. [Google Scholar] [CrossRef]
- Brando, V.E.; Anstee, J.M.; Wettle, M.; Dekker, A.G.; Phinn, S.R.; Roelfsema, C. A physics based retrieval and quality assessment of bathymetry from suboptimal hyperspectral data. Remote Sens. Environ. 2009, 113, 755–770. [Google Scholar] [CrossRef]
Site | Deschutes River | Snake River | ||
---|---|---|---|---|
Field-based depth measurements | ||||
Equipment | Multibeam echo sounder | Wading | ADCP | Merged |
Number of measurements | 20,516 | 72 | 3275 | 3347 |
Mean (m) | 2.36 | 0.32 | 0.98 | 0.97 |
Std. Dev. (m) | 1.25 | 0.12 | 0.49 | 0.5 |
Minimum (m) | 0.01 | 0.12 | 0.12 | 0.12 |
25th percentile (m) | 1.58 | 0.23 | 0.6 | 0.58 |
Median (m) | 2.44 | 0.33 | 0.9 | 0.88 |
75th percentile (m) | 3.02 | 0.4 | 1.28 | 1.28 |
Maximum (m) | 8.87 | 0.6 | 3.88 | 3.88 |
Hyperspectral image data | ||||
Acqusition date | 26 July 2016 | 23 August 2015 | ||
Pixel size (m) | 0.5 | 0.5 | ||
Wavelength range (nm) | 404–989 | 368–1039 | ||
Bands | 42 | 48 |
Sampling Strategy | OBRA | (nm) | (nm) | a | b | c | Std. Err. (m) |
---|---|---|---|---|---|---|---|
Standard OBRA | 0.59 | 561.74 | 618.74 | 23.03 | −10.42 | 1.91 | 0.80 |
Stratified OBRA | 0.64 | 561.74 | 618.74 | 27.24 | −12.32 | 2.00 | 0.96 |
This article is a U.S. Government work and is in the public domain in the USA; Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Legleiter, C.J.; Overstreet, B.T.; Kinzel, P.J. Sampling Strategies to Improve Passive Optical Remote Sensing of River Bathymetry. Remote Sens. 2018, 10, 935. https://doi.org/10.3390/rs10060935
Legleiter CJ, Overstreet BT, Kinzel PJ. Sampling Strategies to Improve Passive Optical Remote Sensing of River Bathymetry. Remote Sensing. 2018; 10(6):935. https://doi.org/10.3390/rs10060935
Chicago/Turabian StyleLegleiter, Carl J., Brandon T. Overstreet, and Paul J. Kinzel. 2018. "Sampling Strategies to Improve Passive Optical Remote Sensing of River Bathymetry" Remote Sensing 10, no. 6: 935. https://doi.org/10.3390/rs10060935
APA StyleLegleiter, C. J., Overstreet, B. T., & Kinzel, P. J. (2018). Sampling Strategies to Improve Passive Optical Remote Sensing of River Bathymetry. Remote Sensing, 10(6), 935. https://doi.org/10.3390/rs10060935