Hyperspectral Pansharpening Based on Intrinsic Image Decomposition and Weighted Least Squares Filter
Abstract
:1. Introduction
- (a)
- It uses the IID technique which separates the deblurred HS image into the reflectance and illumination components to extract the spatial information from the HS image.
- (b)
- Unlike the traditional CS and MRA methods where the spatial details are just extracted from the P image, the detail map in the proposed method depends on both the HS image and the P image. The spectral distortion caused by the spectral mismatch problem can be reduced.
- (c)
- The WLS filter preserves the spatial details on edges in a better manner compared to traditional low pass filters, since it can make the best compromise between sharpening and blurring. Therefore, the WLS filter is adopted to extract the high-frequency component of the P image in the proposed method.
- (d)
- Most CS and MRA methods are based on the assumption that each band of the HS image shares the same detail map. We assume that different detail map is required by different bands of the HS image. The detail map is generated according to the ratio of the information between different bands of the HS image.
2. Related Work
2.1. Intrinsic Image Decomposition
2.2. Weighted Least Squares Filter
3. Proposed Method
3.1. Extracting Spatial Details of the P Image with Weighted Least Squares Filter
3.2. Extracting Spatial Detail of the HS Image with Intrinsic Image Decomposition
3.3. Generating the Detail Map
3.4. Obtaining the Fused HS Image
4. Results
4.1. Dataset Description
4.2. Quality Measures
4.3. Analysis of the Influence of Parameter
4.4. Experiments on Simulated Hyperspectral Remote Sensing Datasets
4.4.1. Salinas Dataset
4.4.2. Pavia University Dataset
4.4.3. Washington DC Dataset
4.5. Experiments on Real Hyperspectral Remote Sensing Datasets
4.6. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
P | Panchromatic |
HS | Hyperspectral |
WLS | Weighted least squares |
IID | Intrinsic image decomposition |
OH | Original hyperspectral image |
UH | Interpolated hyperspectral image |
H | Deblurred interpolated hyperspectral image |
D | Detail map |
CC | Cross correlation |
SAM | Spectral angle mapper |
RMSE | Root mean squared error |
ERGAS | Erreur relative globale adimensionnelle de synthèse |
UIQI | Universal image quality index |
PCA | Principal component analysis |
GFPCA | Guided filter PCA |
CNMF | Coupled nonnegative matrix factorization |
MTF | Modulation transfer function |
MGH | MTF-generalized Laplacian Pyramid with high pass modulation |
References
- Kempeneers, P.; Sedano, F.; Seebach, L.; Strobl, P.; San-MiguelAyanz, J. Data fusion of different spatial resolution remote sensing images applied to forest-type mapping. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4977–4986. [Google Scholar] [CrossRef]
- Yokoya, N.; Grohnfeldt, C.; Chanussot, J. Hyperspectral and multispectral data fusion: A comparative review of the recent literature. IEEE Geosci. Remote Sens. Mag. 2017, 5, 29–56. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, B. A new look at image fusion methods from a Bayesian perspective. Remote Sens. 2015, 7, 6828–6861. [Google Scholar] [CrossRef]
- Vivone, G.; Alparone, L.; Chanussot, J.; Mura, M.D.; Garzelli, A.; Licciardi, G.A.; Restaino, R.; Wald, L. A critical comparison among pansharpening algorithms. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2565–2586. [Google Scholar] [CrossRef]
- Loncan, L.; Almeida, L.B.; Dias, J.M.; Briottet, X.; Chanussot, J.; Dobigeon, N.; Fabre, S.; Liao, W.; Licciardi, G.A.; Simões, M.; et al. Hyperspectral pansharpening: A review. IEEE Geosci. Remote Sens. Mag. 2015, 3, 27–46. [Google Scholar] [CrossRef]
- Wei, Q.; Dobigeon, N.; Tourneret, J.Y. Bayesian fusion of multiband images. IEEE J. Sel. Top. Signal Process. 2015, 9, 1117–1127. [Google Scholar] [CrossRef]
- Wei, Q.; Bioucas-Dias, J.; Dobigeon, N.; Tourneret, J. Hyperspectral and multispectral image fusion based on a sparse representation. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3658–3668. [Google Scholar] [CrossRef]
- Simões, M.; Dias, J.B.; Almeida, L.; Chanussot, J. A convex formulation for hyperspectral image superresolution via subspace-based regularization. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3373–3388. [Google Scholar] [CrossRef]
- Wei, Q.; Dobigeon, N.; Tourneret, J.Y. Fast fusion of multiband images based on solving a sylvester equation. IEEE Trans. Image Process. 2015, 24, 4109–4121. [Google Scholar] [CrossRef] [PubMed]
- Yokoya, N.; Yairi, T.; Iwasaki, A. Coupled nonnegative matrix factorization unmixing for hyper-spectral and multispectral data fusion. IEEE Trans. Geosci. Remote Sens. 2012, 50, 528–537. [Google Scholar] [CrossRef]
- Ghassemian, H. A review of remote sensing image fusion methods. Inf. Fusion 2016, 32, 75–89. [Google Scholar] [CrossRef]
- Mookambiga, A.; Gomathi, V. Comprehensive review on fusion techniques for spatial information enhancement in hyperspectral imagery. Multidimens. Syst. Signal Process. 2016, 27, 863–889. [Google Scholar] [CrossRef]
- Tu, T.M.; Su, S.C.; Shyu, H.C.; Huang, P.S. A new look at IHS-like image fusion methods. Inf. Fusion 2001, 2, 117–186. [Google Scholar] [CrossRef]
- Hallabia, H.; Kallel, A.; Hamida, A.; Hegarat-Mascle, S. High spectral quality pansharpening approach based on MTF-matched filter banks. Multidimens. Syst. Signal Process. 2016, 4, 1–31. [Google Scholar] [CrossRef]
- Carper, W.; Lillesand, T.M.; Kiefer, P.W. The use of Intensity-Hue-Saturation transformations for merging SPOT panchromatic and multispectral image data. Photogramm. Eng. Remote Sens. 1990, 56, 459–467. [Google Scholar]
- Anderson, J.A.; Sides, S.C.; Chavez, P.S. Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic. Photogramm. Eng. Remote Sens. 1991, 57, 295–303. [Google Scholar]
- Laben, C.; Brower, B. Process for Enhacing the Spatial Resolution of Multispectral Imagery Using Pan-Sharpening. U.S. Patent 6,011,875, 1 April 2000. [Google Scholar]
- Chavez, P.S.; Kwarteng, A.Y.A. Extracting spectral contrast in Landsat thematic mapper image data using selective principal component analysis. Photogramm. Eng. Remote Sens. 1989, 55, 339–348. [Google Scholar]
- Shettigara, V.A. Generalized component substitution technique for spatial enhancement of multispectral images using a higher resolution data set. Photogramm. Eng. Remote Sens. 1992, 58, 561–567. [Google Scholar]
- Shah, V.P.; Younan, N.; King, R.L. An efficient pan-sharpening method via a combined adaptive PCA approach and contourlets. IEEE Trans. Geosci. Remote Sens. 2008, 56, 1323–1335. [Google Scholar] [CrossRef]
- Liu, J.M.; Liang, S.L. Pan-sharpening using a guided filter. Int. J. Remote Sens. 2016, 37, 1777–1800. [Google Scholar] [CrossRef]
- Aiazzi, B.; Baronti, S.; Selva, M. Improving component substitution pansharpening through multivariate regression of MS + Pan data. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3230–3239. [Google Scholar] [CrossRef]
- Choi, J.; Yu, K.; Kim, Y. A new adaptive component-substitution based satellite image fusion by using partial replacement. IEEE Trans. Geosci. Remote Sens. 2011, 49, 295–309. [Google Scholar] [CrossRef]
- Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A.; Selva, M. MTF-tailored multiscale fusion of high-resolution MS and pan imagery. Photogramm. Eng. Remote Sens. 2006, 72, 591–596. [Google Scholar] [CrossRef]
- Liu, J.G. Smoothing filter based intensity modulation: A spectral preserve image fusion technique for improving spatial details. Int. J. Remote Sens. 2000, 21, 3461–3472. [Google Scholar] [CrossRef]
- Vivone, G.; Restaino, R.; Mura, M.D.; Licciardi, G.; Chanussot, J. Contrast and error-based fusion schemes for multispectral image pansharpening. IEEE Geosci. Remote Sens. Lett. 2014, 11, 930–934. [Google Scholar] [CrossRef]
- Selva, M.; Aiazzi, B.; Butera, F.; Chiarantini, L.; Baronti, S. Hyper-sharpening: A first approach on SIM-GA data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3008–3024. [Google Scholar] [CrossRef]
- Ghahremani, M.; Ghassemian, H. Remote-sensing image fusion based on Curvelets and ICA. Int. J. Remote Sens. 2015, 36, 4131–4143. [Google Scholar] [CrossRef]
- Qu, J.H.; Li, Y.S.; Dong, W.Q. Hyperspectral pansharpening with guided filter. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2152–2156. [Google Scholar] [CrossRef]
- Tappen, M.F.; Freeman, W.T.; Adelson, E.H. Recovering intrinsic images from a single image. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1459–1472. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Yang, X.; Li, X.; Jia, Y. Intrinsic image decomposition using optimization and user scribbles. IEEE Trans. Cybern. 2013, 43, 425–436. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Schofield, A.J.; Wyatt, J.L. Correlation-based intrinsic image extraction from a single image. In Proceedings of the European Conference on Computer Vision, Heraklion, Greece, 5–11 September 2010; pp. 58–71. [Google Scholar]
- Powell, M.W.; Sarkar, S.; Goldgof, D.B.; Ivanov, K. A methodology for extracting objective color from images. IEEE Trans. Syst. Man Cybern. B Cybern. 2004, 34, 1964–1978. [Google Scholar] [CrossRef] [PubMed]
- Bousseau, A.; Paris, S.; Durand, F. User-assisted intrinsic images. ACM Trans. Graph. 2009, 28, 1. [Google Scholar] [CrossRef]
- Jung, C.; Sun, T.; Jiao, L. Eye detection under varying illumination using the Retinex theory. Neurocomputing 2013, 113, 130–137. [Google Scholar] [CrossRef]
- Jobson, D.J.; Rahman, Z.; Woodell, G.A. A multi-scale Retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 1997, 6, 965–976. [Google Scholar] [CrossRef] [PubMed]
- Farbman, Z.; Fattal, R.; Lischinski, D.; Szeliski, R. Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Graph. 2008, 27, 1–10. [Google Scholar] [CrossRef]
- Lischinski, D.; Farbman, Z.; Uyttenaaele, M.; Szeliski, R. Interactive local adjustment of tonal values. ACM Trans. Graph. 2006, 25, 646–653. [Google Scholar] [CrossRef]
- Palsson, F.; Sveinsson, J.R.; Ulfarsson, M.O.; Benediktsson, J.A. MTF-Based Deblurring Using a Wiener Filter for CS and MRA Pansharpening Methods. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2255–2269. [Google Scholar] [CrossRef]
- Chakrabarti, A.; Zickler, T. Statistics of real-world hyperspectral images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, 20–25 June 2011; pp. 193–200. [Google Scholar]
- Liao, W.; Huang, X.; Coillie, F.; Gautama, S.; Pizurica, A.; Philips, W.; Liu, H.; Zhu, T.; Shimoni, M.; Moser, G.; et al. Processing of multiresolution thermal hyperspectral and digital color data: Outcome of the 2014 IEEE GRSS data fusion contest. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2984–2996. [Google Scholar] [CrossRef]
- Zhou, J.; Civco, D.L.; Silander, J.A. A wavelet transform method to merge Landsat TM and SPOT panchromatic data. Int. J. Remote Sens. 1998, 19, 743–757. [Google Scholar] [CrossRef]
- Yang, Y.; Tong, S.; Huang, S.; Lin, P. Multifocus image fusion based on NSCT and focused area detection. IEEE Sens. J. 2015, 15, 2824–2838. [Google Scholar]
- Wald, L.; Ranchin, T.; Mangolini, M. Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images. Photogramm. Eng. Remote Sens. 1997, 63, 691–699. [Google Scholar]
- Wang, Z.; Bovik, A.C. A universal image quality index. IEEE Signal Process. Lett. 2002, 9, 81–84. [Google Scholar] [CrossRef]
- Selva, M.; Santurri, L.; Baronti, S. On the Use of the Expanded Image in Quality Assessment of Pansharpened Images. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1–5. [Google Scholar] [CrossRef]
Index | Method | ||||||
---|---|---|---|---|---|---|---|
PCA | GFPCA | Hysure | MGH | CNMF | Sparse | Proposed | |
CC | 0.5341 | 0.9335 | 0.9485 | 0.9569 | 0.9385 | 0.9443 | 0.9586 |
SAM | 10.5815 | 3.5553 | 2.1523 | 2.2694 | 2.3919 | 2.7381 | 1.9475 |
RMSE | 0.0661 | 0.0262 | 0.0224 | 0.0231 | 0.0220 | 0.0209 | 0.0188 |
ERGAS | 6.6333 | 2.8157 | 2.2176 | 2.3604 | 2.0145 | 2.0087 | 1.1626 |
UIQI | 0.9008 | 0.9776 | 0.9877 | 0.9838 | 0.9867 | 0.9877 | 0.9884 |
Index | Method | ||||||
---|---|---|---|---|---|---|---|
PCA | GFPCA | HySure | MGH | CNMF | Sparse | Proposed | |
CC | 0.8967 | 0.8203 | 0.9404 | 0.9308 | 0.8723 | 0.9012 | 0.9440 |
SAM | 6.2287 | 9.2413 | 6.5623 | 6.2832 | 7.2820 | 8.4505 | 6.1135 |
RMSE | 0.0489 | 0.0664 | 0.0385 | 0.0475 | 0.0548 | 0.0484 | 0.0330 |
ERGAS | 6.8652 | 6.9343 | 3.4842 | 4.6084 | 5.8609 | 4.6880 | 3.4226 |
UIQI | 0.7824 | 0.7356 | 0.8381 | 0.8133 | 0.7908 | 0.7739 | 0.8310 |
Index | Method | ||||||
---|---|---|---|---|---|---|---|
PCA | GFPCA | HySure | MGH | CNMF | Sparse | Proposed | |
CC | 0.7724 | 0.7829 | 0.8782 | 0.8771 | 0.7720 | 0.8179 | 0.8940 |
SAM | 8.8123 | 10.7545 | 7.3913 | 7.9453 | 8.6588 | 10.0145 | 7.7436 |
RMSE | 0.0123 | 0.0139 | 0.0084 | 0.0132 | 0.0120 | 0.0119 | 0.0081 |
ERGAS | 33.4070 | 39.5999 | 27.1998 | 35.3178 | 31.2027 | 30.8796 | 25.2085 |
UIQI | 0.9227 | 0.8971 | 0.9541 | 0.9350 | 0.9391 | 0.9517 | 0.9584 |
Index | Method | ||||||
---|---|---|---|---|---|---|---|
PCA | GFPCA | HySure | MGH | CNMF | Sparse | Proposed | |
CC | 0.7574 | 0.7430 | 0.5984 | 0.9087 | 0.8754 | 0.8273 | 0.9123 |
SAM | 3.7563 | 4.6248 | 12.1445 | 2.7090 | 3.0467 | 4.5656 | 2.6637 |
RMSE | 0.0353 | 0.0385 | 0.1012 | 0.0225 | 0.0249 | 0.0362 | 0.0220 |
ERGAS | 8.5544 | 9.9020 | 22.0946 | 5.6159 | 6.6400 | 9.0590 | 5.4775 |
UIQI | 0.9835 | 0.9797 | 0.8738 | 0.9922 | 0.9910 | 0.9775 | 0.9927 |
Index | Method | ||||||
---|---|---|---|---|---|---|---|
PCA | GFPCA | HySure | MGH | CNMF | Sparse | Proposed | |
CC | 0.7077 | 0.8234 | 0.7543 | 0.9341 | 0.9219 | 0.8781 | 0.9344 |
SAM | 4.7224 | 5.7334 | 6.8596 | 3.0803 | 4.3548 | 5.4651 | 3.0230 |
RMSE | 0.0399 | 0.0253 | 0.0396 | 0.0185 | 0.0189 | 0.0206 | 0.0174 |
ERGAS | 12.5797 | 10.0371 | 15.8318 | 6.2645 | 6.7987 | 8.6556 | 6.5841 |
UIQI | 0.7886 | 0.7324 | 0.7837 | 0.9418 | 0.9025 | 0.8537 | 0.9446 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, W.; Xiao, S.; Li, Y.; Qu, J. Hyperspectral Pansharpening Based on Intrinsic Image Decomposition and Weighted Least Squares Filter. Remote Sens. 2018, 10, 445. https://doi.org/10.3390/rs10030445
Dong W, Xiao S, Li Y, Qu J. Hyperspectral Pansharpening Based on Intrinsic Image Decomposition and Weighted Least Squares Filter. Remote Sensing. 2018; 10(3):445. https://doi.org/10.3390/rs10030445
Chicago/Turabian StyleDong, Wenqian, Song Xiao, Yunsong Li, and Jiahui Qu. 2018. "Hyperspectral Pansharpening Based on Intrinsic Image Decomposition and Weighted Least Squares Filter" Remote Sensing 10, no. 3: 445. https://doi.org/10.3390/rs10030445
APA StyleDong, W., Xiao, S., Li, Y., & Qu, J. (2018). Hyperspectral Pansharpening Based on Intrinsic Image Decomposition and Weighted Least Squares Filter. Remote Sensing, 10(3), 445. https://doi.org/10.3390/rs10030445