Atmospheric Correction Inter-Comparison Exercise
Abstract
:1. Introduction
2. ACIX Protocol
2.1. ACIX Sites and Datasets
Input Data and Processing Specifications
2.2. Inter-Comparison Analysis
2.2.1. Aerosol Optical Thickness (AOT) and Water Vapour (WV)
2.2.2. Surface Reflectance (SR)
Inter-Comparison of the Retrieved SRs
Comparison with AERONET Corrected Data
3. Overview of ACIX Results
3.1. Landsat-8
3.1.1. Aerosol Optical Thickness
3.1.2. Surface Reflectance Products
3.2. Sentinel-2
3.2.1. Aerosol Optical Thickness
3.2.2. Water Vapour (WV)
3.2.3. Surface Reflectance Products
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Vermote, E.F.; Kotchenova, S. Atmospheric correction for the monitoring of land surfaces. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Franch, B.; Vermote, E.F.; Roger, J.C.; Murphy, E.; Becker-Reshef, I.; Justice, C.; Claverie, M.; Nagol, J.; Csiszar, I.; Meyer, D.; et al. A 30+ Year AVHRR Land Surface Reflectance Climate Data Record and Its Application to Wheat Yield Monitoring. Remote Sens. 2017, 9, 296. [Google Scholar] [CrossRef]
- Hagolle, O.; Huc, M.; Villa Pascual, D.; Dedieu, G. A multi-temporal and multi-spectral method to estimate aerosol optical thickness over land, for the atmospheric correction of FormoSat-2, LandSat, VENµS and Sentinel-2 images. Remote Sens. 2015, 7, 2668–2691. [Google Scholar] [CrossRef]
- Ng, W.T.; Rima, P.; Einzmann, K.; Immitzer, M.; Atzberger, C.; Eckert, S. Assessing the Potential of Sentinel-2 and Pléiades Data for the Detection of Prosopis and Vachellia spp. in Kenya. Remote Sens. 2017, 9, 74. [Google Scholar] [CrossRef]
- Van der Werff, H.; Van der Meer, F. Sentinel-2A MSI and Landsat 8 OLI Provide Data Continuity for Geological Remote Sensing. Remote Sens. 2016, 8, 883. [Google Scholar] [CrossRef]
- Radoux, J.; Chomé, G.; Jacques, D.C.; Waldner, F.; Bellemans, N.; Matton, N.; Lamarche, C.; d’Andrimont, R.; Defourny, P. Sentinel-2’s Potential for Sub-Pixel Landscape Feature Detection. Remote Sens. 2016, 8, 488. [Google Scholar] [CrossRef]
- Pahlevan, N.; Sarkar, S.; Franz, B.A.; Balasubramanian, S.V.; He, J. Sentinel-2 MultiSpectral Instrument (MSI) data processing for aquatic science applications: Demonstrations and validations. Remote Sens. Environ. 2017, 201, 47–56. [Google Scholar] [CrossRef]
- Pahlevan, N.; Schott, J.R.; Franz, B.A.; Zibordi, G.; Markham, B.; Bailey, S.; Schaaf, C.B.; Ondrusek, M.; Greb, S.; Strait, C.M. Landsat 8 remote sensing reflectance (R rs) products: Evaluations, intercomparisons, and enhancements. Remote Sens. Environ. 2017, 190, 289–301. [Google Scholar] [CrossRef]
- Rouquié, B.; Hagolle, O.; Bréon, F.-M.; Boucher, O.; Desjardins, C.; Rémy, S. Using Copernicus Atmosphere Monitoring Service Products to Constrain the Aerosol Type in the Atmospheric Correction Processor MAJA. Remote Sens. 2017, 9, 1230. [Google Scholar] [CrossRef]
- Dörnhöfer, K.; Göritz, A.; Gege, P.; Pflug, B.; Oppelt, N. Water Constituents and Water Depth Retrieval from Sentinel-2A—A First Evaluation in an Oligotrophic Lake. Remote Sens. 2016, 8, 941. [Google Scholar] [CrossRef]
- Ju, J.; Roy, D.P.; Vermote, E.; Masek, J.; Kovalskyy, V. Continental-scale validation of MODIS-based and LEDAPS Landsat ETM+ atmospheric correction methods. Remote Sens. Environ. 2012, 122, 175–184. [Google Scholar] [CrossRef]
- Claverie, M.; Vermote, E.F.; Franch, B.; Masek, J.G. Evaluation of the Landsat-5 TM and Landsat-7 ETM+ surface reflectance products. Remote Sens. Environ. 2015, 169, 390–403. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanre, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Smirnov, A.; Holben, B.N.; Eck, T.F.; Dubovik, O.; Slutsker, I. Cloud-screening and quality control algorithms for the AERONET database. Remote Sens. Environ. 2000, 73, 337–349. [Google Scholar] [CrossRef]
- Richter, R. Correction of satellite imagery over mountainous terrain. Appl. Opt. 1998, 37, 4004–4015. [Google Scholar] [CrossRef] [PubMed]
- Richter, R.; Schläpfer, D. Atmospheric/Topographic Correction for Satellite Imagery; DLR Report DLR-IB 565-02/15); German Aerospace Center (DLR): Wessling, Germany, 2015. [Google Scholar]
- Defourny, P.; Arino, O.; Boettcher, M.; Brockmann, C.; Kirches, G.; Lamarche, C.; Radoux, J.; Ramoino, F.; Santoro, M.; Wevers, J. CCI-LC ATBDv3 Phase II. Land Cover Climate Change Initiative—Algorithm Theoretical Basis Document v3. Issue 1.1, 2017. Available online: https://www.esa-landcover-cci.org/?q=documents# (accessed on 20 February 2018).
- Frantz, D.; Röder, A.; Stellmes, M.; Hill, J. An Operational Radiometric Landsat Preprocessing Framework for Large-Area Time Series Applications. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3928–3943. [Google Scholar] [CrossRef]
- Li, F.; Jupp, D.L.B.; Thankappan, M.; Lymburner, L.; Mueller, N.; Lewis, A.; Held, A. A Physics-based Atmospheric and BRDF Correction for Landsat Data over Mountainous Terrain. Remote Sens. Environ. 2012, 124, 756–770. [Google Scholar] [CrossRef]
- Franz, B.A.; Bailey, S.W.; Kuring, N.; Werdell, P.J. Ocean color measurements with the Operational Land Imager on Landsat-8: Implementation and evaluation in SeaDAS. J. Appl. Remote Sens. 2015, 9, 096070. [Google Scholar] [CrossRef]
- Vermote, E.F.; Tanré, D.; Deuze, J.L.; Herman, M.; Morcette, J.J. Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef]
- Dubovik, O.; Holben, B.; Eck, T.F.; Smirnov, A.; Kaufman, Y.J.; King, M.D.; Tanré, D.; Slutsker, I. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 2002, 59, 590–608. [Google Scholar] [CrossRef]
- Kotchenova, S.Y.; Vermote, E.F.; Matarrese, R.; Klemm, F.J. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path radiance. Appl. Opt. 2006, 45, 6762–6774. [Google Scholar] [CrossRef] [PubMed]
- Kotchenova, S.Y.; Vermote, E.F. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces. Appl. Opt. 2007, 46, 4455–4464. [Google Scholar] [CrossRef] [PubMed]
- Petrucci, B.; Huc, M.; Feuvrier, T.; Ruffel, C.; Hagolle, O.; Lonjou, V.; Desjardins, C. MACCS: Multi-Mission Atmospheric Correction and Cloud Screening tool for high-frequency revisit data processing. In Proceedings of the Image and Signal Processing for Remote Sensing XXI, Toulouse, France, 21–24 September 2015. [Google Scholar]
AC Processor | Participants | Affiliation | Reference | Data Submitted | |
---|---|---|---|---|---|
Landsat-8 | Sentinel-2 | ||||
ACOLITE | Quinten Vanhellmont | Royal Belgian Institute for Natural Sciences [Belgium] | - | ✓ | ✓ |
ATCOR/S2-AC2020 | Bringfried Pflug, Rolf Richter, Aliaksei Makarau | DLR German Aerospace Center [Germany] | [16,17] | ✓ | ✓ |
CorA [Brockmann] | Grit Kirches, Carsten Brockmann | Brockmann Consult GmbH [Germany] | [18] | - | ✓ |
FORCE | David Frantz, Joachim Hill | Trier University [Germany] | [19] | ✓ | ✓ |
iCOR [OPERA] | Stefan Adriaensen | VITO [Belgium] | - | ✓ | ✓ |
GA-PABT | Fuqin Li | Geoscience Australia [Australia] | [20] | ✓ | ✓ |
LAC | Antoine Mangin | ACRI [France] | - | - | ✓ |
LaSRC | Eric Vermote | GSFC NASA [USA] | [13] | ✓ | ✓ |
MACCS | Olivier Hagolle | CNES [France] | [3] | - | ✓ |
GFZ-AC [SCAPE-M] | André Hollstein | GFZ German Research Centre for Geosciences [Germany] | - | - | ✓ |
SeaDAS | Nima Pahlevan | GSFC NASA [USA] | [7,8,21] | ✓ | - |
Sen2Cor v2.2.2 | Jerome Louis | Telespazio France [France] | - | - | ✓ |
Bringfried Pflug | DLR German Aerospace Center [Germany] |
Test Sites * | Zone ** | Land Cover | Aeronet Station | |
---|---|---|---|---|
Lat., Lon. | ||||
Temperate | Carpentras [France] | Temperate | vegetated, bare soil, coastal | 44.083, 5.058 |
Davos [Switzerland] | Temperate | forest, snow, agriculture | 46.813, 9.844 | |
Beijing [China] | Temperate | urban, mountains | 39.977, 116.381 | |
Canberra [Australia] | Temperate | urban, vegetated, water | −35.271, 149.111 | |
Pretoria_CSIR-DPSS [South Africa] | Temperate | urban, semi-arid | −25.757, 28.280 | |
Sioux_Falls [USA] | Temperate | cropland, vegetated | 43.736, −96.626 | |
GSFC [USA] | Temperate | urban, forest, cropland, water | 38.992, −76.840 | |
Yakutsk [Russia] | Temperate | forest, river, snow | 61.662, 129.367 | |
Arid | Banizoumbou [Niger] | Tropical | desert, cropland | 13.541, 2.665 |
Capo_Verde [Capo Verde] | Tropical | desert, ocean | 16.733, −22.935 | |
SEDE_BOKER [Israel] | Temperate | desert | 34.782, 30.855 | |
Equatorial Forest | Alta_Floresta [Brazil] | Tropical | cropland, urban, forest | −9.871, −56.104 |
ND_Marbel_Univ [Philippines] | Tropical | cropland, urban, forest | 6.496, 124.843 | |
Boreal | Rimrock [USA] | Temperate | semi-arid | 46.487, −116.992 |
Coastal | Thornton C-power [Belgium] | Temperate | water, vegetated | 51.532, 2.955 |
Gloria [Romania] | Temperate | water, vegetated | 44.600, 29.360 | |
Sirmione_Museo_GC [Italy] | Temperate | water, vegetated, urban | 45.500, 10.606 | |
Venice [Italy] | Temperate | water, vegetated, urban | 45.314, 12.508 | |
WaveCIS_Site_CSI_6 [USA] | Temperate | water, vegetated | 28.867, −90.483 |
AC Processor 1 | AC Processor 2 | AC Processor 3 | … | AC Processor n | |
---|---|---|---|---|---|
AC Processor 1 | 0 | d12 | d13 | … | d1n |
AC Processor 2 | d21 | 0 | d23 | … | d2n |
AC Processor 3 | d31 | d32 | 0 | … | d3n |
…. | … | … | … | … | … |
AC Processor n | dn1 | dn2 | dn3 | … | 0 |
AC Processor-Reference AOT | |||||
---|---|---|---|---|---|
No. of Samples | Min | Mean | ±RMS (stdv) | Max | |
ATCOR | 120 | 0 | 0.122 | 0.207 | 1.844 |
FORCE | 124 | 0.002 | 0.112 | 0.211 | 1.745 |
iCOR | 111 | 0.002 | 0.095 | 0.119 | 1.015 |
LaSRC | 119 | 0.001 | 0.233 | 0.387 | 2.017 |
OLI Band | ATCOR | FORCE | LaSRC | iCOR | |
---|---|---|---|---|---|
nbp | 5094039 | 4981438 | 6109550 | 3985227 | |
1 | A | 0.009 | 0.009 | −0.005 | −0.004 |
P | 0.010 | 0.008 | 0.010 | 0.011 | |
U | 0.013 | 0.012 | 0.012 | 0.012 | |
2 | A | 0.001 | −0.001 | −0.004 | −0.004 |
P | 0.007 | 0.006 | 0.009 | 0.010 | |
U | 0.007 | 0.006 | 0.010 | 0.010 | |
3 | A | 0.000 | −0.009 | −0.004 | 0.000 |
P | 0.005 | 0.006 | 0.007 | 0.009 | |
U | 0.005 | 0.010 | 0.008 | 0.009 | |
4 | A | 0.000 | −0.009 | −0.004 | 0.000 |
P | 0.005 | 0.006 | 0.006 | 0.010 | |
U | 0.005 | 0.011 | 0.007 | 0.010 | |
5 | A | 0.005 | 0.000 | −0.005 | 0.010 |
P | 0.005 | 0.005 | 0.007 | 0.010 | |
U | 0.008 | 0.005 | 0.008 | 0.014 | |
6 | A | −0.001 | −0.023 | −0.002 | 0.006 |
P | 0.004 | 0.012 | 0.003 | 0.006 | |
U | 0.004 | 0.026 | 0.004 | 0.008 | |
7 | A | −0.001 | −0.008 | 0.001 | 0.006 |
P | 0.006 | 0.007 | 0.003 | 0.005 | |
U | 0.006 | 0.010 | 0.003 | 0.007 |
AC Processor-Reference AOT | |||||
---|---|---|---|---|---|
No. of Samples | Min | Mean | ±RMS (Stdv) | Max | |
CorA | 47 | 0 | 0.133 | 0.155 | 0.757 |
FORCE | 48 | 0.003 | 0.116 | 0.169 | 0.871 |
iCOR | 37 | 0.002 | 0.15 | 0.151 | 0.599 |
LaSRC | 48 | 0.002 | 0.115 | 0.097 | 0.602 |
MACCS | 24 | 0.002 | 0.176 | 0.2 | 0.778 |
S2-AC2020 | 36 | 0.002 | 0.107 | 0.144 | 0.652 |
GFZ-AC | 41 | 0.001 | 0.159 | 0.223 | 0.92 |
Sen2Cor | 47 | 0.005 | 0.158 | 0.147 | 0.805 |
AC Processor-Reference WV | |||||
---|---|---|---|---|---|
No. of Samples | Min | Mean | ±RMS (Stdv) | Max | |
CorA | 36 | 0.008 | 0.37 | 0.332 | 1.312 |
FORCE | 43 | 0.001 | 0.215 | 0.305 | 1.504 |
LaSRC | 41 | 0.021 | 0.297 | 0.303 | 1.906 |
MACCS | 20 | 0.002 | 0.269 | 0.387 | 1.654 |
S2-AC2020 | 29 | 0.005 | 0.344 | 0.437 | 2.18 |
GFZ-AC | 39 | 0.027 | 0.457 | 0.283 | 1.246 |
Sen2Cor | 41 | 0.012 | 0.28 | 0.346 | 1.63 |
MSI Band | CorA | FORCE | iCOR | LaSRC | MACCS | S2-AC2020 | GFZ-AC | Sen2Cor | |
---|---|---|---|---|---|---|---|---|---|
nbp | 23873202 | 29568870 | 23808647 | 36863274 | 12538144 | 34243490 | 34159390 | 30335882 | |
1 | A | −0.006 | −0.002 | −0.010 | −0.010 | - | −0.006 | 0.026 | −0.003 |
P | 0.096 | 0.009 | 0.024 | 0.010 | - | 0.017 | 0.014 | 0.011 | |
U | 0.096 | 0.009 | 0.026 | 0.014 | - | 0.018 | 0.029 | 0.011 | |
2 | A | 0.000 | −0.004 | 0.000 | −0.007 | −0.008 | −0.004 | 0.023 | −0.001 |
P | 0.021 | 0.007 | 0.028 | 0.008 | 0.010 | 0.021 | 0.016 | 0.009 | |
U | 0.021 | 0.008 | 0.028 | 0.011 | 0.013 | 0.022 | 0.029 | 0.009 | |
3 | A | 0.003 | −0.012 | 0.013 | −0.005 | −0.008 | 0.000 | 0.031 | 0.004 |
P | 0.024 | 0.006 | 0.034 | 0.006 | 0.008 | 0.023 | 0.023 | 0.010 | |
U | 0.025 | 0.014 | 0.036 | 0.008 | 0.012 | 0.023 | 0.039 | 0.011 | |
4 | A | 0.002 | −0.007 | 0.018 | −0.003 | −0.007 | 0.002 | 0.022 | 0.006 |
P | 0.027 | 0.005 | 0.036 | 0.006 | 0.007 | 0.025 | 0.020 | 0.012 | |
U | 0.027 | 0.009 | 0.040 | 0.007 | 0.010 | 0.026 | 0.030 | 0.013 | |
5 | A | 0.008 | −0.008 | 0.027 | −0.002 | −0.005 | 0.007 | 0.031 | 0.020 |
P | 0.029 | 0.005 | 0.038 | 0.006 | 0.006 | 0.012 | 0.022 | 0.018 | |
U | 0.030 | 0.009 | 0.046 | 0.006 | 0.008 | 0.014 | 0.038 | 0.027 | |
6 | A | 0.005 | 0.001 | 0.024 | −0.001 | −0.003 | 0.004 | 0.024 | 0.017 |
P | 0.032 | 0.005 | 0.033 | 0.005 | 0.006 | 0.010 | 0.042 | 0.011 | |
U | 0.032 | 0.005 | 0.041 | 0.005 | 0.007 | 0.011 | 0.049 | 0.021 | |
7 | A | 0.006 | −0.002 | 0.025 | −0.003 | −0.007 | 0.005 | 0.020 | 0.014 |
P | 0.033 | 0.005 | 0.031 | 0.005 | 0.005 | 0.009 | 0.047 | 0.010 | |
U | 0.034 | 0.006 | 0.040 | 0.005 | 0.008 | 0.010 | 0.051 | 0.017 | |
8 | A | 0.008 | 0.017 | 0.032 | 0.001 | −0.001 | 0.011 | 0.025 | 0.022 |
P | 0.033 | 0.010 | 0.034 | 0.005 | 0.005 | 0.026 | 0.047 | 0.014 | |
U | 0.034 | 0.019 | 0.047 | 0.005 | 0.006 | 0.028 | 0.053 | 0.026 | |
8a | A | −0.008 | 0.000 | 0.023 | −0.002 | −0.008 | 0.003 | 0.016 | 0.013 |
P | 0.033 | 0.005 | 0.028 | 0.004 | 0.005 | 0.011 | 0.049 | 0.008 | |
U | 0.034 | 0.005 | 0.036 | 0.005 | 0.009 | 0.011 | 0.051 | 0.015 | |
11 | A | 0.021 | −0.010 | 0.018 | 0.002 | −0.003 | 0.009 | 0.017 | 0.020 |
P | 0.035 | 0.005 | 0.019 | 0.003 | 0.003 | 0.007 | 0.011 | 0.009 | |
U | 0.041 | 0.011 | 0.026 | 0.003 | 0.004 | 0.011 | 0.020 | 0.022 | |
12 | A | 0.020 | 0.004 | 0.013 | 0.004 | 0.000 | 0.008 | 0.014 | 0.025 |
P | 0.030 | 0.006 | 0.013 | 0.003 | 0.002 | 0.006 | 0.019 | 0.014 | |
U | 0.036 | 0.007 | 0.018 | 0.005 | 0.003 | 0.010 | 0.024 | 0.028 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doxani, G.; Vermote, E.; Roger, J.-C.; Gascon, F.; Adriaensen, S.; Frantz, D.; Hagolle, O.; Hollstein, A.; Kirches, G.; Li, F.; Louis, J.; Mangin, A.; Pahlevan, N.; Pflug, B.; Vanhellemont, Q. Atmospheric Correction Inter-Comparison Exercise. Remote Sens. 2018, 10, 352. https://doi.org/10.3390/rs10020352
Doxani G, Vermote E, Roger J-C, Gascon F, Adriaensen S, Frantz D, Hagolle O, Hollstein A, Kirches G, Li F, Louis J, Mangin A, Pahlevan N, Pflug B, Vanhellemont Q. Atmospheric Correction Inter-Comparison Exercise. Remote Sensing. 2018; 10(2):352. https://doi.org/10.3390/rs10020352
Chicago/Turabian StyleDoxani, Georgia, Eric Vermote, Jean-Claude Roger, Ferran Gascon, Stefan Adriaensen, David Frantz, Olivier Hagolle, André Hollstein, Grit Kirches, Fuqin Li, Jérôme Louis, Antoine Mangin, Nima Pahlevan, Bringfried Pflug, and Quinten Vanhellemont. 2018. "Atmospheric Correction Inter-Comparison Exercise" Remote Sensing 10, no. 2: 352. https://doi.org/10.3390/rs10020352