Airborne Laser Scanning Cartography of On-Site Carbon Stocks as a Basis for the Silviculture of Pinus Halepensis Plantations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Data
If d ≤ 27.5 cm then Z = 0; If d > 27.5 cm then Z = 1;
2.3. Soil Sampling and Analysis
2.4. ALS Data and Processing
2.5. Data Analysis and k-NN Predictions
2.6. Cartography of C Stocks
3. Results
3.1. C Stock in Biomass and SOC under Different Thinning Intensities
3.2. kNN Models for C Stocks
3.3. Cartography of C Stocks and Future Projection under Thinning Treatments
4. Discussion
4.1. C stock in Biomass and SOC under Different Thinning Intensities
4.2. Low Density ALS Data and the C Stock in Biomass and SOC
4.3. Cartography of C Stocks and Management Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Parmesan, C.; Yohe, G. A Globally Coherent Fingerprint of Climate Change Impacts across Natural Systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Matthews, H.D.; Kirsten, Z.; Reto, K.; Myles, R.A. Focus on Cumulative Emissions, Global Carbon Budgets and the Implications for Climate Mitigation Targets. Environ. Res. Lett. 2018, 13, 010201. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Bellassen, V.; Luyssaert, S. Carbon Sequestration: Managing Forests in Uncertain Times. Nature 2014, 506, 153–155. [Google Scholar] [CrossRef] [PubMed]
- Waring, R.H.; Running, S.W. Chapter 3—Carbon Cycle. In Forest Ecosystems, 3rd ed.; Academic Press: San Diego, CA, USA, 2007; pp. 59–98. [Google Scholar]
- Lal, R.; Wakene, N.; Klaus, L. Carbon Sequestration in Soil. Curr. Opin. Environ. Sustain. 2015, 15, 79–86. [Google Scholar] [CrossRef]
- Wäldchen, J.; Schulze, E.-D.; Schöning, I.; Schrumpf, M.; Sierra, C. The Influence of Changes in Forest Management over the Past 200 Years on Present Soil Organic Carbon Stocks. For. Ecol. Manag. 2013, 289, 243–254. [Google Scholar] [CrossRef]
- Fahey, T.J.; Woodbury, P.B.; Battles, J.J.; Goodale, C.L.; Hamburg, S.P.; Ollinger, S.V.; Woodall, C.W. Forest Carbon Storage: Ecology, Management, and Policy. Front. Ecol. Environ. 2009, 8, 245–252. [Google Scholar] [CrossRef]
- Vilà-Cabrera, A.; Coll, L.; Martínez-Vilalta, J.; Retana, J. Forest Management for Adaptation to Climate Change in the Mediterranean Basin: A Synthesis of Evidence. For. Ecol. Manag. 2018, 407, 16–22. [Google Scholar] [CrossRef]
- Kim, S.; Kim, C.; Han, S.H.; Lee, S.; Son, Y. A Multi-Site Approach toward Assessing the Effect of Thinning on Soil Carbon Contents across Temperate Pine, Oak, and Larch Forests. For. Ecol. Manag. 2018, 424, 62–70. [Google Scholar] [CrossRef]
- Bottcher, H.; Lindner, M. Managing Forest Plantations for Carbon Sequestration Today and in the Future. In Ecosystem Goods and Services from Plantation Forests; Bauhaus, J., van der Meer, P., Kanninen, M., Eds.; Earthscan: London, UK, 2010. [Google Scholar]
- Rötzer, T.; Dieler, J.; Mette, T.; Moshammer, R.; Pretzsch, H. Productivity and Carbon Dynamics in Managed Central European Forests Depending on Site Conditions and Thinning Regimes. For. Int. J. For. Res. 2010, 83, 483–496. [Google Scholar] [CrossRef]
- Segura, C.; Jiménez, M.N.; Nieto, O.; Navarro, F.B.; Fernández-Ondoño, E. Changes in Soil Organic Carbon over 20 Years after Afforestation in Semiarid Se Spain. For. Ecol. Manag. 2016, 381, 268–278. [Google Scholar] [CrossRef]
- Sanchez Pellicer, T.; Alcón, S.M.; Morán, J.L.T.; Navarro, J.A.; Fernández-Landa, A. Forestco2: Monitorización De Sumideros De Carbono En Masas De Pinus Halepensis En La Región De Murcia. Available online: https://www.aet2017.es/ (accessed on 19 October 2018).
- Montealegre, A.L.; Lamelas, M.T.; de la Riva, J.; García-Martín, A.; Escribano, F. Use of Low Point Density Als Data to Estimate Stand-Level Structural Variables in Mediterranean Aleppo Pine Forest. For. Int. J. For. Res. 2016, 89, 373–382. [Google Scholar] [CrossRef]
- Pausas, J.G.; Bladé, C.; Valdecantos, A.; Seva, J.P.; Fuentes, D.; Alloza, J.A.; Vilagrosa, A.; Bautista, S.; Cortina, J.; Vallejo, R. Pines and Oaks in the Restoration of Mediterranean Landscapes of Spain: New Perspectives for an Old Practice—A Review. Plant Ecol. 2004, 171, 209–220. [Google Scholar] [CrossRef]
- Moreno-Gutiérrez, C.; Barberá, G.G.; Nicolás, E.; de Luis, M.; Castillo, V.M.; Martínez-Fernández, F.; Querejeta, J.I. Leaf Δ18o of Remaining Trees Is Affected by Thinning Intensity in a Semiarid Pine Forest. Plant Cell Environ. 2011, 34, 1009–1019. [Google Scholar] [CrossRef] [PubMed]
- Olivar, J.; Bogino, S.; Rathgeber, C.; Bonnesoeur, V.; Bravo, F. Thinning Has a Positive Effect on Growth Dynamics and Growth–Climate Relationships in Aleppo Pine (Pinus Halepensis) Trees of Different Crown Classes. Ann. For. Sci. 2014, 71, 395–404. [Google Scholar] [CrossRef]
- Alfaro-Sánchez, R.; López-Serrano, F.R.; Rubio, E.; Sánchez-Salguero, R.; Moya, D.; Hernández-Tecles, E.; de las Heras, J. Response of Biomass Allocation Patterns to Thinning in Pinus Halepensis Differs under Dry and Semiarid Mediterranean Climates. Ann. For. Sci. 2015, 72, 595–607. [Google Scholar] [CrossRef]
- Giuggiola, A.; Ogée, J.; Rigling, A.; Gessler, A.; Bugmann, H.; Treydte, K. Improvement of Water and Light Availability after Thinning at a Xeric Site: Which Matters More? A Dual Isotope Approach. New Phytol. 2016, 210, 108–121. [Google Scholar] [CrossRef] [PubMed]
- Serrada, R.; González, G.M. Compendio De Selvicultura Aplicada En España; Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria: Madrid, Spain, 2008. [Google Scholar]
- Ruiz-Peinado, R.; Bravo-Oviedo, A.; Montero, G.; del Río, M. Carbon Stocks in a Scots Pine Afforestation under Different Thinning Intensities Management. Mitig. Adapt. Strat. Glob. Chang. 2016, 21, 1059–1072. [Google Scholar] [CrossRef]
- Bravo, F.; Bravo-Oviedo, A.; Diaz-Balteiro, L. Carbon Sequestration in Spanish Mediterranean Forests under Two Management Alternatives: A Modeling Approach. Eur. J. For. Res. 2008, 127, 225–234. [Google Scholar] [CrossRef]
- Pérez-Cruzado, C.; Mohren, G.M.J.; Merino, A.; Rodríguez-Soalleiro, R. Carbon Balance for Different Management Practices for Fast Growing Tree Species Planted on Former Pastureland in Southern Europe: A Case Study Using the Co2fix Model. Eur. J. For. Res. 2012, 131, 1695–1716. [Google Scholar] [CrossRef]
- Herrero, C.; Bravo, F. Can We Get an Operational Indicator of Forest Carbon Sequestration? A Case Study from Two Forest Regions in Spain. Ecol. Indic. 2012, 17, 120–126. [Google Scholar] [CrossRef]
- Padilla, F.M.; Vidal, B.; Sánchez, J.; Pugnaire, F.I. Land-Use Changes and Carbon Sequestration through the Twentieth Century in a Mediterranean Mountain Ecosystem: Implications for Land Management. J. Environ. Manag. 2010, 91, 2688–2695. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Peinado, R.; Bravo-Oviedo, A.; Lopez-Senespleda, E.; Bravo, F.; del Rio, M. Forest Management and Carbon Sequestration in the Mediterranean Region: A Review. For. Syst. 2017, 26. [Google Scholar] [CrossRef]
- Næsset, E. Practical Large-Scale Forest Stand Inventory Using a Small-Footprint Airborne Scanning Laser. Scand. J. For. Res. 2004, 19, 164–179. [Google Scholar] [CrossRef]
- Del Río, M.; Calama, R.; Cañellas, I.; Roig, S.; Montero, G. Thinning Intensity and Growth Response in Sw-European Scots Pine Stands. Ann. For. Sci. 2008, 65, 308. [Google Scholar] [CrossRef]
- Næsset, E. Predicting Forest Stand Characteristics with Airborne Scanning Laser Using a Practical Two-Stage Procedure and Field Data. Remote. Sens. Environ. 2002, 80, 88–99. [Google Scholar] [CrossRef]
- Hall, S.A.; Burke, I.C.; Box, D.O.; Kaufmann, M.R.; Stoker, J.M. Estimating Stand Structure Using Discrete-Return Lidar: An Example from Low Density, Fire Prone Ponderosa Pine Forests. For. Ecol. Manag. 2005, 208, 189–209. [Google Scholar] [CrossRef]
- Watt, P.; Watt, M.S. Development of a National Model of Pinus Radiata Stand Volume from Lidar Metrics for New Zealand. Int. J. Remote. Sens. 2013, 34, 5892–5904. [Google Scholar] [CrossRef]
- Kukunda, C.B.; Duque-Lazo, J.; González-Ferreiro, E.; Thaden, H.; Kleinn, C. Ensemble Classification of Individual Pinus Crowns from Multispectral Satellite Imagery and Airborne Lidar. Int. J. Appl. Earth Obs. Geoinf. 2018, 65, 12–23. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Næsset, E.; Gobakken, T.; Bollandsås, O.M. Indirect and Direct Estimation of Forest Biomass Change Using Forest Inventory and Airborne Laser Scanning Data. Remote Sens. Environ. 2015, 164, 36–42. [Google Scholar] [CrossRef]
- Chirici, G.; Mura, M.; McInerney, D.; Py, N.; Tomppo, E.O.; Waser, L.T.; Travaglini, D.; McRoberts, R.E. A Meta-Analysis and Review of the Literature on the K-Nearest Neighbors Technique for Forestry Applications That Use Remotely Sensed Data. Remote Sens. Environ. 2016, 176, 282–294. [Google Scholar] [CrossRef]
- Alías, L.J.; Ortiz, R.; Sánchez, A.; Linares, P.; Martínez, M.J.; Marín, P. Memoria Y Mapa De Suelos Escala 1:100.000 Hoja Número 913 (Orihuela); Universidad de Murcia y Dirección General de Conservación de la Naturaleza, Ministerio de Medio Ambiente: Murcia, Spain, 1998. [Google Scholar]
- Ruiz-Peinado, R.; del Rio, M.; Montero, G. New Models for Estimating the Carbon Sink Capacity of Spanish Softwood Species. For. Syst. 2011, 20, 176–188. [Google Scholar] [CrossRef]
- Penman, J.; Gytarsky, M.; Hiraishi, T.; Krug, T.; Kurger, D.; Pipatti, R.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. Good Practice Guidance for Land Use, Land-Use Change and Forestry; Institute for Global Environmental Strategies for the Intergovernmental Panel on Climate Change: Hayama, Japan, 2003. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. Methods Soil Anal. Part 3 Chem. Methods 1996, 3, 961–1010. [Google Scholar]
- Post, W.M.; Kwon, K.C. Soil Carbon Sequestration and Land-Use Change: Processes and Potential. Glob. Chang. Boil. 2000, 6, 317–327. [Google Scholar] [CrossRef]
- Mann, L.K. Changes in Soil Carbon Storage after Cultivation. Soil Sci. 1986, 142, 279–288. [Google Scholar] [CrossRef]
- Farina, R.; Marchetti, A.; Francaviglia, R.; Napoli, R.; di Bene, C. Modeling Regional Soil C Stocks and Co2 Emissions under Mediterranean Cropping Systems and Soil Types. Agric. Ecosyst. Environ. 2017, 238, 128–141. [Google Scholar] [CrossRef]
- IGN. Plan Nacional De Ortografía Aérea. Instituto Geográfico Nacional. Available online: http://pnoa.ign.es/ (accessed on 5 May 2017).
- McGaughey, R.J. Fusion/Ldv: Software for Lidar Data Analysis and Visualization; US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Seattle, WA, USA, 2009; Volume 123.
- Næsset, E.; Gobakken, T. Estimation of above- and Below-Ground Biomass across Regions of the Boreal Forest Zone Using Airborne Laser. Remote Sens. Environ. 2008, 112, 3079–3090. [Google Scholar] [CrossRef]
- González-Ferreiro, E.; Diéguez-Aranda, U.; Miranda, D. Estimation of Stand Variables in Pinus Radiata D. Don Plantations Using Different Lidar Pulse Densities. Forestry 2012, 85, 281–292. [Google Scholar] [CrossRef]
- Sokal, R.R.; Rohlf, F.J. Biometry; W.H. Freeman and Co.: New York, NY, USA, 1995. [Google Scholar]
- Breidenbach, J.; Næsset, E.; Gobakken, T. Improving K-Nearest Neighbor Predictions in Forest Inventories by Combining High and Low Density Airborne Laser Scanning Data. Remote Sens. Environ. 2012, 117, 358–365. [Google Scholar] [CrossRef]
- Crookston, N.; Finley, A. Yaimpute: An R Package for Knn Imputation. J. Stat. Softw. 2008, 23, 1–16. [Google Scholar] [CrossRef]
- Packalén, P.; Maltamo, M. The K-Msn Method for the Prediction of Species-Specific Stand Attributes Using Airborne Laser Scanning and Aerial Photographs. Remote Sens. Environ. 2007, 109, 328–341. [Google Scholar] [CrossRef]
- Valbuena, R.; Vauhkonen, J.; Packalen, P.; Pitkänen, J.; Maltamo, M. Comparison of Airborne Laser Scanning Methods for Estimating Forest Structure Indicators Based on Lorenz Curves. Isprs J. Photogramm. Remote Sens. 2014, 95, 23–33. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Nelson, M.D.; Wendt, D.G. Stratified Estimation of Forest Area Using Satellite Imagery, Inventory Data, and the K-Nearest Neighbors Technique. Remote Sens. Environ. 2002, 82, 457–468. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2011. [Google Scholar]
- Usdm: Uncertainty Analysis for Species Distribution Models. R Package Version 1.1-8. 2017. Available online: https://rdrr.io/cran/usdm/ (accessed on 17 October 2018).
- Grizonnet, M.; Michel, J.; Poughon, V.; Inglada, J.; Savinaud, M.; Cresson, R. Orfeo Toolbox: Open Source Processing of Remote Sensing Images. Open Geospat. Data Softw. Stand. 2017, 2, 15. [Google Scholar] [CrossRef]
- Babich, G.A.; Camps, O.I. Weighted Parzen Windows for Pattern Classification. IEEE Trans. Pattern Anal Mach. Intell. 1996, 18, 567–570. [Google Scholar] [CrossRef]
- Wu, Z.; Heikkinen, V.; Hauta-Kasari, M.; Parkkinen, J.; Tokola, T. Als Data Based Forest Stand Delineation with a Coarse-to-Fine Segmentation Approach. In Proceedings of the 2014 7th International Congress on Image and Signal Processing, Dalian, China, 14–16 October 2014. [Google Scholar]
- Kathuria, A.; Turner, R.; Stone, C.; Duque-Lazo, J.; West, R. Development of an Automated Individual Tree Detection Model Using Point Cloud Lidar Data for Accurate Tree Counts in a Pinus Radiata Plantation. Aust. For. 2016, 79, 126–136. [Google Scholar] [CrossRef]
- Varo-Martínez, M.Á.; Navarro-Cerrillo, R.M.; Hernández-Clemente, R.; Duque-Lazo, J. Semi-Automated Stand Delineation in Mediterranean Pinus Sylvestris Plantations through Segmentation of Lidar Data: The Influence of Pulse Density. Int. J. Appl. Earth Obs. Geoinf. 2017, 56, 54–64. [Google Scholar] [CrossRef]
- Metsaranta, J.M.; Shaw, C.H.; Kurz, W.A.; Boisvenue, C.; Morken, S. Uncertainty of Inventory-Based Estimates of the Carbon Dynamics of Canada’s Managed Forest (1990–2014). Can. J. For. Res. 2017, 47, 1082–1094. [Google Scholar] [CrossRef]
- Peñuelas, J.; Sardans, J.; Filella, I.; Estiarte, M.; Llusià, J.; Ogaya, R.; Carnicer, J.; Bartrons, M.; Rivas-Ubach, A.; Grau, O.; et al. Impacts of Global Change on Mediterranean Forests and Their Services. Forests 2017, 8, 463. [Google Scholar] [CrossRef]
- Vosselman, G.; Maas, H.-G. Airborne and Terrestrial Laser Scanning; Whittles Publishing: Dunbeath, UK, 2010. [Google Scholar]
- Maltamo, M.; Næsset, E.; Vauhkonen, J. Forestry Applications of Airborne Laser Scanning: Concepts Case Studies; Springer: Dordrecht, The Netherlands, 2014; Volume 27, p. 460. [Google Scholar]
- Molina, A.J.; del Campo, A.D. The Effects of Experimental Thinning on Throughfall and Stemflow: A Contribution towards Hydrology-Oriented Silviculture in Aleppo Pine Plantations. For. Ecol. Manag. 2012, 269, 206–213. [Google Scholar] [CrossRef]
- De las Heras, J.; Moya, D.; López-Serrano, F.R.; Rubio, E. Carbon Sequestration of Naturally Regenerated Aleppo Pine Stands in Response to Early Thinning. New For. 2013, 44, 457–470. [Google Scholar] [CrossRef]
- Bravo-Oviedo, A.; Ruiz-Peinado, R.; Modrego, P.; Alonso, R.; Montero, G. Forest Thinning Impact on Carbon Stock and Soil Condition in Southern European Populations of P. Sylvestris L. For. Ecol. Manag. 2015, 357, 259–267. [Google Scholar] [CrossRef]
- Del Río, M.; Bravo-Oviedo, A.; Pretzsch, H.; Löf, M.; Ruiz-Peinado, R. A Review of Thinning Effects on Scots Pine Stands: From Growth and Yield to New Challenges under Global Change. For. Syst. 2017, 26. [Google Scholar] [CrossRef]
- Montealegre, A.L.; Lamelas, M.T.; de la Riva, J.; García-Martín, A.; Escribano, F. Assessment of Biomass and Carbon Content in a Mediterranean Aleppo Pine Forest Using Als Data. 2015. Available online: https://bit.ly/2J2cCCJ (accessed on 17 October 2018).
- Lambert, M.C.; Ung, C.H.; Raulier, F. Canadian National Tree Aboveground Biomass Equations. Can. J. For. Res. 2005, 35, 1996–2018. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Westfall, J.A. Effects of Uncertainty in Model Predictions of Individual Tree Volume on Large Area Volume Estimates. For. Sci. 2014, 60, 34–42. [Google Scholar] [CrossRef]
- Grünzweig, J.M.; Gelfand, I.; Yakir, D. Biogeochemical Factors Contributing to Enhanced Carbon Storage Following Afforestation of a Semi-Arid Shrubland. Biogeosciences 2007, 4, 2111–2145. [Google Scholar] [CrossRef]
- Díaz-Pinés, E.; Rubio, A.; van Miegroet, H.; Montes, F.; Benito, M. Does Tree Species Composition Control Soil Organic Carbon Pools in Mediterranean Mountain Forests? For. Ecol. Manag. 2011, 262, 1895–1904. [Google Scholar] [CrossRef]
- Charro, E.; Gallardo, J.F.; Moyano, A. Degradability of Soils under Oak and Pine in Central Spain. Eur. J. For. Res. 2010, 129, 83–91. [Google Scholar] [CrossRef]
- Ruiz-Peinado, R.; Bravo-Oviedo, A.; López-Senespleda, E.; Montero, G.; Río, M. Do Thinnings Influence Biomass and Soil Carbon Stocks in Mediterranean Maritime Pinewoods? Eur. J. For. Res. 2013, 132, 253–262. [Google Scholar] [CrossRef]
- Jiménez, M.N.; Navarro, F.B. Thinning Effects on Litterfall Remaining after 8 Years and Improved Stand Resilience in Aleppo Pine Afforestation (Se Spain). J. Environ. Manag. 2016, 169, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Skovsgaard, J.P.; Stupak, I.; Vesterdal, L. Distribution of Biomass and Carbon in Even-Aged Stands of Norway Spruce (Picea Abies (L.) Karst.): A Case Study on Spacing and Thinning Effects in Northern Denmark. Scand. J. For. Res. 2006, 21, 470–488. [Google Scholar] [CrossRef]
- Del Galdo, I.; Six, J.; Peressotti, A.; Cotrufo, M.F. Assessing the Impact of Land-Use Change on Soil C Sequestration in Agricultural Soils by Means of Organic Matter Fractionation and Stable C Isotopes. Glob. Chang. Boil. 2003, 9, 1204–1213. [Google Scholar] [CrossRef]
- Roig, S.; del Río, M.; Cañellas, I.; Montero, G. Litter Fall in Mediterranean Pinus Pinaster Ait. Stands under Different Thinning Regimes. For. Ecol. Manag. 2005, 206, 179–190. [Google Scholar] [CrossRef]
- Rumpel, C.; Kögel-Knabner, I. Deep Soil Organic Matter—A Key but Poorly Understood Component of Terrestrial C Cycle. Plant Soil 2011, 338, 143–158. [Google Scholar] [CrossRef]
- Page-Dumroese, D.S.; Jurgensen, M.; Terry, T. Maintaining Soil Productivity during Forest or Biomass-to-Energy Thinning Harvests in the Western United States. West. J. Appl. For. 2010, 25, 5–11. [Google Scholar]
- Fortin, M.; Ningre, F.; Robert, N.; Mothe, F. Quantifying the Impact of Forest Management on the Carbon Balance of the Forest-Wood Product Chain: A Case Study Applied to Even-Aged Oak Stands in France. For. Ecol. Manag. 2012, 279, 176–188. [Google Scholar] [CrossRef]
- Wulder, M.A.; White, J.C.; Nelson, R.F.; Næsset, E.; Ørka, H.O.; Coops, N.C.; Hilker, T.; Bater, C.W.; Gobakken, T. Lidar Sampling for Large-Area Forest Characterization: A Review. Remote Sens. Environ. 2012, 121, 196–209. [Google Scholar] [CrossRef]
- García, M.; Riaño, D.; Chuvieco, E.; Danson, F.M. Estimating Biomass Carbon Stocks for a Mediterranean Forest in Central Spain Using Lidar Height and Intensity Data. Remote Sens. Environ. 2010, 114, 816–830. [Google Scholar] [CrossRef]
- Navarro-Cerrillo, R.M.; González-Ferreiro, E.; García-Gutiérrez, J.; Ruiz, C.J.C.; Hernández-Clemente, R. Impact of Plot Size and Model Selection on Forest Biomass Estimation Using Airborne Lidar: A Case Study of Pine Plantations in Southern Spain. J. For. Sci. 2017, 63, 88–97. [Google Scholar]
- Li, Y.; Andersen, Ha.; McGaughey, R. A Comparison of Statistical Methods for Estimating Forest Biomass from Light Detection and Ranging Data. West. J. Appl. For. 2008, 23, 223–231. [Google Scholar]
- Næsset, E.; Gobakken, T.; Holmgren, J.; Hyyppä, H.; Hyyppä, J.; Maltamo, M.; Nilsson, M.; Olsson, H.; Persson, Å.; Söderman, U. Laser Scanning of Forest Resources: The Nordic Experience. Scand. J. For. Res. 2004, 19, 482–499. [Google Scholar] [CrossRef]
- Watt, M.S.; Meredith, A.; Watt, P.; Gunn, A. Use of Lidar to Estimate Stand Characteristics for Thinning Operations in Young Douglas-Fir Plantations. N. Z. J. For. Sci. 2013, 43, 18. [Google Scholar] [CrossRef]
- Domingo, D.; Lamelas, M.; Montealegre, A.; García-Martín, A.; de la Riva, J. Estimation of Total Biomass in Aleppo Pine Forest Stands Applying Parametric and Nonparametric Methods to Low-Density Airborne Laser Scanning Data. Forests 2018, 9, 158. [Google Scholar] [CrossRef]
- Suchenwirth, L.; Stümer, W.; Schmidt, T.; Förster, M.; Kleinschmit, B. Large-Scale Mapping of Carbon Stocks in Riparian Forests with Self-Organizing Maps and the K-Nearest-Neighbor Algorithm. Forests 2014, 5, 1635–1652. [Google Scholar] [CrossRef]
- Robertson, K.; Loza-Balbuena, I.; Ford-Robertson, J. Monitoring and Economic Factors Affecting the Economic Viability of Afforestation for Carbon Sequestration Projects. Environ. Sci. Policy 2004, 7, 465–475. [Google Scholar] [CrossRef]
- Turpie, J.K.; Marais, C.; Blignaut, J.N. The Working for Water Programme: Evolution of a Payments for Ecosystem Services Mechanism That Addresses Both Poverty and Ecosystem Service Delivery in South Africa. Ecol. Econ. 2008, 65, 788–798. [Google Scholar] [CrossRef]
- Sohn, J.A.; Saha, S.; Bauhus, J. Potential of Forest Thinning to Mitigate Drought Stress: A Meta-Analysis. For. Ecol. Manag. 2016, 380, 261–273. [Google Scholar] [CrossRef]
- Tilley, B.K.; Munn, I.A.; Evans, D.L.; Parker, R.C.; Roberts, S.D. Cost Considerations of Using Lidar for Timber Inventory. 2004. Available online: https://bit.ly/2NLXoCN (accessed on 17 October 2018).
- Bergseng, E.; Ørka, H.O.; Næsset, E.; Gobakken, T. Assessing Forest Inventory Information Obtained from Different Inventory Approaches and Remote Sensing Data Sources. Ann. For. Sci. 2015, 72, 33–45. [Google Scholar] [CrossRef]
- Jakubowski, M.K.; Guo, Q.; Kelly, M. Tradeoffs between Lidar Pulse Density and Forest Measurement Accuracy. Remote Sens. Environ. 2013, 130, 245–253. [Google Scholar] [CrossRef]
Control | Moderate Thinning | Heavy Thinning | |
---|---|---|---|
Silvicultural Characteristics (Post Thinning) | |||
D (trees ha−1) | 1400 | 770 | 550 |
H (m) | 6.9 (0.2) | 6.7 (0.162) | 6.8 (0.2) |
dbh (cm) | 14.1 (0.7) | 14.1 (0.5) | 14.9 (0.4) |
G (m2 ha−1) | 24.6 (2.6) | 12.8 (0.8) | 10.0 (0.6) |
Biomass C stock (Mg C ha−1) | |||
Stems | 16.4 (2.1)a | 8.05 (0.5)b | 5.21 (0.4)c |
Medium branches | 3.71 (0.4)a | 1.78 (0.8)b | 1.20 (0.7)b |
Small branches and foliate | 10.12 (1.1a | 5.06 (0.2)b | 3.38 (0.2)c |
Roots | 11.42 (1.1)a | 6.43 (0.3)b | 4.14 (0.2)c |
Biomass stock (Wt) | 41.65 (4.8)a | 21.32 (0.8)b | 13.93 (1.4)b |
Soil Organic Carbon stock (Mg C ha−1) | |||
0–10 cm | 11.50 (0.81)c | 19.07 (0.9)b | 30.92 (2.6)a |
10–20 cm | 14.03 (1.1)b | 21.82 (1.8)a | 26.51 (3.4)a |
20–30 cm | 13.83 (1.4)b | 20.17 (2.0)a | 16.09 (1.9)ab |
30–40 cm | 10.82 (0.8)b | 18.56 (2.8)a | 13.72 (1.7)b |
SOC40-S | 50.18 (1.7)c | 79.62 (1.9)b | 87.24 (3.1)a |
Wt + SOC10-S | 53.15 (3.1)a | 40.39 (1.5)b | 44.85 (3.0)b |
Wt + SOC40-S | 91.83 (4.0)b | 100.94 (1.4)a | 101.17 (2.6)a |
Variable | Rank | Mean | SD | |
---|---|---|---|---|
A | Height percentile P60 | 1 | 1.330 | 0.108 |
B | Height percentile P99 | 2 | 1.319 | 0.101 |
C | Percentage first returns above mode | 3 | 1.315 | 0.100 |
D | All returns above mean | 4 | 1.306 | 0.084 |
E | Height percentile P50 | 5 | 1.282 | 0.095 |
F | Height percentile P75 | 6 | 1.279 | 0.083 |
Error | MSN | MSN2 | EUCL | RAW | MALAH | ICA | MSNPP | GNN | RF |
---|---|---|---|---|---|---|---|---|---|
Biomass Stock | |||||||||
RMSE | 8.05 | 8.05 | 9.44 | 11.62 | 8.89 | 8.89 | 8.03 | 8.05 | 9.17 |
% RMSE | 35.44 | 35.44 | 41.54 | 51.14 | 39.15 | 39.15 | 35.34 | 35.44 | 40.36 |
BIAS | 0.92 | 0.92 | −2.06 | 0.68 | −1.58 | −1.58 | 0.68 | 0.92 | −0.41 |
%BIAS | 4.04 | 4.05 | −9.07 | 3.02 | −6.94 | −6.94 | 3.01 | 4.05 | −1.79 |
SOC10 stock (0–10 cm soil layer) | |||||||||
RMSE | 4.87 | 4.87 | 4.97 | 4.66 | 4.91 | 4.91 | 4.40 | 4.87 | 4.35 |
% RMSE | 21.33 | 21.33 | 21.79 | 20.40 | 21.50 | 21.50 | 19.28 | 21.33 | 19.07 |
BIAS | −0.01 | −0.01 | −0.05 | −0.83 | −0.03 | −0.03 | −0.55 | −0.01 | −1.19 |
%BIAS | −0.04 | −0.04 | −0.21 | −3.65 | −0.13 | −0.13 | −2.40 | −0.04 | −5.22 |
Biomass + SOC10 stock (0–10 cm soil layer) | |||||||||
RMSE | 9.36 | 15.95 | 9.36 | 12.84 | 14.44 | 12.84 | 10.93 | 9.36 | 9.85 |
% RMSE | 21.31 | 36.28 | 21.31 | 29.20 | 32.83 | 29.20 | 24.87 | 21.31 | 22.41 |
BIAS | 1.01 | 3.89 | 1.01 | −0.87 | −3.01 | −0.87 | 0.91 | 1.01 | −3.21 |
%BIAS | 2.29 | 8.86 | 2.29 | −1.97 | −6.84 | −1.98 | 2.07 | 2.29 | −7.31 |
SOC40 stock (0–40 cm soil layer) | |||||||||
RMSE | 9.64 | 9.64 | 11.51 | 10.32 | 12.05 | 12.05 | 9.08 | 9.64 | 9.03 |
% RMSE | 19.89 | 19.89 | 23.76 | 21.31 | 24.88 | 24.88 | 18.74 | 19.89 | 18.63 |
BIAS | −1.65 | −1.65 | −0.03 | −0.37 | −0.62 | −0.62 | −1.81 | −1.65 | −3.16 |
%BIAS | −3.40 | −3.40 | −0.06 | −0.76 | −1.28 | −1.28 | −3.74 | −3.40 | −6.53 |
Biomass + SOC40 stock (0–40 cm soil layer) | |||||||||
RMSE | 14.08 | 14.08 | 18.07 | 21.69 | 16.17 | 16.17 | 14.34 | 14.08 | 10.65 |
% RMSE | 15.19 | 15.19 | 19.50 | 23.41 | 17.45 | 17.45 | 15.47 | 15.19 | 11.49 |
BIAS | 0.61 | 0.61 | −3.93 | −0.41 | −3.97 | −3.97 | 0.15 | 0.61 | 3.29 |
%BIAS | 0.66 | 0.66 | −4.24 | −0.45 | −4.29 | −4.29 | 0.17 | 0.66 | 3.55 |
Categories G (m2 ha−1) | Number of Stands | Mean Area (ha) | Overall Area (ha) | Mean Density (trees ha−1) | Wt-S + SOC-S40 | ||||
---|---|---|---|---|---|---|---|---|---|
Current (Mg ha−1) | Ratio (Mg ha−1 year−1, 57 years) | Ten Years Projection without Intervention (Mg) 1 | Ten Years Projection with Intervention (Mg) 2 | Biomass Harvested (Mg) | |||||
0–10 | 8 | 0.19 | 1.53 | 880 | 78.89 | 1.38 | 141.81 | 144.07 | 13.96 |
10–15 | 45 | 1.82 | 81.85 | 982 | 78.33 | 1.37 | 7532.65 | 7652.63 | 978.19 |
15–20 | 101 | 4.02 | 406.03 | 1038 | 78.77 | 1.38 | 37,586.19 | 38,185.74 | 5481.54 |
20–25 | 111 | 8.47 | 940.09 | 1102 | 80.43 | 1.41 | 88,866.70 | 90,285.02 | 14,355.99 |
>25 | 5 | 1.54 | 7.69 | 1145 | 80.04 | 1.40 | 723.16 | 734.68 | 126.58 |
Overall | 270 | 1437.20 | 134,850.54 | 137,002.16 | 20,956.28 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro-Cerrillo, R.M.; Duque-Lazo, J.; Rodríguez-Vallejo, C.; Varo-Martínez, M.Á.; Palacios-Rodríguez, G. Airborne Laser Scanning Cartography of On-Site Carbon Stocks as a Basis for the Silviculture of Pinus Halepensis Plantations. Remote Sens. 2018, 10, 1660. https://doi.org/10.3390/rs10101660
Navarro-Cerrillo RM, Duque-Lazo J, Rodríguez-Vallejo C, Varo-Martínez MÁ, Palacios-Rodríguez G. Airborne Laser Scanning Cartography of On-Site Carbon Stocks as a Basis for the Silviculture of Pinus Halepensis Plantations. Remote Sensing. 2018; 10(10):1660. https://doi.org/10.3390/rs10101660
Chicago/Turabian StyleNavarro-Cerrillo, Rafael Mª, Joaquín Duque-Lazo, Carlos Rodríguez-Vallejo, Mª Ángeles Varo-Martínez, and Guillermo Palacios-Rodríguez. 2018. "Airborne Laser Scanning Cartography of On-Site Carbon Stocks as a Basis for the Silviculture of Pinus Halepensis Plantations" Remote Sensing 10, no. 10: 1660. https://doi.org/10.3390/rs10101660
APA StyleNavarro-Cerrillo, R. M., Duque-Lazo, J., Rodríguez-Vallejo, C., Varo-Martínez, M. Á., & Palacios-Rodríguez, G. (2018). Airborne Laser Scanning Cartography of On-Site Carbon Stocks as a Basis for the Silviculture of Pinus Halepensis Plantations. Remote Sensing, 10(10), 1660. https://doi.org/10.3390/rs10101660