Next Article in Journal
Google Earth as a Powerful Tool for Archaeological and Cultural Heritage Applications: A Review
Previous Article in Journal
Bias Removal for Goldstein Filtering Power Using a Second Kind Statistical Coherence Estimator
Open AccessArticle

A Spectral–Temporal Patch-Based Missing Area Reconstruction for Time-Series Images

1
College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
2
Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China
3
University of Chinese Academy of Sciences, Beijing 100049, China
*
Author to whom correspondence should be addressed.
Remote Sens. 2018, 10(10), 1560; https://doi.org/10.3390/rs10101560
Received: 14 August 2018 / Revised: 19 September 2018 / Accepted: 25 September 2018 / Published: 28 September 2018
(This article belongs to the Section Remote Sensing Image Processing)
Clouds, cloud shadows (CCS), and numerous other factors will cause a missing data problem in passive remote sensing images. A well-known reconstruction method is the selection of a similar pixel (with an additional clear reference image) from the remaining clear part of an image to replace the missing pixel. Due to the merit of filling the missing value using a pixel acquired on the same image with the same sensor and the same date, this method is suitable for time-series applications when a time-series profile-based similar measure is utilized for selecting the similar pixel. Since the similar pixel is independently selected, the improper reference pixel or various accuracies obtained by different land covers causes the problem of salt-and-pepper noise in the reconstructed part of an image. To overcome these problems, this paper presents a spectral–temporal patch (STP)-based missing area reconstruction method for time-series images. First, the STP, the pixels of which have similar spectral and temporal evolution characteristics, is extracted using multi-temporal image segmentation. However, some STP have Missing Observations (STPMO) in the time series, which should be reconstructed. Next, for an STPMO, the most similar STP is selected as the reference STP; then, the mean and standard deviation of the STPMO is predicted using a linear regression method with the reference STP. Finally, the textural information, which is denoted by the spatial configuration of color or intensities of neighboring pixels, is extracted from the clear temporal-adjacent STP and “injected” into the missing area to obtain synthetic cloud-free images. We performed an STP-based missing area reconstruction experiment in Jiangzhou, Chongzuo, Guangxi with time-series images acquired by wide field view (WFV) onboard Chinese Gao Fen 1 on 12 different dates. The results indicate that the proposed method can effectively recover the missing information without salt-and-pepper noise in the reconstructed area; also, the reconstructed part of the image is consistent with the clear part without a false edge. The results confirm that the spectral information from the remaining clear part of the same image and textural information from the temporal-adjacent image can create seamless time-series images. View Full-Text
Keywords: missing area reconstruction; cloud-free time-series image; multi-temporal image segmentation; cloud and cloud shadow missing area reconstruction; cloud-free time-series image; multi-temporal image segmentation; cloud and cloud shadow
Show Figures

Figure 1

MDPI and ACS Style

Wu, W.; Ge, L.; Luo, J.; Huan, R.; Yang, Y. A Spectral–Temporal Patch-Based Missing Area Reconstruction for Time-Series Images. Remote Sens. 2018, 10, 1560.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map

1
Back to TopTop