Prediction of Soil Organic Matter by VIS–NIR Spectroscopy Using Normalized Soil Moisture Index as a Proxy of Soil Moisture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Field Sampling
2.2. Laboratory Analyses and Rewetting Experiment
2.3. Spectral Measurement and Pre-Processing
2.4. Spectral Angle and Two-Dimensional Correlation Spectroscopy
2.5. Principal Component Analysis and Fuzzy K-Mean Clustering
2.6. Normalized Soil Moisture Index
2.7. Calibration and Validation
3. Results
3.1. Descriptive Statistics of SOM
3.2. Influence of SM on VIS–NIR Spectra
3.3. SM Classification
3.4. NSMI Classification
3.5. Estimation of SOM with PLS-SVM Model
4. Discussion
4.1. The Influence of SM on Reflectance Spectra
4.2. Clustering the Modeling Dataset into Different SM Levels
4.3. NSMI
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Powlson, D.S.; Brookes, P.C.; Whitmore, A.P.; Goulding, K.W.T.; Hopkins, D.W. Soil organic matters. Eur. J. Soil Sci. 2011, 62, 1–4. [Google Scholar] [CrossRef]
- Stenberg, B. Effects of soil sample pretreatments and standardised rewetting as interacted with sand classes on VIS–NIR predictions of clay and soil organic carbon. Geoderma 2010, 158, 15–22. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Behrens, T.; Ben-Dor, E.; Brown, D.J.; Dematte, J.A.M.; Shepherd, K.D.; Shi, Z.; Stenberg, B.; Stevens, A.; Adamchuk, V.; et al. A global spectral library to characterize the world’s soil. Earth-Sci. Rev. 2016, 155, 198–230. [Google Scholar] [CrossRef] [Green Version]
- Bao, N.; Wu, L.; Ye, B.; Yang, K.; Zhou, W. Assessing soil organic matter of reclaimed soil from a large surface coal mine using a field spectroradiometer in laboratory. Geoderma 2017, 288, 47–55. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Behrens, T. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 2010, 158, 46–54. [Google Scholar] [CrossRef]
- Stenberg, B.; Viscarra Rossel, R.A.; Mouazen, A.M.; Wetterlind, J. Chapter five-visible and near infrared spectroscopy in soil science. Adv. Agron. 2010, 107, 163–215. [Google Scholar]
- Cambou, A.; Cardinael, R.; Kouakoua, E.; Villeneuve, M.; Durand, C.; Barthès, B.G. Prediction of soil organic carbon stock using visible and near infrared reflectance spectroscopy (VIS–NIR) in the field. Geoderma 2016, 261, 151–159. [Google Scholar] [CrossRef]
- Wang, C.; Pan, X. Improving the prediction of soil organic matter using visible and near infrared spectroscopy on moist samples. J. Near Infrared Spectrosc. 2016, 24, 231–241. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B.; Bellon-Maurel, V.; Roger, J.-M.; Gobrecht, A.; Ferrand, L.; Joalland, S. Removing the effect of soil moisture from NIR diffuse reflectance spectra for the prediction of soil organic carbon. Geoderma 2011, 167–168, 118–124. [Google Scholar] [CrossRef]
- Lobell, D.B.; Asner, G.P. Moisture effects on soil reflectance. Soil Sci. Soc. Am. J. 2002, 66, 722–727. [Google Scholar] [CrossRef]
- Ji, W.; Viscarra Rossel, R.A.; Shi, Z. Accounting for the effects of water and the environment on proximally sensed VIS–NIR soil spectra and their calibrations. Eur. J. Soil Sci. 2015, 66, 555–565. [Google Scholar] [CrossRef]
- Noda, I. Generalized two-dimensional correlation method applicable to infrared, Raman, and other types of spectroscopy. Appl. Spectrosc. 1993, 47, 1329–1336. [Google Scholar] [CrossRef]
- Ge, Y.F.; Morgan, C.L.S.; Ackerson, J.P. VIS–NIR spectra of dried ground soils predict properties of soils scanned moist and intact. Geoderma 2014, 221, 61–69. [Google Scholar] [CrossRef]
- Ackerson, J.P.; Dematte, J.A.M.; Morgan, C.L.S. Predicting clay content on field-moist intact tropical soils using a dried, ground VIS–NIR library with external parameter orthogonalization. Geoderma 2015, 259, 196–204. [Google Scholar] [CrossRef]
- Wijewardane, N.K.; Ge, Y.F.; Morgan, C.L.S. Moisture insensitive prediction of soil properties from VNIR reflectance spectra based on external parameter orthogonalization. Geoderma 2016, 267, 92–101. [Google Scholar] [CrossRef]
- Roudier, P.; Hedley, C.B.; Lobsey, C.R.; Rossel, R.A.V.; Leroux, C. Evaluation of two methods to eliminate the effect of water from soil VIS–NIR spectra for predictions of organic carbon. Geoderma 2017, 296, 98–107. [Google Scholar] [CrossRef]
- Ji, W.; Viscarra Rossel, R.A.; Shi, Z. Improved estimates of organic carbon using proximally sensed VIS–NIR spectra corrected by piecewise direct standardization. Eur. J. Soil Sci. 2015, 66, 670–678. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Qi, K.; Liu, Y.L.; He, J.H.; Jiang, Q.H. Transferability of hyperspectral model for estimating soil organic matter concerned with soil moisture. Spectrosc. Spect. Anal. 2015, 35, 1705–1708. (In Chinese) [Google Scholar]
- Guerrero, C.; Zornoza, R.; Gomez, I.; Mataix-Beneyto, J. Spiking of NIR regional models using samples from target sites: Effect of model size on prediction accuracy. Geoderma 2010, 158, 66–77. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Cattle, S.R.; Ortega, A.; Fouad, Y. In situ measurements of soil color, mineral composition and clay content by VIS–NIR spectroscopy. Geoderma 2009, 150, 253–266. [Google Scholar] [CrossRef]
- Wu, C.Y.; Jacobson, A.R.; Laba, M.; Baveye, P.C. Alleviating moisture content effects on the visible near-infrared diffuse-reflectance sensing of soils. Soil Sci. 2009, 174, 456–465. [Google Scholar] [CrossRef]
- Wijewardane, N.K.; Ge, Y.; Morgan, C.L.S. Prediction of soil organic and inorganic carbon at different moisture contents with dry ground VNIR: A comparative study of different approaches. Eur. J. Soil Sci. 2016, 67, 605–615. [Google Scholar] [CrossRef]
- Jiang, Q.H.; Chen, Y.Y.; Guo, L.; Fei, T.; Qi, K. Estimating soil organic carbon of cropland soil at different levels of soil moisture using VIS–NIR spectroscopy. Remote Sens. 2016, 8, 755. [Google Scholar] [CrossRef]
- Liu, Y.L.; Jiang, Q.H.; Shi, T.Z.; Fei, T.; Wang, J.J.; Liu, G.L.; Chen, Y.Y. Prediction of total nitrogen in cropland soil at different levels of soil moisture with VIS/NIR spectroscopy. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2014, 64, 267–281. [Google Scholar] [CrossRef]
- Mouazen, A.M.; Karoui, R.; De Baerdemaeker, J.; Ramon, H. Characterization of soil water content using measured visible and near infrared spectra. Soil Sci. Soc. Am. J. 2006, 70, 1295–1302. [Google Scholar] [CrossRef]
- Nocita, M.; Stevens, A.; Noon, C.; van Wesemael, B. Prediction of soil organic carbon for different levels of soil moisture using VIS–NIR spectroscopy. Geoderma 2013, 199, 37–42. [Google Scholar] [CrossRef]
- Wang, D.C.; Zhang, G.L.; Rossiter, D.G.; Zhang, J.H. The prediction of soil texture from visible-near-infrared spectra under varying moisture conditions. Soil Sci. Soc. Am. J. 2016, 80, 420–427. [Google Scholar] [CrossRef]
- Shi, Z.; Wang, Q.L.; Peng, J.; Ji, W.J.; Liu, H.J.; Li, X.; Viscarra Rossel, R.A. Development of a national VNIR soil-spectral library for soil classification and prediction of organic matter concentrations. Sci. China-Earth Sci. 2014, 57, 1671–1680. [Google Scholar] [CrossRef]
- Fajardo, M.; McBratney, A.; Whelan, B. Fuzzy clustering of VIS–NIR spectra for the objective recognition of soil morphological horizons in soil profiles. Geoderma 2016, 263, 244–253. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Kruse, F.A.; Lefkoff, A.B.; Boardman, J.W.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, P.J.; Goetz, A.F.H. The spectral image processing system (SIPS)—Interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 1993, 44, 145–163. [Google Scholar] [CrossRef]
- He, A.Q.; Zeng, X.Z.; Xu, Y.Z.; Noda, I.; Ozaki, Y.; Wu, J.G. Investigation on the behavior of noise in asynchronous spectra in generalized two-dimensional (2D) correlation spectroscopy and application of butterworth filter in the improvement of signal-to-noise ratio of 2D asynchronous spectra. J. Phys. Chem. A 2017, 121, 7524–7533. [Google Scholar] [CrossRef] [PubMed]
- Martens, H.; Næs, T. Multivariate Calibration; John Wiley & Sons: Chichester, UK, 1989; p. 39. [Google Scholar]
- Minasny, B.; McBratney, A. Fuzme Version 3.0; Australian Centre for Precision Agriculture, The University of Sydney: Camperdown, Australia, 2002; Available online: http://www.usyd.edu.au/su/agric/acpa (accessed on 28 August 2017).
- Haubrock, S.N.; Chabrillat, S.; Lemmnitz, C.; Kaufmann, H. Surface soil moisture quantification models from reflectance data under field conditions. Int. J. Remote Sens. 2008, 29, 3–29. [Google Scholar] [CrossRef]
- Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2. [Google Scholar] [CrossRef]
- Peng, X.; Shi, T.; Song, A.; Chen, Y.; Gao, W. Estimating soil organic carbon using VIS/NIR spectroscopy with SVMR and SPA methods. Remote Sens. 2014, 6, 2699–2717. [Google Scholar] [CrossRef]
- Terhoeven-Urselmans, T.; Vagen, T.-G.; Spaargaren, O.; Shepherd, K.D. Prediction of soil fertility properties from a globally distributed soil mid-infrared spectral library. Soil Sci. Soc. Am. J. 2010, 74, 1792–1799. [Google Scholar] [CrossRef]
- Chang, C.W.; Laird, D.A.; Mausbach, M.J.; Hurburgh, C.R. Near-infrared reflectance spectroscopy–principal components regression analyses of soil properties. Soil Sci. Soc. Am. J. 2001, 65, 480–490. [Google Scholar] [CrossRef]
- Knadel, M.; Thomsen, A.; Schelde, K.; Greve, M.H. Soil organic carbon and particle sizes mapping using VIS–NIR, EC and temperature mobile sensor platform. Comput. Electron. Agric. 2015, 114, 134–144. [Google Scholar] [CrossRef]
- Vasques, G.M.; Grunwald, S.; Harris, W.G. Spectroscopic models of soil organic carbon in florida, USA. J. Environ. Qual. 2010, 39, 923–934. [Google Scholar] [CrossRef] [PubMed]
- Rodionov, A.; Pätzold, S.; Welp, G.; Damerow, L.; Amelung, W. Sensing of soil organic carbon using visible and near-infrared spectroscopy at variable moisture and surface roughness. Soil Sci. Soc. Am. J. 2014, 78, 949–957. [Google Scholar] [CrossRef]
- Wang, C.K.; Pan, X.Z.; Wang, M.; Liu, Y.; Li, Y.L.; Xie, X.L.; Zhou, R.; Shi, R.J. Prediction of soil organic matter content under moist conditions using VIS–NIR diffuse reflectance spectroscopy. Soil Sci. 2013, 178, 189–193. [Google Scholar] [CrossRef]
- Castaldi, F.; Palombo, A.; Pascucci, S.; Pignatti, S.; Santini, F.; Casa, R. Reducing the influence of soil moisture on the estimation of clay from hyperspectral data: A case study using simulated PRISMA data. Remote Sens. 2015, 7, 15561–15582. [Google Scholar] [CrossRef]
- Li, S.; Shi, Z.; Chen, S.; Ji, W.; Zhou, L.; Yu, W.; Webster, R. In situ measurements of organic carbon in soil profiles using VIS–NIR spectroscopy on the Qinghai–Tibet plateau. Environ. Sci. Technol. 2015, 49, 4980–4987. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Zhao, Y.; Wang, M.; Shi, X. Comparison of multivariate methods for estimating selected soil properties from intact soil cores of paddy fields by VIS–NIR spectroscopy. Geoderma 2018, 310, 29–43. [Google Scholar] [CrossRef]
SM Classification | No. of Samples | Min. (g·kg−1) a | Max. (g·kg−1) b | Mean (g·kg−1) | SD (g·kg−1) c | CV (%) d |
---|---|---|---|---|---|---|
Cluster 1 | 65 | 8.90 | 36.54 | 19.45 | 6.32 | 32.51 |
Cluster 2 | 94 | 8.90 | 46.15 | 22.60 | 8.79 | 38.90 |
Cluster 3 | 117 | 8.90 | 46.15 | 20.74 | 7.85 | 37.84 |
Cluster 4 | 364 | 8.90 | 46.15 | 22.75 | 8.26 | 36.33 |
NSMI Classification | No. of Samples | Min. (g·kg−1) a | Max. (g·kg−1) b | Mean (g·kg−1) | SD (g·kg−1) c | CV (%) d | CC e |
---|---|---|---|---|---|---|---|
Cluster 1 | 65 | 8.90 | 41.61 | 21.27 | 7.50 | 35.26 | 75.38% |
Cluster 2 | 94 | 8.90 | 46.15 | 21.99 | 7.97 | 36.26 | 82.98% |
Cluster 3 | 117 | 8.90 | 46.15 | 22.99 | 8.65 | 37.64 | 71.79% |
Cluster 4 | 364 | 8.90 | 46.15 | 21.86 | 8.16 | 37.33 | 90.93% |
Classification Methods | Classifications | No. of Samples | Latent Variables | R2cv | RMSEcv (g·kg−1) | RPD |
---|---|---|---|---|---|---|
SM–basedcluster | Cluster 1 | 65 | 9 | 0.76 | 3.09 | 2.05 |
Cluster 2 | 94 | 8 | 0.69 | 4.90 | 1.79 | |
Cluster 3 | 117 | 9 | 0.72 | 4.14 | 1.90 | |
Cluster 4 | 364 | 12 | 0.77 | 3.98 | 2.08 | |
NSMI–based cluster | Cluster 1 | 65 | 11 | 0.73 | 3.84 | 1.95 |
Cluster 2 | 94 | 7 | 0.74 | 4.09 | 1.95 | |
Cluster 3 | 117 | 8 | 0.75 | 4.30 | 2.01 | |
Cluster 4 | 364 | 10 | 0.76 | 4.00 | 2.04 | |
- | - | 640 | 12 | 0.59 | 5.23 | 1.56 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, Y.; Yu, L.; Chen, Y.; Liu, Y.; Liu, Y.; Liu, Y.; Cheng, H. Prediction of Soil Organic Matter by VIS–NIR Spectroscopy Using Normalized Soil Moisture Index as a Proxy of Soil Moisture. Remote Sens. 2018, 10, 28. https://doi.org/10.3390/rs10010028
Hong Y, Yu L, Chen Y, Liu Y, Liu Y, Liu Y, Cheng H. Prediction of Soil Organic Matter by VIS–NIR Spectroscopy Using Normalized Soil Moisture Index as a Proxy of Soil Moisture. Remote Sensing. 2018; 10(1):28. https://doi.org/10.3390/rs10010028
Chicago/Turabian StyleHong, Yongsheng, Lei Yu, Yiyun Chen, Yanfang Liu, Yaolin Liu, Yi Liu, and Hang Cheng. 2018. "Prediction of Soil Organic Matter by VIS–NIR Spectroscopy Using Normalized Soil Moisture Index as a Proxy of Soil Moisture" Remote Sensing 10, no. 1: 28. https://doi.org/10.3390/rs10010028
APA StyleHong, Y., Yu, L., Chen, Y., Liu, Y., Liu, Y., Liu, Y., & Cheng, H. (2018). Prediction of Soil Organic Matter by VIS–NIR Spectroscopy Using Normalized Soil Moisture Index as a Proxy of Soil Moisture. Remote Sensing, 10(1), 28. https://doi.org/10.3390/rs10010028