# Estimating the Contribution of New Seed Cultivars to Increases in Crop Yields: A Case Study for Corn

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Methodology

_{0}to t

_{1}, then we can set period t

_{0}–t

_{1}as period one (the base period). If new seed cultivars are extensively planted in period t

_{1}–t

_{2}, this period can be identified as period two. The remaining periods can be deduced by analogy until period n.

^{e}is the expected producer price for crop; μ is a random residual term, t is the year; and α

_{0}and α

_{1}are coefficients to be estimated. Unfortunately, the expected price cannot be observed, and thus these coefficients cannot be estimated. To solve this problem, here we include Equation (3), the basic yield equation in the previous year.

_{0}λ, β

_{0}equals 1 − λ, β

_{1}equals α

_{1}λ, and v is a random residual that differs from μ. Most importantly, all variables are observed, and therefore parameters can be estimated using observed data. This model is so called Nerlove model, which has been widely applied to estimate this dynamic process in crop production [25,30,31,32,33].

#### 2.2. Model Specification for Corn in China

#### 2.3. Data Sources

## 3. Results

#### 3.1. Estimated Results

#### 3.2. Contribution Calculation

## 4. Discussion

## 5. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## Appendix A

## References

- Zhao, Z.J.; Zhang, S.M. A quantitative analysis on factors driving agricultural technical progress. Issues Agric. Econ.
**2005**, s1, 70–75. [Google Scholar] - Martin, K.L.; Hodgen, P.J.; Freeman, K.W.; Melchiori, R.; Arnall, D.B.; Teal, R.K.; Mullen, R.W.; Desta, K.; Phillips, S.B.; Solie, J.B.; et al. Plant-to-plant Variability in Corn Production. Agron. J.
**2005**, 97, 1603–1611. [Google Scholar] [CrossRef] - Tokatlidis, I.S. Adaptation to density to optimize grain yield: Breeding implications. Euphytica
**2017**, 213, 92. [Google Scholar] [CrossRef] - Wang, W.; Liao, Z. Experiment comparison for new late rice cultivars in Ningdu County in 2014. Seed World
**2015**, 8, 16–19. [Google Scholar] - Liu, H.; Zhu, Y.; Feng, W. Study on the characteristics of the new maize cultivar Xinzhongyu 801 and its potentiality to increase maize yield. Seed
**2015**, 34, 111–114. [Google Scholar] - Shi, Z.; Yang, Y.; Li, F.; Wang, Z.; Wang, H.; Lv, X. Study on yield increasing potential of Danyu 39. Seed
**2010**, 29, 72–74. [Google Scholar] - Tian, H.; Guo, S.; Chen, L.; Zhou, T. The contribution of new cultivars to increasing rapeseed yield. Seed
**2006**, 25, 73–76. [Google Scholar] - Feyerherm, A.M.; Paulsen, G.M.; Sebaugh, J.L. Contribution of genetic improvement to recent wheat yield increases in the USA. Agron. J.
**1984**, 76, 985–990. [Google Scholar] [CrossRef] - Dalrymple, D.G. Development and Spread of Semidwarf Varieties of Wheat and Rice in the United States: An International Perspective; USDA Agricultural Economic Report No.455; U.S. Department of Agriculture, Economics, Statistics, and Cooperatives Service: Washington, DC, USA, 1980.
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- He, M.X.; He, C.F. Measuring technical change in agriculture: The Analytical Hierarchy Process method. J. Inn. Mong. Normal Univ.
**1995**, 2, 6–11. [Google Scholar] - Tian, Z.; Jing, Q.; Dai, T.; Jiang, D.; Cao, W. Effects of genetic improvements on grain yield and agronomic traits of winter wheat in the Yangtze River Basin of China. Field Crops Res.
**2011**, 124, 417–425. [Google Scholar] [CrossRef] - Cargnin, A.; Souza, M.A.D.; Fronza, V.; Fogaca, C.M. Genetic and environmental contributions to increased wheat yield in Minas Gerais, Brazil. Sci. Agric.
**2009**, 3, 317–322. [Google Scholar] [CrossRef] - Duvick, D.N. Genetic progress in yield of United States maize (Zea mays L.). Maydica
**2005**, 50, 193–202. [Google Scholar] - Duvick, D.N. The contribution of breeding to yield advances in maize (Zea mays L.). Adv. Agron.
**2005**, 86, 83–145. [Google Scholar] - Ma, Z.Y.; Wu, Y.C. Contribution of rice genetic improvement to yield increase in China. Chin. J. Rice Sci.
**2000**, 14, 112–114. [Google Scholar] - Wu, Y.C.; Ma, Z.Y.; Wang, D.Y.; Jiang, J. Contribution of maize improvement to yield increment in China. Acta Agron. Sin.
**1998**, 24, 595–599. [Google Scholar] - Bell, M.A.; Fischer, R.A.; Byerlee, D.; Sayre, K. Genetic and agronomic contributions to yield gains: A case study for wheat. Field Crops Res.
**1995**, 44, 55–65. [Google Scholar] [CrossRef] - Russell, W.A. Genetic improvement of maize yields. Adv. Agron.
**1991**, 46, 245–298. [Google Scholar] - Feyerherm, A.M.; Kemp, K.E.; Paulsen, G.M. Genetic contribution to increased wheat yields in the USA between 1979 and 1984. Agron. J.
**1989**, 81, 242–245. [Google Scholar] [CrossRef] - Feyerherm, A.M.; Paulsen, G.M. Development of a wheat yield prediction model. Agron. J.
**1981**, 73, 277–282. [Google Scholar] [CrossRef] - Bell, M.A.; Fischer, R.A. Using yield prediction models to assess yield gains: A case study for wheat. Field Crops Res.
**1994**, 36, 161–166. [Google Scholar] [CrossRef] - Zere, T.B.; Van Huyssteen, C.W.; Hensley, M. Development of a simple empirical model for predicting maize yields in a semi-arid area. S. Afr. J. Plant Soil
**2005**, 22, 22–27. [Google Scholar] [CrossRef] - Mirschel, W.; Wieland, R.; Wenkel, K.O.; Nendel, C.; Guddat, C. YIELDSTAT—A spatial yield model for agricultural crops. Eur. J. Agron.
**2014**, 52, 33–46. [Google Scholar] [CrossRef] - Qian, J.; Ito, S.; Isoda, H.; Saito, H. Yield Response to Price and High-quality Seed Subsidy Policies in China. Jpn. J. Farm Manag.
**2012**, 50, 118–123. [Google Scholar] - Qian, J.; Ito, S.; Mu, Y.; Zhao, Z. Simulations on the Impact of Subsidy Policies on Grain Supply and Demand in China; China Agriculture Press: Beijing, China, 2015. [Google Scholar]
- Nerlove, M. Estimates of the elasticities of supply of selected agricultural commodities. J. Farm Econ.
**1956**, 38, 496–509. [Google Scholar] [CrossRef] - Nerlove, M.; Bachman, K.L. The analysis of changes in agricultural supply: Problems and approaches. J. Farm Econ.
**1960**, 42, 531–554. [Google Scholar] [CrossRef] - Jeffrey, D.; Hamady, D.; Aminata, S. Estimating the supply response of cotton and cereal crops in smallholder production systems: Recent evidence from Mali. Agric. Econ.
**2009**, 40, 519–533. [Google Scholar] - French, B.C.; Mathews, J.L. A supply response model for perennial crops. Am. J. Agric. Econ.
**1971**, 53, 478–490. [Google Scholar] [CrossRef] - Gafar, J. The supply response for sugar cane in Trinidad and Tobago: Some preliminary results. Appl. Econ.
**1987**, 19, 1221–1231. [Google Scholar] [CrossRef] - Froster, K.A.; Mwananmo, A. Estimation of dynamic maize supply response in Zambia. Agric. Econ.
**1995**, 12, 99–107. [Google Scholar] [CrossRef] - Mushtaq, K.; Dawson, P.J. Acreage response in Pakistan: A co-integration approach. Agric. Econ.
**2002**, 27, 111–121. [Google Scholar] [CrossRef] - Arellano, M.; Bond, S. Some tests of specification for panel data: Monte Carlo evidence and application to employment equations. Rev. Econ. Stud.
**1991**, 58, 277–297. [Google Scholar] [CrossRef] - Brennan, J.P. Measuring the contribution of new varieties to increasing wheat yields. Rev. Mark. Agric. Econ.
**1984**, 52, 1975–1995. [Google Scholar] - Wooldridge, J.M. Introductory Econometrics: A Modern Approach, 5th ed.; South Western: Cincinnati, OH, USA, 2013. [Google Scholar]
- Wang, D.; Zhang, Z.; Bai, C. Size of Government, rule of law, and the development of services sector. Econ. Res. J.
**2007**, 6, 51–64. [Google Scholar]

**Figure 1.**Seed diffusion periods in China, bordered on the time of change in adoption of new cultivars.

**Table 1.**Estimated results for corn yield equation using Arellano-Bond generalized method of moments (GMM).

Coefficients | Estimate | Std. Error | t-Value | Prob. |
---|---|---|---|---|

C | 1796.95 | 309.75 | 3.92 | 0.000 |

Y_{t-1} | 0.36 | 0.09 | 2.39 | 0.000 |

P_{t-1} | 18.27 | 7.66 | 5.90 | 0.017 |

D2 | 487.27 | 82.57 | 5.01 | 0.000 |

D3 | 782.36 | 156.08 | 6.94 | 0.000 |

D4 | 819.25 | 118.11 | 5.62 | 0.000 |

D5 | 1192.09 | 212.07 | 5.80 | 0.000 |

Method = A-Bond GMM | Obs. = 988 |

Diffusion Period | Average Yield | Over the Base Period | Over the Previous Period | ||||
---|---|---|---|---|---|---|---|

Total Increase | Increase Caused by New Cultivars | Cont. of New Cultivars | Total Increase | Increase Caused by New Cultivars | Cont. of New Cultivars | ||

Base (80–86) | 2852.4 | -- | -- | -- | -- | -- | -- |

2 (87–94) | 3642.5 | 790.1 | 487.3 | 61.7 | 790.1 | 487.3 | 61.7 |

3 (95–99) | 4494.9 | 1642.5 | 782.4 | 47.6 | 852.4 | 295.1 | 34.6 |

4 (00–03) | 4633.2 | 1780.8 | 819.3 | 46.0 | 138.3 | 36.9 | 26.7 |

5 (04–13) | 5290.9 | 2438.5 | 1192.1 | 48.9 | 657.6 | 372.8 | 56.7 |

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Qian, J.; Zhao, Z. Estimating the Contribution of New Seed Cultivars to Increases in Crop Yields: A Case Study for Corn. *Sustainability* **2017**, *9*, 1282.
https://doi.org/10.3390/su9071282

**AMA Style**

Qian J, Zhao Z. Estimating the Contribution of New Seed Cultivars to Increases in Crop Yields: A Case Study for Corn. *Sustainability*. 2017; 9(7):1282.
https://doi.org/10.3390/su9071282

**Chicago/Turabian Style**

Qian, Jiarong, and Zhijun Zhao. 2017. "Estimating the Contribution of New Seed Cultivars to Increases in Crop Yields: A Case Study for Corn" *Sustainability* 9, no. 7: 1282.
https://doi.org/10.3390/su9071282