Achieving Revenue Benchmarks Conditional on Growth Properties
Abstract
:1. Introduction
2. Related Literature and Hypotheses Development
2.1. Likelihood of Meeting or Beating Analyst Revenue Forecasts Depending on Firm Growth Properties
2.2. Revenue Manipulation versus Revenue Expectation Management
3. Sample Selection
4. Research Design
4.1. Empirical Analysis Model for H1
4.2. Revenue Management versus Expectation Management
4.2.1. Proxy for Revenue Management
4.2.2. Proxy for Expectation Management
4.2.3. Empirical Analysis Model for H2
5. Empirical Analysis Results
5.1. Analysis Model for H1
5.1.1. Descriptive Statistics
5.1.2. Results from Logistic Regression for H1
5.2. Analysis Model for H2
5.2.1. Association between MBR and Two Mechanisms
5.2.2. Results from Logistic Regression for H2a and H2b
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jegadeesh, N.; Livnat, J. Revenue surprises and stock returns. J. Account. Econ. 2006, 41, 147–171. [Google Scholar] [CrossRef]
- Rees, L.; Sivaramakrishnan, K. The Effect of Meeting or Beating Revenue Forecasts on the Association between Quarterly Returns and Earnings Forecast Errors. Contemp. Account. Res. 2007, 24, 259–290. [Google Scholar] [CrossRef]
- Chandra, U.; Ro, B.T. The role of revenue in firm valuation. Account. Horiz. 2008, 22, 199–222. [Google Scholar] [CrossRef]
- Nelson, M.W.; Elliot, J.A.; Tarpley, R.L. Evidence from auditors about managers’ and auditors’ earnings management decisions. Account. Rev. 2002, 77, 175–202. [Google Scholar] [CrossRef]
- Ertimur, Y.; Livnat, J.; Martikainen, M. Differential market reactions to revenue and expense surprises. Rev. Account. Stud. 2003, 8, 185–211. [Google Scholar] [CrossRef]
- Kama, I. On the market reaction to revenue and earnings surprises. J. Bus. Financ. Account. 2009, 36, 31–50. [Google Scholar] [CrossRef]
- Stubben, S. Do Firms Use Discretionary Revenues to Meet Earnings and Revenue Targets? Working Paper; Stanford University: Stanford, CA, USA, 2006. [Google Scholar]
- Collins, D.W.; Pungaliya, R.S.; Vijh, A.M. The Effects of Firm Growth and Model Specification Choices on Tests of Earnings Management in Quarterly Settings. Account. Rev. 2017, 92, 69–100. [Google Scholar] [CrossRef]
- Stubben, S. Discretionary Revenues as a Measure of Earnings Management. Account. Rev. 2010, 85, 695–717. [Google Scholar] [CrossRef]
- Matsumoto, D.A. Management’s incentives to avoid negative earnings surprises. Account. Rev. 2002, 77, 483–514. [Google Scholar] [CrossRef]
- Bowen, R.M.; Davis, A.K.; Rajgopal, S. Determinants of Revenue-Reporting Practices for Internet Firms. Contemp. Account. Res. 2002, 19, 523–562. [Google Scholar] [CrossRef]
- Hayn, C. The information content of losses. J. Account. Econ. 1995, 20, 125–153. [Google Scholar] [CrossRef]
- Callen, J.; Robb, S.; Segal, D. Revenue manipulation and restatements by loss firms. Audit. A J. Pract. Theory 2008, 27, 1–29. [Google Scholar] [CrossRef]
- Ertimur, Y.; Stubben, S. Analysts’ Incentives to Issue Revenue and Cash Flow Forecasts; Working Paper; Stanford University: Stanford, CA, USA, 2006. [Google Scholar] [CrossRef]
- Brown, L.D. A temporal analysis of earnings surprises: Profits versus losses. J. Account. Res. 2001, 39, 221–241. [Google Scholar] [CrossRef]
- Burgstahler, D.; Eames, M. Management of earnings and analysts’ forecasts to achieve zero and small positive earnings surprises. J. Bus Financ. Account. 2006, 33, 633–652. [Google Scholar] [CrossRef]
- Walker, M. How Far Can We Trust Earnings Numbers? What Research Tells Us about Earnings Management. Account. Bus. Res. 2013, 43, 445–481. [Google Scholar] [CrossRef]
- Bartov, E.; Givoly, D.; Hayn, C. The rewards to meeting or beating earnings expectations. J. Account. Econ. 2002, 33, 173–204. [Google Scholar] [CrossRef]
- Kasznik, R.; McNichols, M.F. Does meeting earnings expectations matter? Evidence from analyst forecast revisions and share prices. J. Account.Res. 2002, 40, 727–759. [Google Scholar] [CrossRef]
- Dechow, P.M.; Richardson, S.A.; Tuna, A.I. Are Benchmark Beaters Doing Anything Wrong? Working Paper; University of Michigan: Ann Arbor, MI, USA, 2000. [Google Scholar] [CrossRef]
- Payne, J.; Robb, S. Earnings management: The effect of ex ante earnings expectations. J. Account. Audit. Financ. 2001, 15, 371–392. [Google Scholar] [CrossRef]
- Richardson, S.; Teoh, S.H.; Wysocki, P.D. The Walk-down to Beatable Analyst Forecasts: The Role of Equity Issuance and Insider Trading Incentives. Contemp. Account. Res. 2004, 21, 885–924. [Google Scholar] [CrossRef]
- Koh, K.; Matsumoto, D.A.; Rajgopal, S. Meeting or Beating Analyst Expectations in the Post-Scandals World: Changes in Stock Market Rewards and Managerial Actions. Contemp. Account. Res. 2008, 25, 1067–1098. [Google Scholar] [CrossRef]
- Athanasakou, V.E.; Strong, N.C.; Walker, M. Earnings management or forecast guidance to meet analyst expectations? Account. Bus. Res. 2009, 39, 3–35. [Google Scholar] [CrossRef]
- Dechow, P.M.; Schrand, C.M. Earnings Quality; The Research Foundation of CFA Institute: Charlottesville, VA, USA, 2004; pp. 1–152. [Google Scholar]
- Zhang, Y. An Empirical Analysis of Revenue Manipulation. Available online: http://homepages.rpi.edu/home/17/wuq2/yesterday/public_html/restatement%20reference/Zhang2006wp.pdf (accessed on 24 May 2017).
- Wu, M. Earnings Restatements: A Capital Market Perspective; Working Paper; University of Michigan: Ann Arbor, MI, USA, 2011. [Google Scholar] [CrossRef]
- Fama, E.F.; French, K.R. Industry costs of equity. J. Financ. Econ. 1997, 43, 153–193. [Google Scholar] [CrossRef]
Panel A: Descriptive Statistics of Dependent Variable and Proxies for Growth and Control Variables. | ||||||
Variable | N | Mean | Std Dev | Median | 1Q | 3Q |
Dependent Variable: | ||||||
MBR | 29,520 | 0.5670 | 0.4960 | 1 | 0 | 1 |
Proxies for Growth: | ||||||
Book_to_Market | 28,545 | 0.5740 | 0.4950 | 0.4440 | 0.2640 | 0.7160 |
Control Variables: | ||||||
LOSS | 29,520 | 0.3360 | 0.3370 | 0.2500 | 0 | 0.5710 |
VOL_Earnings | 27,706 | 1.6360 | 3.8550 | 0.5220 | 0.2430 | 1.2900 |
LTG_RISK | 29,520 | 0.3340 | 0.4720 | 0 | 0 | 1 |
POSΔREV | 29,520 | 0.7180 | 0.4500 | 1 | 0 | 1 |
INDPROD | 29,520 | 0.3760 | 4.1540 | 2.0880 | −3.1360 | 2.9900 |
SIZE | 28,220 | 6.3780 | 1.7960 | 6.3060 | 5.1350 | 7.5220 |
lFEl | 28,224 | 0.1600 | 0.3270 | 0.0510 | 0.0170 | 0.1430 |
E_SUR | 29,341 | −0.0200 | 0.1330 | 0.0003 | −0.0020 | 0.0020 |
Panel B: t-Test of Mean Difference between MBR = 1 and MBR = 0. | ||||||
Variables | MBR | Diff(G1-G2) | t Value | Pr > |t| | ||
0 | 1 | |||||
Book_to_Market | 0.6446 | 0.5216 | 0.1230 | 20.9600 | <0.0001 | |
LOSS | 0.3798 | 0.3020 | 0.0778 | 19.5500 | <0.0001 | |
VOL_Earnings | 1.6595 | 1.6178 | 0.0416 | 0.8900 | 0.3732 | |
LTG_RISK | 0.3389 | 0.3302 | 0.0087 | 1.5700 | 0.1158 | |
POSΔREV | 0.6409 | 0.7765 | −0.1356 | −25.4600 | <0.0001 | |
INDPROD | 1.2431 | 0.4080 | −0.1260 | −2.6000 | 0.0093 | |
SIZE | 6.0479 | 6.6327 | −0.5848 | −27.2700 | <0.0001 | |
lFEl | 0.1873 | 0.1406 | 0.0466 | 11.4400 | <0.0001 | |
E_SUR | −0.0384 | −0.0052 | −0.0332 | −19.6100 | <0.0001 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|---|
MBR (1) | −0.123 | −0.115 | −0.005 | −0.009 | 0.149 | 0.015 | 0.161 | −0.067 | 0.124 | |
1 | ||||||||||
<0.0001 | <0.0001 | 0.373 | 0.116 | <0.0001 | 0.010 | <0.0001 | <0.0001 | <0.0001 | ||
Book_to_Market (2) | −0.107 | 0.120 | 0.074 | −0.094 | −0.214 | −0.101 | −0.420 | 0.252 | −0.189 | |
1 | ||||||||||
<0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||
LOSS (3) | −0.107 | 0.106 | 0.094 | 0.228 | −0.168 | 0.017 | −0.484 | 0.058 | −0.180 | |
1 | ||||||||||
<0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.004 | <0.0001 | <0.0001 | <0.0001 | ||
VOL_Earnings (4) | −0.002 | 0.156 | 0.373 | −0.015 | −0.051 | 0.003 | −0.091 | 0.077 | −0.034 | |
1 | ||||||||||
0.711 | <0.0001 | <0.0001 | 0.015 | <0.0001 | 0.628 | <0.0001 | <0.0001 | <0.0001 | ||
LTG_RISK (5) | −0.009 | −0.151 | 0.200 | 0.002 | 0.007 | 0.010 | −0.070 | −0.084 | −0.015 | |
1 | ||||||||||
0.116 | <0.0001 | <0.0001 | 0.744 | 0.200 | 0.080 | <0.0001 | <0.0001 | 0.010 | ||
POS_RC (6) | 0.149 | −0.211 | −0.178 | −0.102 | 0.007 | 0.269 | 0.180 | −0.191 | 0.100 | |
1 | ||||||||||
<0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.200 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||
INDPROD (7) | 0.022 | −0.113 | 0.005 | 0.023 | 0.002 | 0.223 | 0.026 | −0.089 | −0.002 | |
1 | ||||||||||
0 | <0.0001 | 0.397 | 0 | 0.763 | <0.0001 | <0.0001 | <0.0001 | 0.779 | ||
SIZE (8) | 0.161 | −0.383 | −0.495 | −0.214 | −0.084 | 0.180 | 0.037 | −0.191 | 0.212 | |
1 | ||||||||||
<0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||
lFEl (9) | −0.070 | 0.333 | 0.084 | 0.172 | −0.153 | −0.274 | −0.046 | −0.245 | −0.133 | |
1 | ||||||||||
<0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||
E_SUR (10) | 0.211 | −0.025 | −0.064 | 0.013 | 0.039 | 0.047 | −0.025 | 0.085 | −0.033 | |
1 | ||||||||||
<0.0001 | <0.0001 | <0.0001 | 0.026 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Variables | Predicted Sign | Model (1) | Model (2) | ||
---|---|---|---|---|---|
Coefficient (z-Stat) | Marginal Effects | Coefficient (z-Stat) | Marginal Effects | ||
Constant | −0.628 *** | −0.737 *** | |||
(−3.45) | (−4.76) | ||||
Proxies for Growth: | |||||
Book_to_Market | - | −0.183 ** | −0.079 | ||
(−2.49) | |||||
Rank_BtM | - | −0.107 ** | −0.046 | ||
(−2.07) | |||||
Control Variables: | |||||
LOSS | + | −0.124 ** | −0.053 | −0.121 ** | −0.052 |
(−2.26) | (−2.15) | ||||
VOL_Earnings | + | 0.010 *** | 0.004 | 0.010 *** | 0.004 |
(3.41) | (3.40) | ||||
LTG_Risk | + | 0.001 | 0.000 | 0.004 | 0.002 |
(0.02) | (0.08) | ||||
POSΔREV | + | 0.574 *** | 0.246 | 0.586 *** | 0.251 |
(5.32) | (5.59) | ||||
INDPROD | + | −0.016 | −0.007 | −0.015 | −0.006 |
(−0.62) | (−0.58) | ||||
SIZE | + | 0.104 *** | 0.045 | 0.115 *** | 0.049 |
(4.44) | (5.63) | ||||
lFEl | - | −0.046 | −0.020 | −0.075 | −0.032 |
(−0.50) | (−0.89) | ||||
E_SUR | + | 1.674 *** | 0.718 | 1.748 *** | 0.750 |
(9.65) | (10.78) | ||||
Log Likelihood | −16,800.83 | −16,811.34 | |||
Wald Chi-Square | 1278.72 | 1257.70 | |||
p-Value | <0.001 | <0.001 | |||
Pseudo R-Squared | 0.037 | 0.036 | |||
Total Observations | 25,535 | 25,535 |
MBR | Frequency | POSDR | MBR | Frequency | DOWN | ||||
Percent | 1 | 0 | Total | Percent | 1 | 0 | Total | ||
1 | 8193 | 7009 | 15,202 | 1 | 3767 | 8075 | 11,842 | ||
53.89% | 46.11% | 56.53% | 31.81% | 68.19% | 58.58% | ||||
0 | 5774 | 5915 | 11,689 | 0 | 2129 | 6245 | 8374 | ||
49.4% | 50.6% | 43.47% | 25.42% | 74.58% | 41.42% | ||||
Total | 13,967 | 12,924 | 26,891 | Total | 5896 | 14,320 | 20,216 | ||
51.94% | 48.06% | 100% | 29.17% | 70.83% | 100% | ||||
χ2 = 282.53 | p < 0.001 | χ2 = 282.53 | p < 0.001 |
(1). MBR and POSDR by Growth Level | ||||||||||||
High Growth | Medium Growth | Low Growth | ||||||||||
MBR | Frequency | PODR | Frequency | PODR | Frequency | PODR | ||||||
Percent | 1 | 0 | Total | Percent | 1 | 0 | Total | Percent | 1 | 0 | Total | |
1 | 3170 | 2197 | 5367 | 1 | 2747 | 2366 | 5113 | 1 | 2083 | 2257 | 4340 | |
59.06% | 40.94% | 62.02% | 53.73% | 46.27% | 58.66% | 48% | 52% | 50.2% | ||||
0 | 1777 | 1509 | 3286 | 0 | 1790 | 1813 | 3603% | 0 | 1966 | 2340 | 4306 | |
54.08% | 45.92% | 37.98% | 49.68% | 50.32% | 41.34% | 45.66% | 54.34% | 49.8% | ||||
Total | 4947 | 3706 | 8653 | Total | 4537 | 4179 | 8716 | Total | 4049 | 4597 | 8646 | |
57.17 | 42.83 | 100 | 52.05 | 47.95 | 100 | 46.83 | 53.17 | 100 | ||||
χ2 = 20.70 | p < 0.001 | χ2 = 13.86 | p < 0.0002 | χ2 = 4.75 | p < 0.029 | |||||||
(2). MBR and DOWN by the Level of Growth | ||||||||||||
High Growth | Medium Growth | Low Growth | ||||||||||
MBR | Frequency | DOWN | Frequency | DOWN | Frequency | DOWN | ||||||
Percent | 1 | 0 | Percent | 1 | 0 | Total | Percent | 1 | 0 | Total | ||
1 | 885 | 3150 | 4035 | 1 | 1216 | 2977 | 4193 | 1 | 1522 | 1788 | 3310 | |
21.93% | 78.07% | 63.48% | 29% | 71% | 60.46% | 45.98% | 54.02% | 52.63% | ||||
0 | 470 | 1851 | 2321 | 0 | 600 | 2142 | 2742 | 0 | 953 | 2026 | 2979 | |
20.25% | 79.75% | 36.52% | 21.88% | 78.12% | 39.54% | 31.99% | 68.01% | 47.37% | ||||
Total | 1355 | 5001 | 6356 | Total | 1816 | 5119 | 6935 | Total | 2475 | 3814 | 6289 | |
21.32% | 78.68% | 100 | 26.19% | 73.81% | 100% | 39.35 | 60.65 | 100% | ||||
χ2 = 2.49 | p < 0.11 | χ2 = 43.47 | p < 0.001 | χ2 = 128.6 | p < 0.001 |
Variables | Predicted | Model (1) | Model (2) | ||
---|---|---|---|---|---|
Coefficient | Marginal Effects | Coefficient | Marginal Effects | ||
Constant | −0.802 *** | −0.993 *** | |||
(−4.13) | (−6.18) | ||||
Proxies for Growth: | |||||
Book_to_Market | - | −0.350 *** | −0.144 | ||
(−4.22) | |||||
Rank_BtM | - | −0.173 ** | −0.071 | ||
(−2.22) | |||||
Proxies for Mechanisms: | |||||
POSDR | + | 0.231 *** | 0.095 | 0.197 *** | 0.081 |
(4.13) | (3.72) | ||||
DOWN | + | 0.509 *** | 0.209 | 0.457 *** | 0.187 |
(4.99) | (3.92) | ||||
Interaction b/w Growth Proxy and Mechanisms: | |||||
BtM*POSDR | - | −0.158 *** | −0.065 | ||
(−2.80) | |||||
BtM×DOWN | + | 0.377 *** | 0.155 | ||
(3.44) | |||||
Rank_BtM×POSDR | - | −0.069 | −0.028 | ||
(−0.94) | |||||
Rank_BtM×DOWN | + | 0.375 *** | 0.154 | ||
(3.56) | |||||
Control Variables: | |||||
POSΔREV | + | 0.672 *** | 0.276 | 0.692 *** | 0.284 |
(7.98) | (8.60) | ||||
INDPROD | + | 0.017 | 0.007 | 0.019 | 0.008 |
(0.69) | (0.73) | ||||
SIZE | + | 0.094 *** | 0.039 | 0.111 *** | 0.046 |
(3.11) | (4.24) | ||||
lFEl | - | −0.046 | −0.019 | −0.085 | −0.035 |
(−0.53) | (−1.02) | ||||
E_SUR | + | 1.465 *** | 0.601 | 1.550 *** | 0.636 |
(6.86) | (7.91) | ||||
Log Likelihood | −11,914.86 | −11,933.24 | |||
Wald Chi-Square | 916.93 | 907.97 | |||
p-value | <0.001 | <0.001 | |||
Pseudo R-Squared | 0.0432 | 0.0417 | |||
Total Observations | 18,398 | 18,398 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, D.H.; Lim, D. Achieving Revenue Benchmarks Conditional on Growth Properties. Sustainability 2017, 9, 908. https://doi.org/10.3390/su9060908
Son DH, Lim D. Achieving Revenue Benchmarks Conditional on Growth Properties. Sustainability. 2017; 9(6):908. https://doi.org/10.3390/su9060908
Chicago/Turabian StyleSon, Dong Hyun, and Dongkuk Lim. 2017. "Achieving Revenue Benchmarks Conditional on Growth Properties" Sustainability 9, no. 6: 908. https://doi.org/10.3390/su9060908
APA StyleSon, D. H., & Lim, D. (2017). Achieving Revenue Benchmarks Conditional on Growth Properties. Sustainability, 9(6), 908. https://doi.org/10.3390/su9060908