Mobile Healthcare Applications and Gamification for Sustained Health Maintenance
Abstract
:1. Introduction
2. Gamification and Mobile Healthcare Application
2.1. The Concept of Gamification and Motivation
2.2. Factors to Adopt for the Mobile Healthcare Application
3. Methods
3.1. Data and Analysis
3.2. Research Design
4. Results and Discussion
4.1. Feasibility of the Model
4.2. Structural Paths and Hypotheses Tests
4.3. Moderating Effects
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Connelly, K.H.; Faber, A.M.; Rogers, Y.; Siek, K.A.; Toscos, T. Mobile applications that empower people to monitor their personal health. Elektrotechnik und Informationstechnik 2006, 123, 124–128. [Google Scholar] [CrossRef]
- McCallum, S. Gamification and serious games for personalized health. Stud. Health Technol. Inform. 2012, 177, 85–96. [Google Scholar] [PubMed]
- iMedicalApps. New Report Finds More Than 165,000 Mobile Health Apps Now AVAILABLE, Takes Close Look at Characteristics & Use. Available online: http://www.imedicalapps.com/2015/09/ims-health-apps-report/ (accessed on 6 May 2017).
- Boulos, M.N.; Yang, S.P. Exergames for health and fitness: The roles of GPS and geosocial apps. Int. J. Health Geogr. 2013, 12, 18. [Google Scholar] [CrossRef] [PubMed]
- Gerling, K.M.; Schulte, F.P.; Masuch, M. Designing and Evaluating Digital Games for Frail Elderly Persons. In Proceedings of the 8th International Conference on Advances in Computer Entertainment Technology, Lisbon, Portugal, 8–11 November 2011; ACM: New York, NY, USA, 2011; p. 62. [Google Scholar]
- Deterding, S.; Sicart, M.; Nacke, L.; O’Hara, K.; Dixon, D. Gamification: Using Game-Design Elements in Non-Gaming Contexts. In Proceedings of the CHI’11 Extended Abstracts on Human Factors in Computing Systems, Vancouver, BC, Canada, 7–12 May 2011; ACM: New York, NY, USA, 2011; pp. 2425–2428. [Google Scholar]
- Wouters, P.; Van Nimwegen, C.; Van Oostendorp, H.; Van Der Spek, E.D. A meta-analysis of the cognitive and motivational effects of serious games. J. Educ. Psychol. 2013, 105, 249–265. [Google Scholar] [CrossRef]
- Biddiss, E.; Irwin, J. Active video games to promote physical activity in children and youth: A systematic review. Arch. Pediatr. Adolesc. Med. 2010, 164, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Kauhanen, L.; Järvelä, L.; Lähteenmäki, P.M.; Arola, M.; Heinonen, O.J.; Axelin, A.; Lilius, J.; Vahlberg, T.; Salanterä, S. Active video games to promote physical activity in children with cancer: A randomized clinical trial with follow-up. BMC Pediatr. 2014, 14, 94. [Google Scholar] [CrossRef] [PubMed]
- Read, J.L.; Shortell, S.M. Interactive games to promote behavior change in prevention and treatment. JAMA 2011, 305, 1704–1705. [Google Scholar] [CrossRef] [PubMed]
- Free, C.; Whittaker, R.; Knight, R.; Abramsky, T.; Rodgers, A.; Roberts, I. Txt2stop: A pilot randomised controlled trial of mobile phone-based smoking cessation support. Tob. Control 2009, 18, 88–91. [Google Scholar] [CrossRef] [PubMed]
- Lester, R.T.; Ritvo, P.; Mills, E.J.; Kariri, A.; Karanja, S.; Chung, M.H.; Jack, W.; Habyarimana, J.; Sadatsafavi, M.; Najafzadeh, M. Effects of a mobile phone short message service on antiretroviral treatment adherence in Kenya (WelTel Kenya1): A randomised trial. Lancet 2010, 376, 1838–1845. [Google Scholar] [CrossRef]
- Pereira, P.; Duarte, E.; Rebelo, F.; Noriega, P. A review of gamification for health-related contexts. In Design, User Experience, and Usability. User Experience Design for Diverse Interaction Platforms and Environments; Springer: Berlin, Germany, 2014; pp. 742–753. [Google Scholar]
- Neubeck, L.; Lowres, N.; Benjamin, E.J.; Freedman, S.B.; Coorey, G.; Redfern, J. The mobile revolution [mdash] using smartphone apps to prevent cardiovascular disease. Nat. Rev. Cardiol. 2015, 12, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Carter, M.C.; Burley, V.J.; Nykjaer, C.; Cade, J.E. Adherence to a smartphone application for weight loss compared to website and paper diary: Pilot randomized controlled trial. J. Med. Int. Res. 2013, 15, e32. [Google Scholar] [CrossRef] [PubMed]
- Granado-Font, E.; Flores-Mateo, G.; Sorlí-Aguilar, M.; Montaña-Carreras, X.; Ferre-Grau, C.; Barrera-Uriarte, M.-L.; Oriol-Colominas, E.; Rey-Reñones, C.; Caules, I.; Satué-Gracia, E.-M. Effectiveness of a Smartphone application and wearable device for weight loss in overweight or obese primary care patients: Protocol for a randomised controlled trial. BMC Public Health 2015, 15, 531. [Google Scholar] [CrossRef] [PubMed]
- Mateo, G.F.; Granado-Font, E.; Ferré-Grau, C.; Montaña-Carreras, X. Mobile phone apps to promote weight loss and increase physical activity: A systematic review and meta-analysis. J. Med. Int. Res. 2015, 17, e253. [Google Scholar] [CrossRef]
- Rai, A.; Chen, L.; Pye, J.; Baird, A. Understanding determinants of consumer mobile health usage intentions, assimilation, and channel preferences. J. Med. Int. Res. 2013, 15, e149. [Google Scholar] [CrossRef] [PubMed]
- Hamari, J.; Koivisto, J. “Working out for likes”: An empirical study on social influence in exercise gamification. Comput. Hum. Behav. 2015, 50, 333–347. [Google Scholar] [CrossRef]
- Kwon, M.-W.; Mun, K.; Lee, J.K.; McLeod, D.M.; D’Angelo, J. Is mobile health all peer pressure? The influence of mass media exposure on the motivation to use mobile health apps. Converg. Int. J. Res. New Media Technol. 2016. [Google Scholar] [CrossRef]
- Souza-Júnior, M.; Queiroz, L.; Correia-Neto, J.; Vilar, G. Evaluating the Use of Gamification in m-Health Lifestyle-related Applications. In New Advances in Information Systems and Technologies; Springer: Berlin, Germany, 2016; pp. 63–72. [Google Scholar]
- Deterding, S.; Dixon, D.; Khaled, R.; Nacke, L. From Game Design Elements to Gamefulness: Defining Gamification. In Proceedings of the 15th international academic MindTrek conference: Envisioning future media environments, Tampere, Finland, 28–30 September 2011; ACM: New York, NY, USA, 2011; pp. 9–15. [Google Scholar]
- Hamari, J. Transforming homo economicus into homo ludens: A field experiment on gamification in a utilitarian peer-to-peer trading service. Electron. Commer. Res. Appl. 2013, 12, 236–245. [Google Scholar] [CrossRef]
- Huotari, K.; Hamari, J. Defining gamification: A Service Marketing Perspective. In Proceedings of the 16th International Academic MindTrek Conference, Tampere, Finland, 3–5 October 2012; ACM: New York, NY, USA, 2012; pp. 17–22. [Google Scholar]
- Richter, G.; Raban, D.R.; Rafaeli, S. Studying gamification: The effect of rewards and incentives on motivation. In Gamification in Education and Business; Springer: Berlin, Germany, 2015; pp. 21–46. [Google Scholar]
- Becker, G.S. Irrational behavior and economic theory. J. Politcal Econ. 1962, 70, 1–13. [Google Scholar] [CrossRef]
- Thaler, R.H.; Tversky, A.; Kahneman, D.; Schwartz, A. The effect of myopia and loss aversion on risk taking: An experimental test. Q. J. Econ. 1997, 112, 647–661. [Google Scholar] [CrossRef]
- Hamari, J. Perspectives from Behavioral Economics to Analyzing Game Design Patterns: Loss Aversion in Social Games. In Proceedings of the CHI 2011 Social Games Workshop, Vancouver, BC, Canada, 7–12 May 2011; ACM: New York, NY, USA, 2011. [Google Scholar]
- Gao, Y.; Li, H.; Luo, Y. An empirical study of wearable technology acceptance in healthcare. Ind. Manag. Data Syst. 2015, 115, 1704–1723. [Google Scholar] [CrossRef]
- Ubhi, H.K.; Michie, S.; Kotz, D.; van Schayck, O.C.; Selladurai, A.; West, R. Characterising smoking cessation smartphone applications in terms of behaviour change techniques, engagement and ease-of-use features. Trans. Behav. Med. 2016, 6, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Holden, R.J.; Karsh, B.-T. The technology acceptance model: Its past and its future in health care. J. Biomed. Inform. 2010, 43, 159–172. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.-H.; Wang, S.-C.; Lin, L.-M. Mobile computing acceptance factors in the healthcare industry: A structural equation model. Int. J. Med. Inform. 2007, 76, 66–77. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Li, J.-Y.; Fu, C.-Y. The adoption of mobile healthcare by hospital’s professionals: An integrative perspective. Decis. Support Syst. 2011, 51, 587–596. [Google Scholar] [CrossRef]
- Zhang, H.; Cocosila, M.; Archer, N. Factors of adoption of mobile information technology by homecare nurses: A technology acceptance model 2 approach. Comput. Inform. Nurs. 2010, 28, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Ryan, R.M.; Rigby, C.S.; Przybylski, A. The motivational pull of video games: A self-determination theory approach. Motiv. Emot. 2006, 30, 344–360. [Google Scholar] [CrossRef]
- Ryan, R.M.; Deci, E.L. Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. Am. Psychol. 2000, 55, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Edwards, E.A.; Lumsden, J.; Rivas, C.; Steed, L.; Edwards, L.; Thiyagarajan, A.; Sohanpal, R.; Caton, H.; Griffiths, C.; Munafò, M. Gamification for health promotion: Systematic review of behaviour change techniques in smartphone apps. BMJ Open 2016, 6, e012447. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.F. The Death of Competition: Leadership and Strategy in the Age of Business Ecosystems; HarperBusiness: New York, NY, USA, 1996. [Google Scholar]
- Sultan, F.; Chan, L. The adoption of new technology: The case of object-oriented computing in software companies. IEEE Trans. Eng. Manag. 2000, 47, 106–126. [Google Scholar] [CrossRef]
- Hong, W.; Thong, J.Y.; Wai-Man Wong, K.-Y.T. Determinants of user acceptance of digital libraries: An empirical examination of individual differences and system characteristics. J. Manag. Inform. Syst. 2002, 18, 97–124. [Google Scholar]
- Venkatesh, V.; Davis, F.D. A theoretical extension of the technology acceptance model: Four longitudinal field studies. Manag. Sci. 2000, 46, 186–204. [Google Scholar] [CrossRef]
- Chen, J.V.; Yen, D.C.; Chen, K. The acceptance and diffusion of the innovative smart phone use: A case study of a delivery service company in logistics. Inform. Manag. 2009, 46, 241–248. [Google Scholar] [CrossRef]
- Corrocher, N. The adoption of Web 2.0 services: An empirical investigation. Technol. Forecast. Soc. Chang. 2011, 78, 547–558. [Google Scholar] [CrossRef]
- Wu, J.-H.; Wang, S.-C. What drives mobile commerce?: An empirical evaluation of the revised technology acceptance model. Inform. Manag. 2005, 42, 719–729. [Google Scholar] [CrossRef]
- Yang, H.; Yu, J.; Zo, H.; Choi, M. User acceptance of wearable devices: An extended perspective of perceived value. Telemat. Inform. 2016, 33, 256–269. [Google Scholar] [CrossRef]
- Rogers, E.M. Diffusion of Innovations; Simon and Schuster: New York, NY, USA, 2010. [Google Scholar]
- Moore, G.C.; Benbasat, I. Development of an instrument to measure the perceptions of adopting an information technology innovation. Inform. Syst. Res. 1991, 2, 192–222. [Google Scholar] [CrossRef]
- Lin, J.C.-C.; Lu, H. Towards an understanding of the behavioural intention to use a web site. Int. J. Inform. Manag. 2000, 20, 197–208. [Google Scholar]
- Lederer, A.L.; Maupin, D.J.; Sena, M.P.; Zhuang, Y. The technology acceptance model and the World Wide Web. Decis. Support Syst. 2000, 29, 269–282. [Google Scholar] [CrossRef]
- Benbasat, I.; Gefen, D.; Pavlou, P.A. Introduction to the special issue on novel perspectives on trust in information systems. MIS Q. 2010, 34, 367–371. [Google Scholar]
- Bagozzi, R.P.; Yi, Y. On the evaluation of structural equation models. J. Acad. Market. Sci. 1988, 16, 74–94. [Google Scholar] [CrossRef]
- Serenko, A.; Turel, O.; Yol, S. Moderating roles of user demographics in the American customer satisfaction model within the context of mobile services. J. Inform. Technol. Manag. 2006, 17, 20–32. [Google Scholar]
- Vashist, S.K.; Mudanyali, O.; Schneider, E.M.; Zengerle, R.; Ozcan, A. Cellphone-based devices for bioanalytical sciences. Anal. Bioanal. Chem. 2014, 406, 3263–3277. [Google Scholar] [CrossRef] [PubMed]
- Vashist, S.K.; Luppa, P.B.; Yeo, L.Y.; Ozcan, A.; Luong, J.H. Emerging technologies for next-generation point-of-care testing. Trends Biotechnol. 2015, 33, 692–705. [Google Scholar] [CrossRef] [PubMed]
- Vashist, S.K.; Schneider, E.M.; Luong, J.H. Commercial smartphone-based devices and smart applications for personalized healthcare monitoring and management. Diagnostics 2014, 4, 104–128. [Google Scholar] [CrossRef] [PubMed]
- Canadian Task Force on Preventive Health Care. Recommendations for growth monitoring, and prevention and management of overweight and obesity in children and youth in primary care. Can. Med. Assoc. J. 2015, 187, 411–421. [Google Scholar]
- Dietz, W.H.; Baur, L.A.; Hall, K.; Puhl, R.M.; Taveras, E.M.; Uauy, R.; Kopelman, P. Management of obesity: Improvement of health-care training and systems for prevention and care. Lancet 2015, 385, 2521–2533. [Google Scholar] [CrossRef]
- Przybylski, A.K.; Rigby, C.S.; Ryan, R.M. A motivational model of video game engagement. Rev. Gen. Psychol. 2010, 14, 154–166. [Google Scholar] [CrossRef]
Variables | Percentage (%) |
---|---|
Sex | |
Male/Female | 49.4/50.6 |
Age | |
10–19/20–29/30–39/40–49/50 or above | 21/21/18/20/20 |
Educational attainment | |
Below high school/High school/College or above | 17/29/54 |
Marital status | |
Married/Single | 44/56 |
Household income (Monthly, $) | |
0–2000/2000–2999/3000–4999/5000 or above | 10/14/34/42 |
Self-reported health status | |
Healthy/Unhealthy | 72/18 |
Component | Cronbach’s α | Unstandardized Regression Weight | Standardized Regression Weight | S.E. | C.R. | p |
---|---|---|---|---|---|---|
Relatedness | ||||||
1 | 0.887 | 1.000 | 0.773 | |||
2 | 0.993 | 0.757 | 0.059 | 16.770 | <0.001 | |
3 | 1.094 | 0.789 | 0.078 | 14.105 | <0.001 | |
4 | 1.211 | 0.885 | 0.078 | 15.559 | <0.001 | |
Competence | ||||||
1 | 0.828 | 1.000 | 0.687 | |||
2 | 1.205 | 0.709 | 0.112 | 10.756 | <0.001 | |
3 | 0.926 | 0.615 | 0.114 | 8.145 | <0.001 | |
4 | 0.995 | 0.656 | 0.099 | 10.060 | <0.001 | |
Autonomy | ||||||
1 | 0.813 | 1.000 | 0.781 | |||
2 | 0.850 | 0.699 | 0.084 | 10.170 | <0.001 | |
3 | 0.870 | 0.672 | 0.089 | 9.801 | <0.001 | |
Relative Advantage | ||||||
1 | 0.830 | 1.000 | 0.689 | |||
2 | 0.932 | 0.612 | 0.095 | 9.793 | <0.001 | |
3 | 1.040 | 0.727 | 0.091 | 11.462 | <0.001 | |
4 | 1.203 | 0.751 | 0.102 | 11.799 | <0.001 | |
5 | 1.023 | 0.715 | 0.091 | 11.298 | <0.001 | |
Accessibility | ||||||
1 | 0.844 | 1.000 | 0.705 | |||
2 | 0.938 | 0.653 | 0.084 | 11.121 | <0.001 | |
3 | 1.079 | 0.748 | 0.103 | 10.452 | <0.001 | |
4 | 1.016 | 0.738 | 0.098 | 10.401 | <0.001 | |
Compatibility | ||||||
1 | 0.806 | 1.000 | 0.625 | |||
2 | 1.105 | 0.651 | 0.124 | 8.937 | <0.001 | |
3 | 1.106 | 0.624 | 0.128 | 8.664 | <0.001 | |
4 | 1.324 | 0.703 | 0.141 | 9.415 | <0.001 | |
5 | 1.364 | 0.762 | 0.138 | 9.857 | <0.001 | |
Enjoyment | ||||||
1 | 0.833 | 1.000 | 0.793 | |||
2 | 1.037 | 0.788 | 0.071 | 14.545 | <0.001 | |
3 | 0.866 | 0.657 | 0.074 | 11.745 | <0.001 | |
Perceived Usefulness (PU) | ||||||
1 | 0.846 | 1.000 | 0.736 | |||
2 | 0.907 | 0.653 | 0.084 | 10.776 | <0.001 | |
3 | 0.898 | 0.667 | 0.082 | 11.011 | <0.001 | |
4 | 1.007 | 0.743 | 0.082 | 12.249 | <0.001 | |
Attitude | ||||||
1 | 0.875 | 1.000 | 0.733 | |||
2 | 0.960 | 0.715 | 0.067 | 14.342 | <0.001 | |
3 | 0.989 | 0.698 | 0.082 | 12.051 | <0.001 | |
4 | 0.998 | 0.745 | 0.077 | 12.909 | <0.001 | |
Intention to Use (IU) | ||||||
1 | 0.855 | 1.000 | 0.690 | |||
2 | 1.020 | 0.708 | 0.091 | 11.226 | <0.001 | |
3 | 1.040 | 0.700 | 0.094 | 11.112 | <0.001 | |
4 | 0.949 | 0.672 | 0.088 | 10.743 | <0.001 |
RMESA | IFI | CFI | Chi-Square/df | |
---|---|---|---|---|
Level | 0.056 | 0.902 | 0.901 | 2.325 |
Acceptance level | <0.06 | >0.09 | >0.09 | <3.0 |
Reference | [50] | [51] | [51] | [50] |
Unstandardized Regression Weight | Standardized Regression Weight | S.E. | C.R. | p-Value | |
---|---|---|---|---|---|
Enjoyment ← Related | 0.417 | 0.403 | 0.059 | 7.050 | <0.001 |
Enjoyment ← Competence | 0.304 | 0.250 | 0.183 | 1.659 | 0.097 |
Enjoyment ← Autonomy | 0.395 | 0.363 | 0.155 | 2.554 | 0.011 |
PU ← Relative Advantage | 0.569 | 0.579 | 0.092 | 6.181 | <0.001 |
PU ← Accessibility | 0.142 | 0.150 | 0.080 | 1.768 | 0.077 |
PU ← Compatibility | 0.479 | 0.501 | 0.058 | 8.299 | <0.001 |
Attitude ← PU | 0.597 | 0.587 | 0.059 | 10.163 | <0.001 |
Attitude ← Enjoyment | 0.450 | 0.462 | 0.042 | 10.811 | <0.001 |
IU ← Attitude | 0.987 | 0.952 | 0.084 | 11.687 | <0.001 |
Unhealthy Group (N = 56) | Healthy Group (N = 254) | Difference btw Groups | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
URW | SRW | S.E. | C.R. | p-Value | URW | SRW | S.E. | C.R. | p-Value | ||
Enjoyment ← Related | 0.383 | 0.388 | 0.064 | 6.014 | <0.001 | 0.567 | 0.435 | 0.179 | 3.172 | 0.002 | 0.966 |
Enjoyment ← Competence | 0.426 | 0.357 | 0.221 | 1.928 | 0.054 | 0.270 | 0.207 | 0.256 | 1.057 | 0.290 | −0.461 |
Enjoyment ← Autonomy | 0.276 | 0.251 | 0.186 | 1.482 | 0.138 | 0.513 | 0.499 | 0.213 | 2.408 | 0.016 | 0.837 |
PU ← Relative Advantage | 0.555 | 0.546 | 0.100 | 5.560 | <0.001 | 0.653 | 0.736 | 0.210 | 3.115 | 0.002 | 0.421 |
PU ← Accessibility | 0.158 | 0.177 | 0.080 | 1.974 | 0.048 | 0.074 | 0.056 | 0.264 | 0.281 | 0.779 | −0.303 |
PU ← Compatibility | 0.483 | 0.513 | 0.062 | 7.847 | <0.001 | 0.433 | 0.419 | 0.148 | 2.920 | 0.003 | −0.317 |
Attitude ← PU | 0.643 | 0.642 | 0.067 | 9.633 | <0.001 | 0.369 | 0.330 | 0.107 | 3.437 | <0.001 | −2.164 ** |
Attitude ← Enjoyment | 0.400 | 0.505 | 0.043 | 9.222 | <0.001 | 0.725 | 0.817 | 0.123 | 5.914 | <0.001 | 2.497 ** |
IU ← Attitude | 0.969 | 0.940 | 0.092 | 10.509 | <0.001 | 1.026 | 1.005 | 0.190 | 5.390 | <0.001 | 0.270 |
Junior Group (N = 186) | Senior Group (N = 124) | Difference btw Groups | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
URW | SRW | S.E. | C.R. | p-Value | URW | SRW | S.E. | C.R. | p-Value | ||
Enjoyment ← Related | 0.326 | 0.333 | 0.069 | 4.753 | <0.001 | 0.589 | 0.509 | 0.113 | 5.191 | <0.001 | 1.980 ** |
Enjoyment ← Competence | 0.408 | 0.364 | 0.254 | 1.606 | 0.108 | 0.013 | 0.010 | 0.271 | 0.050 | 0.960 | −1.063 |
Enjoyment ← Autonomy | 0.349 | 0.337 | 0.223 | 1.567 | 0.117 | 0.511 | 0.446 | 0.218 | 2.339 | 0.019 | 0.518 |
PU ← Relative Advantage | 0.574 | 0.652 | 0.100 | 5.740 | <0.001 | 0.575 | 0.470 | 0.195 | 2.945 | 0.003 | 0.007 |
PU ← Accessibility | 0.141 | 0.137 | 0.103 | 1.365 | 0.172 | 0.222 | 0.264 | 0.125 | 1.776 | 0.076 | 0.503 |
PU ← Compatibility | 0.435 | 0.475 | 0.069 | 6.315 | <0.001 | 0.448 | 0.436 | 0.092 | 4.886 | <0.001 | 0.115 |
Attitude ← PU | 0.566 | 0.548 | 0.076 | 7.474 | <0.001 | 0.702 | 0.710 | 0.092 | 7.665 | <0.001 | 1.145 |
Attitude ← Enjoyment | 0.498 | 0.590 | 0.060 | 8.352 | <0.001 | 0.366 | 0.490 | 0.052 | 7.069 | <0.001 | −1.666 * |
IU ← Attitude | 0.952 | 0.989 | 0.109 | 8.762 | <0.001 | 1.016 | 0.887 | 0.129 | 7.882 | <0.001 | 0.380 |
Male Group (N = 153) | Female Group (N = 157) | Difference btw Groups | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
URW | SRW | S.E. | C.R. | p-Value | URW | SRW | S.E. | C.R. | p-Value | ||
Enjoyment ← Related | 0.548 | 0.495 | 0.108 | 5.062 | <0.001 | 0.306 | 0.315 | 0.067 | 4.549 | <0.001 | −1.899 * |
Enjoyment ← Competence | 0.230 | 0.194 | 0.358 | 0.645 | 0.519 | 0.420 | 0.336 | 0.208 | 2.017 | 0.044 | 0.457 |
Enjoyment ← Autonomy | 0.414 | 0.362 | 0.322 | 1.285 | 0.199 | 0.375 | 0.369 | 0.161 | 2.327 | 0.020 | −0.108 |
PU ← Relative Advantage | 0.834 | 0.751 | 0.199 | 4.189 | <0.001 | 0.351 | 0.396 | 0.091 | 3.858 | <0.001 | −2.208 ** |
PU ← Accessibility | 0.109 | 0.107 | 0.164 | 0.663 | 0.507 | 0.105 | 0.117 | 0.088 | 1.190 | 0.234 | −0.023 |
PU ← Compatibility | 0.314 | 0.324 | 0.067 | 4.719 | <0.001 | 0.702 | 0.703 | 0.105 | 6.680 | <0.001 | 3.12 *** |
Attitude ← PU | 0.530 | 0.595 | 0.072 | 7.334 | <0.001 | 0.629 | 0.549 | 0.094 | 6.666 | <0.001 | 0.834 |
Attitude ← Enjoyment | 0.440 | 0.607 | 0.059 | 7.467 | <0.001 | 0.492 | 0.537 | 0.065 | 7.569 | <0.001 | 0.588 |
IU ← Attitude | 1.070 | 0.952 | 0.138 | 7.747 | <0.001 | 0.925 | 0.963 | 0.101 | 9.127 | <0.001 | −0.843 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.; Lee, K.; Lee, D. Mobile Healthcare Applications and Gamification for Sustained Health Maintenance. Sustainability 2017, 9, 772. https://doi.org/10.3390/su9050772
Lee C, Lee K, Lee D. Mobile Healthcare Applications and Gamification for Sustained Health Maintenance. Sustainability. 2017; 9(5):772. https://doi.org/10.3390/su9050772
Chicago/Turabian StyleLee, Changjun, Kyoungsun Lee, and Daeho Lee. 2017. "Mobile Healthcare Applications and Gamification for Sustained Health Maintenance" Sustainability 9, no. 5: 772. https://doi.org/10.3390/su9050772