Application of Emergy Analysis to the Sustainability Evaluation of Municipal Wastewater Treatment Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods
2.1.1. Emergy Evaluation Indicators
Traditional Emergy Evaluation Indicators
Improved Emergy Evaluation Indicators
2.1.2. Environmental Impact Emergy of Pollutants in Drainage
2.2. Materials
2.2.1. Description of the Study Objects
2.2.2. Process Flow Diagram
2.2.3. Basic Natural, Economic and Technical Data
2.2.4. Synthesized Emergy System Diagram
3. Results and Discussions
3.1. Results
3.1.1. Results of Emergy Analysis
3.1.2. Emergy Flows Analysis
3.1.3. Emergy Indicators Analysis
3.2. Discussions
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ministry of Environmental Protection of the People’s Republic of China. 2015 Report on the State of Chinese Environment. Available online: http://www.mep.gov.cn/hjzl/zghjzkgb/lnzghjzkgb/201606/P020160602333160471955.pdf (accessed on 20 May 2016).
- China Water Web. Big Data Analysis of Wastewater Treatment in 2015. Available online: http://www.h2o-china.com/news/241538.html (accessed on 13 June 2016).
- Huang, J.; Cha, A.P. Study on environmental impact and Countermeasures of engineering construction of wastewater treatment plants. Res. Econ. EnvProtect. 2016, 4, 104. [Google Scholar]
- Sivakumar, M.; Pandit, A.B. Wastewater treatment: A novel energy efficient hydrodynamic cavitational technique. Ultrason. Sonochem. 2002, 9, 123–131. [Google Scholar] [CrossRef]
- Razali, M.; Kim, J.F.; Attfield, M.; Budd, P.M.; Drioli, E.; Lee, Y.M.; Szekely, G. Sustainable wastewater treatment and recycling in membrane manufacturing. Green Chem. 2015, 17, 5196–5205. [Google Scholar] [CrossRef]
- Wen, W.L.; Han, Q.Y.; Zhen, H. Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy Environ. Sci. 2014, 7, 911–924. [Google Scholar]
- Cerutti, A.K.; Bagliani, M.; Beccaro, G.L.; Bounous, G. Application of ecological footprint analysis on nectarine production: Methodological issues and results from a case study in Italy. J. Clean. Prod. 2010, 18, 771–776. [Google Scholar] [CrossRef]
- Herva, M.; Hernando, R.; Carrasco, E.F.; Roca, E. Development of a methodology to assess the footprint of wastes. J. Hazard. Mater. 2010, 180, 264–273. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Wu, J.; Liu, W. Calculation method of cement ecological footprint. Acta Ecol. Sin. 2009, 29, 3549–3558. [Google Scholar]
- Yellishetty, M.; Mudd, G.M. Substance flow analysis of steel and long term sustainability of iron ore resources in Australia, Brazil, China and India. J. Clean. Prod. 2014, 84, 400–410. [Google Scholar] [CrossRef]
- Arena, U.; Gregorio, F.D. A waste management planning based on substance flow analysis. Resour. Conserv. Recy. 2013, 85, 54–66. [Google Scholar] [CrossRef]
- Gurauskiene, I.; Stasiskiene, Z. Application of material flow analysis to estimate the efficiency of e-waste management systems: The case of Lithuania. Waste Manag. Res. 2011, 29, 763–777. [Google Scholar] [CrossRef] [PubMed]
- Torretta, V.; Ragazzi, M.; Trulli, E.; Feo, G.D.; Urbini, G.; Raboni, M.; Rada, E.C. Assessment of biological kinetics in a conventional municipal WWTP by Means of the oxygen uptake rate method. Sustainability 2014, 6, 1833–1847. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, Z.; Wang, X. A deterministic and statistical energy analysis of tyre cavity resonance noise. Mech. Syst. Signal Process. 2016, 70, 947–957. [Google Scholar] [CrossRef]
- Yau, Y.H.; Lim, K.S. Energy analysis of green office buildings in the tropics-Photovoltaic system. Energ. Build. 2016, 126, 177–193. [Google Scholar] [CrossRef]
- Peng, T.; Xu, X. An interoperable energy consumption analysis for CNC machining. J. Clean. Prod. 2016, 140, 1828–1841. [Google Scholar] [CrossRef]
- Hou, D.; Shao, S.; Zhang, Y.; Liu, S.L.; Chen, Y.; Zhang, S.S. Exergy analysis of a thermal power plant using a modeling approach. Clean Technol. Environ. Policy 2012, 14, 805–813. [Google Scholar] [CrossRef]
- Sui, X.W.; Zhang, Y.; Shao, S.; Zhang, S.S. Exergetic life cycle assessment of cement production process with wasteheat power generation. Energy. Convers. Manag. 2014, 88, 684–692. [Google Scholar] [CrossRef]
- Ameri, M.; Ahmadi, P.; Khanmohammadi, S. Exergy analysis of a 420 MW combined cycle power plant. Int. J. Energy. Res. 2008, 32, 175–183. [Google Scholar] [CrossRef]
- Li, J.H.; Zhang, Y.; Shao, S.; Zhang, S.S. Comparative life cycle assessment of conventional and new fused magnesia production. J. Clean. Prod. 2015, 91, 170–179. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, K.M.; Li, J.H.; Zhao, C.C.; Qu, D.L. LCA as a decision support tool for evaluating cleaner production schemes in iron making industry. Environ. Prog. Sustain. Energy 2016, 35, 195–203. [Google Scholar] [CrossRef]
- Righi, S.; Oliviero, L.; Pedrini, M.; Buscaroli, A.; Casa, C.D. Life Cycle Assessment of management systems for sewage sludge and food waste: centralized and decentralized approaches. J. Clean. Prod. 2013, 44, 8–17. [Google Scholar] [CrossRef]
- Li, C.F.; Cao, Y.Y. Visualization analysis of hot topics and frontiers on international emergy research. Ecol. Environ. Sci. 2014, 23, 1084–1092. [Google Scholar]
- Brown, M.T.; Herendeen, R.A. Embodied energy analysis and emergy analysis: A comparative view. Ecol. Econ. 1996, 19, 219–235. [Google Scholar] [CrossRef]
- Campbell, D.E.; Ohrt, A. Environmental Accounting Using Emergy: Evaluation of Minnesota; Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division: Narragansett, RI, USA, 2009.
- Brown, M.T.; Ulgiati, S. Emergy-based indices and ratios to evaluate sustainability: monitoring economics and technology toward environmentally sound innovation. Ecol. Eng. 1997, 9, 51–69. [Google Scholar] [CrossRef]
- Lomas, P.L.; Alvarez, S.; Rodríguez, M.; Montes, C. Environmental accounting as a management tool in the Mediterranean context: The Spanish economy during the last 20 years. J. Environ. Manag. 2008, 88, 326–347. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, S.; Cohen, M.J.; King, D.; Brown, M.T. Creation of a global emergy database for standardized national emergy synthesis. In Proceedings of the 4th Biennial Emergy Research Conference, Gainesville, FL, USA, 19–21 January 2006.
- Gao, L.H.; Gao, Q. The Emergy Analysis and sustainability evaluation of ecological economic system of coastal areas in China. Environ. Pollut. Control 2012, 34, 86–93. [Google Scholar]
- Zhu, Y.L.; Zhou, J.; Li, S.; Liu, Y. On eco-efficiency of the agricultural eco-economic system in Hunan based the emergy theory. J. Hunan Univ. Sci. Technol. 2011, 14, 86–89. [Google Scholar]
- Dong, X.B.; Gao, W.S.; Yan, M.C. Emergy analysis of agroecosystem productivity of Typical Valley in Loess Hilly-gully Region of the Loess Plateau: A case study in Zhifanggou Valley of Ansai County. Acta Geogr. Sin. 2004, 59, 223–229. [Google Scholar]
- Xu, M.C. Study on sustainability of agricultural ecosystem in Liaocheng city based on emergy analysis. Tianjin Agri. Sci. 2015, 21, 29–33, 43. [Google Scholar]
- Brown, M.T.; Ulgiati, S. Emergy evaluations and environmental loading of electricity production systems. J. Clean. Prod. 2002, 10, 321–334. [Google Scholar] [CrossRef]
- Marchettini, N.; Ridolfi, R.; Rustici, M. An environmental analysis for comparing waste management options and strategies. Waste Manag. 2007, 27, 562–571. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J. Emergy Account and Analysis in China's Industrial System. Master’s Thesis, Nanjing University of Finance and Economics, Nanjing, China, September 2011. [Google Scholar]
- Odum, H.T. Environmental Accounting: Emergy and Environmental Decision Making; John Wiley & Sons: New York, NY, USA, 1996. [Google Scholar]
- Lan, S.F.; Qin, P.; Lu, H.F. Emergy Synthesis of Ecological Economic Systems; Chemical Industry Press: Beijing, China, 2002. [Google Scholar]
- Fu, X.; Wu, G.; Liu, Y. Analytical theories of exergy and emergy for ecological research. Acta Ecol. Sin. 2004, 24, 2621–2626. [Google Scholar]
- Vassallo, P.; Paoli, C.; Fabiano, M. Emergy required for the complete treatment of municipal wastewater. Ecol. Eng. 2009, 35, 687–694. [Google Scholar] [CrossRef]
- Zhang, X.X.; Ma, F. Emergy evaluation of different straw reuse technologies in northeast China. Sustainability 2015, 7, 11360–11377. [Google Scholar] [CrossRef]
- Liu, C.; Shi, X.Y.; Qu, L.L.; Li, B.Y. Comparative analysis for the urban metabolic differences of two types of cities in the resource-dependent region based on emergy theory. Sustainability 2016, 8. [Google Scholar] [CrossRef]
- Zhang, X.H.; Jiang, W.J.; Wu, J.; Zhang, T.H. Improved emergy indices for analyzing sewage treatment ecosystems. Resour. Sci. 2009, 31, 250–256. [Google Scholar]
- Li, M.; Zhang, X.H.; Li, Y.W.; Xiao, H.; Qi, H.; Deng, S.H. Emergy and economic evaluations of two sewage treatment systems. Acta Ecol. Sin. 2012, 32, 6936–6945. [Google Scholar]
- China Environment Web. How Much Does It Cost to Dispose a Ton of Sludge? Available online: http://www.cenews.com.cn/qy/qygc/201509/t20150929_797767.html (accessed on 29 September 2015).
- Li, M.; Zhang, X.H.; Li, Y.W.; Zhang, H.; Zhao, M.; Deng, S.H. Environmental impacts of sewage treatment system based on emergy analysis. Chin. J. Appl. Ecol. 2013, 24, 488–496. [Google Scholar]
- Ministry of Environmental Protection of the People’s Republic of China. Environmental Quality Standards for Surface Water (GB3838-2002). Available online: http://kjs.mep.gov.cn/hjbhbz/bzwb/shjbh/shjzlbz/200206/W020061027509896672057.pdf (accessed on 1 June 2002).
- Liu, H.; Luo, L.X.; Lin, M.; Li, X.N.; Zhao, Z.Y. The present situation and development of the wastewater treatment technology in China. In Proceedings of the Academic Annual Conference of Chinese Society for Environmental Sciences, Chengdu, China, 22–23 August 2014.
- China Water Industry Web. Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant. Available online: http://www.shuigongye.com/standard/200811/2008110612041100001.html (accessed on 6 November 2008).
- Zhao, H. Sustainability Evaluation of Hospital Sewage Treatment System Based on Emergy Theoty-Zhuokeji Health Center Sewage Treatment System as a Case. Master’s Thesis, Sichuan Agricultural University, Chengdu, China, June 2013. [Google Scholar]
- Pulselli, R.M.; Simoncini, E.; Ridolfi, R.; Bastianoni, S. Specific emergy of cement and concrete: An energy-based appraisal of building materials and their transport. Ecol. Indic. 2008, 8, 647–656. [Google Scholar] [CrossRef]
- Li, M. Emergy Based Research for the Sustainable Development of a Livestock Sewage Treatment Plant System. Master’s Thesis, Sichuan Agricultural University, Chengdu, China, June 2013. [Google Scholar]
- Bjorklund, J.; Geber, U.; Rydberg, T. Emergy analysis of municipal wastewater treatment and generation of electricity by digestion of sewage sludge. Resour. Conserv. Recy. 2001, 31, 293–316. [Google Scholar] [CrossRef]
- Huang, H.H.; Zhang, J.; Wen, X.H.; Gan, Y.P.; Zhou, J. Study on energy saving methods for A2O process in wastewater treatment plants. Chin. J. Environ. Eng. 2009, 3, 35–38. [Google Scholar]
Indicators | Formula | Implications |
---|---|---|
Emergy Yield Ratio (EYR) | (N + R + F)/F | Emergy efficiency and economic competitiveness of the system |
Environment Load Ratio (ELR) | (F + N)/R | Environmental loading exerted by the system |
Emergy Sustainable Index (ESI) | EYR/ELR | Sustainability of the system |
Indicators | Formula | Indicators | Formula |
---|---|---|---|
EYR | (N + R + F)/F | IEYR | (Win + R + N + FR + FN + FS − Wout − S)/(FR + FN + FS + P) |
ELR | (F + N)/R | IELR | (N + FN + FS + Wout + S)/(R + FR) |
ESI | EYR/ELR | IESI | IEYR/IELR |
Item | COD | BOD5 | NH3-N | TP |
---|---|---|---|---|
Concentration (mg/L) [46] | 15 | 3 | 0.15 | 0.02 |
Case No. | Wastewater Treatment | Sludge | |||
---|---|---|---|---|---|
Preliminary | Secondary | Tertiary | Treatment | Disposal | |
1 | Coarse and Fine Screens, Grit Chamber | A2O Process, Secondary Sedimentation Tank | Advanced Treatment | Thickening, Dewatering | Outward Transport |
2 | Coarse and Fine Screens, Aerated Grit Chamber | CWSBR Process | Disinfected | Dewatering | Outward Transport |
3 | Fine Screen, Vortex Grit Chamber | CAST Process | Advanced Treatment | Stabilization, Thickening, Dewatering | Outward Transport |
4 | Coarse, Intermediate and Fine Screens, Vortex Grit Chamber, Sedimentation Tank | BAF Process | Ultraviolet, Disinfected | Dewatering | Outward Transport |
Case No. | Working Time (Days/Year) | Manpower (Persons) | Investment (Ten Thousand Yuan/Year) | Cost (Ten Thousand Yuan/Year) |
---|---|---|---|---|
1 | 360 | 35 | 531.93 | 1343.42 |
2 | 360 | 20 | 220.55 | 584.14 |
3 | 360 | 30 | 469.07 | 1310.00 |
4 | 360 | 44 | 535.35 | 1456.97 |
Case No. | Input/Output | BOD5 (mg/L) | COD (mg/L) | NH3-N (mg/L) | TP (mg/L) |
---|---|---|---|---|---|
1 | Input | 180 | 360 | 35 | 5 |
Output | 10 | 50 | 5(8) | 0.5 | |
2 | Input | 200 | 400 | 30 | 3 |
Output | 10 | 50 | 5(8) | 0.5 | |
3 | Input | 150 | 350 | 26 | 3 |
Output | 20 | 60 | 15 | 1 | |
4 | Input | 180 | 400 | 25 | 3.5 |
Output | 20 | 60 | 8 | 1 |
Case No. | ECEWCOD (sej/Year) | ECEWBOD5 (sej/Year) | ECEWNH3-N (sej/Year) | ECEWTP (sej/Year) | ECEWmax (sej/Year) |
---|---|---|---|---|---|
1 | 5.55 × 1018 | 5.55 × 1018 | 1.25 × 1020 | 5.71 × 1019 | 1.25 × 1020 |
2 | 5.55 × 1018 | 5.55 × 1018 | 1.25 × 1020 | 5.71 × 1019 | 1.25 × 1020 |
3 | 1.90 × 1019 | 3.60 × 1019 | 6.28 × 1020 | 3.11 × 1020 | 6.28 × 1020 |
4 | 2.86 × 1019 | 5.40 × 1019 | 4.98 × 1020 | 4.67 × 1020 | 4.98 × 1020 |
Item | Case 1 | Case 2 | Case 3 | Case 4 |
---|---|---|---|---|
R | 22.16 | 35.70 | 25.85 | 34.20 |
N | 13.30 | 17.31 | 8.87 | 7.65 |
FR | 1.41 | 1.48 | 1.62 | 1.42 |
FN | 7.30 | 7.14 | 8.17 | 14.72 |
—Electricity Emergy | 7.30 | 5.93 | 8.04 | 11.80 |
—Chemicals Emergy | — | 1.21 | 0.13 | 2.92 |
FS | 55.83 | 38.37 | 55.49 | 42.01 |
Case No. | Process | Improved Emergy Indicator | Sustainability Order | ||
---|---|---|---|---|---|
IEYR | IELR | IESI | |||
1 | A2O | 2.72 × 101 | 2.79 × 101 | 9.78 × 10−1 | 3 |
2 | CWSBR | 6.90 × 101 | 2.73 × 101 | 2.53 × 100 | 1 |
3 | CAST | 6.69 × 101 | 1.16 × 102 | 5.77 × 10−1 | 4 |
4 | BAF | 8.53 × 101 | 5.34 × 101 | 1.60 × 100 | 2 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, S.; Mu, H.; Yang, F.; Zhang, Y.; Li, J. Application of Emergy Analysis to the Sustainability Evaluation of Municipal Wastewater Treatment Plants. Sustainability 2017, 9, 8. https://doi.org/10.3390/su9010008
Shao S, Mu H, Yang F, Zhang Y, Li J. Application of Emergy Analysis to the Sustainability Evaluation of Municipal Wastewater Treatment Plants. Sustainability. 2017; 9(1):8. https://doi.org/10.3390/su9010008
Chicago/Turabian StyleShao, Shuai, Hailin Mu, Fenglin Yang, Yun Zhang, and Jinhua Li. 2017. "Application of Emergy Analysis to the Sustainability Evaluation of Municipal Wastewater Treatment Plants" Sustainability 9, no. 1: 8. https://doi.org/10.3390/su9010008
APA StyleShao, S., Mu, H., Yang, F., Zhang, Y., & Li, J. (2017). Application of Emergy Analysis to the Sustainability Evaluation of Municipal Wastewater Treatment Plants. Sustainability, 9(1), 8. https://doi.org/10.3390/su9010008