Plant Pathology and Information Technology: Opportunity for Management of Disease Outbreak and Applications in Regulation Frameworks
Abstract
:1. Introduction
2. Information Technology as Opportunity for Plant Health and Farm Management
2.1. Plant Protection
2.2. Digital Management of Data Derived from Plant Health Monitoring Programs
2.3. Electronic Identification and Plant Disease Outbreak: Speculation about Olive Quick Decline Syndrome
3. Information Technology Applications within the Regulation Framework and Their Environmental Impact
3.1. Information Technology Could Support Application of Pesticide Regulations
3.2. Environmental Impact of Information Technology Applications in Agriculture
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Luvisi, A. Electronic identification technology for agriculture, plant and food. A review. Agron. Sustain. Dev. 2016, 36, 1–14. [Google Scholar] [CrossRef]
- Sørensen, C.G.; Fountas, S.; Nash, E.; Pesonen, L.; Bochtis, D.; Pedersen, S.M.; Basso, B.; Blackmore, S.B. Conceptual model of a future farm management information system. Comput. Electron. Agric. 2010, 72, 37–47. [Google Scholar] [CrossRef]
- Lee, I.; Lee, B.C. An investment evaluation of supply chain RFID technologies: A normative modeling approach. Int. J. Prod. Econ. 2010, 125, 313–323. [Google Scholar] [CrossRef]
- Reinhart, G.; Irrenhauser, T.; Reinhardt, S.; Reisen, K.; Schellmann, H. Wirtschaftlicher und Ressourceneffizienter durch RFID (Economic and Resource Efficient RFID). Available online: http://www.zwf-online.de/ta003/na20120320125076/ar211429831-7475/Wirtschaftlicher-und-ressourceneffizienter-durch-RFID_archiv.html (assessed on 13 August 2016).
- Ampatzidis, Y.G.; Vougioukas, S.G. Field experiments for evaluating the incorporation of RFID and barcode registration and digital weighing technologies in manual fruit harvesting. Comput. Electron. Agric. 2009, 66, 166–172. [Google Scholar] [CrossRef]
- Ampatzidis, Y.G.; Whiting, M.D.; Liu, B.; Scharf, P.A.; Pierce, F.J. Portable weighing system for monitoring picker efficiency during manual harvest of sweet cherry. Precis. Agric. 2013, 14, 162–171. [Google Scholar] [CrossRef]
- Ampatzidis, Y.G.; Wortman, R.; Tan, L.; Whiting, M. Cloud-based harvest management information system for hand-harvested specialty crops. Comput. Electron. Agric. 2016, 122, 161–167. [Google Scholar] [CrossRef]
- Luvisi, A.; Panattoni, A.; Bandinelli, R.; Rinaldelli, E.; Pagano, M.; Triolo, E. Ultra-high frequency transponders in grapevine: A tool for traceability of plants and treatments in viticulture. Biosyst. Eng. 2012, 113, 129–139. [Google Scholar] [CrossRef]
- Luvisi, A.; Panattoni, A.; Rinaldelli, E.; Pagano, M.; Mannini, F.; Gribaudo, I.; Bandinelli, R. Application of tracking implants in grape hybrids: Adjustments to production practices and new health-compliant methodologies. Comput. Electron. Agric. 2014, 108, 130–134. [Google Scholar] [CrossRef]
- European Food Safety Authority. Hot Water Treatment of Vitis sp. for Xylella fastidiosa Scientific Panel on Plant Health (PLH). Available online: http://www.efsa.europa.eu/sites/default/files/scientific_output/files/main_documents/4225.pdf (accessed on 27 July 2016).
- European Plant Protection Organization. Hot water treatment of grapevine to control Grapevine flavescence dorée phytoplasma. EPPO Bull. 2012, 42, 490–492. [Google Scholar]
- Department of Agriculture, Fisheries and Forestry. Review of Policy: Importation of Grapevine (Vitis species) Propagative Material into Australia. April 2013. Available online: http://www.agriculture.gov.au/SiteCollectionDocuments/ba/plant/2013/grapevine-propagative-material/grapevine-materail-review.pdf (accessed on 27 July 2016). [Google Scholar]
- Peets, S.; Gasparin, C.P.; Blackburn, D.W.K.; Godwin, R.J. RFID tags for identifying and verifying agrochemicals in food traceability systems. Precis. Agric. 2009, 10, 382–394. [Google Scholar] [CrossRef]
- Gill, H.K.; McSorley, R. Effect of different inorganic/synthetic mulches on weed suppression during soil solarization. Proc. Fla. State Hortic. Soc. 2011, 124, 310–313. [Google Scholar]
- Gill, H.K.; McSorley, R.; Treadwell, D.D. Comparative performance of different plastic films for soil solarization and weed suppression. HortTechnology 2009, 19, 769–774. [Google Scholar]
- Luvisi, A.; Panattoni, A.; Materazzi, A. Heat treatments for sustainable control of soil viruses. Agron. Sustain. Dev. 2015, 35, 657–666. [Google Scholar] [CrossRef]
- Vuran, M.C.; Akyildiz, I.F. Channel model and analysis for wireless underground sensor networks in soil medium. Phys. Commun. 2010, 3, 245–254. [Google Scholar] [CrossRef]
- Stuntebeck, E.P.; Pompili, D.; Melodia, T. Wireless underground sensor networks using commodity terrestrial motes. In Proceeding of 2nd IEEE Workshop on Wireless Mesh Networks, Reston, VA, USA, 25–28 September 2006; pp. 112–114.
- Luvisi, A.; Panattoni, A.; Materazzi, A. RFID temperature sensors for monitoring soil solarization with biodegradable films. Comput. Electron. Agric. 2016, 123, 135–141. [Google Scholar] [CrossRef]
- Thrane, C. Quality assurance in plant health diagnostics—The experience of the Danish Plant Directorate. Eur. J. Plant Pathol. 2008, 121, 339–346. [Google Scholar] [CrossRef]
- Luvisi, A.; Panattoni, A.; Triolo, E. Electronic identification-based Web 2.0 application for plant pathology purposes. Comput. Electron. Agric. 2012, 84, 7–15. [Google Scholar] [CrossRef]
- Nikkilä, R.; Seilonen, I.; Koskinen, K. Software next term architecture for farm management information systems in precision agriculture. Comput. Electron. Agric. 2009, 70, 328–336. [Google Scholar] [CrossRef]
- Liscouski, J. Integrating laboratory automation. Lab Manag. Mag. 2009, 4, 42–44. [Google Scholar]
- Bowman, K.D. Identification of woody plants with implanted microchips. HortTechnology 2005, 15, 352–354. [Google Scholar]
- Kumagai, M.H.; Miller, P. Development of electronic barcodes for use in plant pathology and functional genomica. Plant Mol. Biol. 2006, 61, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Faggioli, F.; Ferretti, L.; Albanese, G.; Sciarroni, R.; Pasquini, G.; Lumia, V.; Barba, M. Distribution of olive tree viruses in Italy as revealed by one-step RT-PCR. J. Plant Pathol. 2005, 87, 49–55. [Google Scholar]
- Luvisi, A.; Panattoni, A.; Bandinelli, R.; Rinaldelli, E.; Pagano, M.; Triolo, E. Microchip-based system for supporting a certification scheme for olive trees. J. Hortic. Sci. Biotechnol. 2012, 87, 551–556. [Google Scholar] [CrossRef]
- Saponari, M.; Boscia, D.; Nigro, F.; Martelli, G.P. Identification of DNA sequences related to Xylella fastidiosa in oleander, almond and olive trees exhibiting leaf scorch symptoms in Apulia (Southern Italy). J. Plant Pathol. 2013, 95, 668. [Google Scholar]
- Martelli, G.P. The current status of the quick decline syndrome of olive in southern Italy. Phytoparasitica 2016, 44, 1–10. [Google Scholar] [CrossRef]
- Luvisi, A.; Lorenzini, G. RFID-plants in the smart city: Applications and outlook for urban green management. Urban For. Urban Green. 2014, 13, 630–637. [Google Scholar] [CrossRef]
- Harkess, R.L. RFID technology for plant inventory management. Proc. Soc. Nursery Assoc. Res. Conf. 2005, 50, 369–371. [Google Scholar]
- Rowntree, R.A. Ecology of the urban forest—Introduction to part I. Urban Ecol. 1984, 8, 1–11. [Google Scholar] [CrossRef]
- Ward, K.T.; Johnson, G.R. Geospatial methods provide timely and comprehensive urban forest information. Urban For. Urban Green. 2007, 6, 15–22. [Google Scholar] [CrossRef]
- Wu, C.; Xiao, G.; McPherson, G.E. A method for locating tree-planting sites in urban areas: A case study of Los Angeles, USA. Urban For. Urban. Green. 2008, 7, 65–76. [Google Scholar] [CrossRef]
- Gorelli, S.; Santucci, A.; Lorenzini, G.; Nali, C. Validation of air pollution biomonitoring networks and related data modelling: A geostatistical approach. J. Environ. Monitor. 2009, 11, 793–797. [Google Scholar] [CrossRef] [PubMed]
- Falcão, A.O.; Prospero dos Santos, M.; Borges, J.G. A real-time visualization tool for forest ecosystem management decision support. Comput. Electron. Agric. 2006, 53, 3–12. [Google Scholar] [CrossRef]
- Cunha, C.R.; Peres, E.; Morais, R.; Oliveira, A.A.; Matos, S.G.; Fernandes, M.A.; Ferreira, P.J.S.G.; Reis, M.J.C.S. The use of mobile devices with multi-tag technologies for an overall contextualized vineyard management. Comput. Electron. Agric. 2010, 73, 154–164. [Google Scholar] [CrossRef]
- Villaverde, J.J.; Sandín-España, P.; Sevilla-Morán, B.; López-Goti, C.; Alonso-Prados, J.L. Biopesticides from natural products: Current development, legislative framework, and future trends. BioResources 2016, 11, 5618–5640. [Google Scholar] [CrossRef]
- Villaverde, J.J.; Sevilla-Morán, B.; Sandín-España, P.; López-Goti, C.; Alonso-Prados, J.L. Biopesticides in the framework of the European Pesticide Regulation (EC) No. 1107/2009. Pest Manag. Sci. 2014, 70, 2–5. [Google Scholar] [CrossRef] [PubMed]
- Peets, S.; Gasparin, C.P.; Blackburn, D.W.K.; Godwin, R.J. RFID tags for identifying and verifying agrochemicals in traceability systems. In Proceedings of the 6th European Conference on Precision Agriculture, Skiathos, Greece, 3–6 June 2007; pp. 801–808.
- Miller, P.C.H. Patch spraying: Future role of electronics in limiting pesticide use. Pest Manag. Sci. 2003, 59, 566–574. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Williams, E. Functionality versus “typical product” measures of energy efficiency: Case study of semiconductor manufacturing. J. Ind. Ecol. 2011, 15, 108–121. [Google Scholar] [CrossRef]
- Cleveland, C.J.; Ruth, M. Indicators of dematerialization and the materials intensity of use. J. Ind. Ecol. 1998, 2, 15–50. [Google Scholar] [CrossRef]
- Williams, E.; Ayres, R.; Heller, M. The 1.7 Kilogram microchip: Energy and material use in the production of semiconductor devices. Environ. Sci. Technol. 2002, 36, 5504–5510. [Google Scholar] [CrossRef] [PubMed]
- Williams, E.; Ayres, R.; Heller, M. Energy intensity of computer manufacturing: Hybrid assessment combining process and economic input–output methods. Environ. Sci. Technol. 2004, 38, 6166–6174. [Google Scholar] [CrossRef] [PubMed]
- Jenkin, T.A.; Webster, J.; McShane, L. An agenda for ‘Green’ information technology and systems research. Inf. Organ. 2011, 21, 17–40. [Google Scholar] [CrossRef]
- Williams, E. Environmental effects of information and communications technologies. Nature 2011, 479, 354–358. [Google Scholar] [CrossRef] [PubMed]
- Kuehr, R.; Williams, E. Computers and the Environment: Understanding and Managing Their Impacts; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003. [Google Scholar]
- Wäger, P.A.; Eugster, M.; Hilty, L.M.; Som, C. Smart labels in municipal solid waste—Case for the precautionary principle? Environ. Impact Assess. 2005, 25, 567–586. [Google Scholar] [CrossRef]
- European Commission. Radio Frequency Identification (RFID) in Europe: Steps towards a Policy Framework. Available online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:52007SC0312:EN:HTML (accessed on 27 July 2016).
- McMichael, P.D. La restructuration globale des systems agro-alimentaires. Mondes Dev. 2002, 30, 45–54. [Google Scholar]
- Friedmann, H. From colonialism to green capitalism: Social movements and the emergence of food regimes. In New Directions in the Sociology of Global Development; Buttel, F., McMichael, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 227–264. [Google Scholar]
- Campbell, H. Breaking new ground in food regime theory: Corporate environmentalism, ecological feedbacks and the ‘food from somewhere’ regime? Agric. Hum. Values 2009, 26, 309–319. [Google Scholar] [CrossRef]
- Scherr, S.J.; McNeely, J.A. Biodiversity conservation and agricultural sustainability: Towards a new paradigm of ‘ecoagriculture’ landscapes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 477–494. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luvisi, A.; Ampatzidis, Y.G.; De Bellis, L. Plant Pathology and Information Technology: Opportunity for Management of Disease Outbreak and Applications in Regulation Frameworks. Sustainability 2016, 8, 831. https://doi.org/10.3390/su8080831
Luvisi A, Ampatzidis YG, De Bellis L. Plant Pathology and Information Technology: Opportunity for Management of Disease Outbreak and Applications in Regulation Frameworks. Sustainability. 2016; 8(8):831. https://doi.org/10.3390/su8080831
Chicago/Turabian StyleLuvisi, Andrea, Yiannis G. Ampatzidis, and Luigi De Bellis. 2016. "Plant Pathology and Information Technology: Opportunity for Management of Disease Outbreak and Applications in Regulation Frameworks" Sustainability 8, no. 8: 831. https://doi.org/10.3390/su8080831
APA StyleLuvisi, A., Ampatzidis, Y. G., & De Bellis, L. (2016). Plant Pathology and Information Technology: Opportunity for Management of Disease Outbreak and Applications in Regulation Frameworks. Sustainability, 8(8), 831. https://doi.org/10.3390/su8080831