Dynamic Simulation of Urban Expansion Based on Cellular Automata and Logistic Regression Model: Case Study of the Hyrcanian Region of Iran
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Area
2.2. Research Procedure
2.3. Land Use/Land Cover (LULC): Change Detection
2.4. The Integrated Land Use Change Model
2.5. Simulation of Future Land Use Change by LR
2.6. Simulation of Future Land Use Change through MC
2.7. Simulation of Future Land Use Change by CA
3. Results and Discussion
3.1. LULC Analysis
3.2. LULC Change Detection
3.3. CA-Markov Projection Model
3.4. CA-Logistic Regression Model
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Caruso, G.; Rounsevell, M.; Cojocaru, G. Exploring a spatio-dynamic neighbourhood-based model of residential behaviour in the Brussels periurban area. Int. J. Geogr. Inf. Sci. 2005, 19, 103–123. [Google Scholar] [CrossRef]
- Nazarnia, N.; Schwick, C.; Jaeger, J.A.G. Accelerated urban sprawl in Montreal, Quebec City, and Zurich: Investigating the differences using time series 1951–2011. Ecol. Indic. 2016, 60, 1229–1251. [Google Scholar] [CrossRef]
- Engelen, G.; Lavalle, C.; Barredo, J.I.; der Meulen, M.; White, R. The MOLAND modelling framework for urban and regional land-use dynamics. In Modelling Land-Use Change; Springer: Berlin, Germany, 2007; pp. 297–320. [Google Scholar]
- United Nations. UN World Urbanization Prospects: The 2007 Revision; United Nations: New York, NY, USA, 2008. [Google Scholar]
- Dadhich, P.N.; Hanaoka, S. Remote sensing, GIS and Markov’s method for land use change detection and prediction of Jaipur district. J. Geomat. 2010, 4, 9–15. [Google Scholar]
- Wilson, A.G. Urban and Regional Models in Geography and Planning; John Wiley & Sons: Hoboken, NJ, USA, 1974. [Google Scholar]
- Goldstein, N.C.; Candau, J.T.; Clarke, K.C. Approaches to simulating the ‘March of Bricks and Mortar’. Comput. Environ. Urban Syst. 2004, 28, 125–147. [Google Scholar] [CrossRef]
- Wu, F. Calibration of stochastic cellular automata: The application to rural-urban land conversions. Int. J. Geogr. Inf. Sci. 2002, 16, 795–818. [Google Scholar] [CrossRef]
- Poelmans, L.; van Rompaey, A. Complexity and performance of urban expansion models. Comput. Environ. Urban Syst. 2010, 34, 17–27. [Google Scholar] [CrossRef]
- Liu, T.; Yang, X. Monitoring land changes in an urban area using satellite imagery, GIS and landscape metrics. Appl. Geogr. 2015, 56, 42–54. [Google Scholar] [CrossRef]
- Verhagen, P.; Whitley, T.G. Integrating archaeological theory and predictive modeling: A live report from the scene. J. Archaeol. Method Theory 2012, 19, 49–100. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, X.; Sun, X.; Wang, F. Landscape effects of environmental impact on bay-area wetlands under rapid urban expansion and development policy: A case study of Lianyungang, China. Landsc. Urban Plan. 2010, 94, 218–227. [Google Scholar] [CrossRef]
- Liao, J.; Tang, L.; Shao, G.; Su, X.; Chen, D.; Xu, T. Incorporation of extended neighborhood mechanisms and its impact on urban land-use cellular automata simulations. Environ. Model. Softw. 2016, 75, 163–175. [Google Scholar] [CrossRef]
- Hu, Z.; Lo, C.P. Modeling urban growth in Atlanta using logistic regression. Comput. Environ. Urban Syst. 2007, 31, 667–688. [Google Scholar] [CrossRef]
- Arsanjani, J.J.; Helbich, M.; Kainz, W.; Boloorani, A.D. Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 265–275. [Google Scholar] [CrossRef]
- Puertas, O.L.; Henríquez, C.; Meza, F.J. Assessing spatial dynamics of urban growth using an integrated land use model. Application in Santiago Metropolitan Area, 2010–2045. Land Use Policy 2014, 38, 415–425. [Google Scholar] [CrossRef]
- Mousivand, A.J.; Sarab, A.A.; Shayan, S. A New Approach of Predicting Land Use and Land Cover Changes by Satellite Imagery and Markov Chain Model (Case Study: Tehran). Master’s Thesis, Tarbiat Modares University, Tehran, Iran, 2007. [Google Scholar]
- Alkheder, S.; Shan, J. Calibration and assessment of multitemporal image-based cellular automata for urban growth modeling. Photogramm. Eng. Remote Sens. 2008, 74, 1539–1550. [Google Scholar] [CrossRef]
- Han, J.; Hayashi, Y.; Cao, X.; Imura, H. Application of an integrated system dynamics and cellular automata model for urban growth assessment: A case study of Shanghai, China. Landsc. Urban Plan. 2009, 91, 133–141. [Google Scholar] [CrossRef]
- Torrens, P.M.; O’Sullivan, D. Cellular automata and urban simulation: Where do we go from here? Environ. Plan. B Plan. Des. 2001, 28, 163–168. [Google Scholar] [CrossRef]
- Munshi, T.; Zuidgeest, M.; Brussel, M.; van Maarseveen, M. Logistic regression and cellular automata-based modelling of retail, commercial and residential development in the city of Ahmedabad, India. Cities 2014, 39, 68–86. [Google Scholar] [CrossRef]
- Rienow, A.; Goetzke, R. Supporting SLEUTH--Enhancing a cellular automaton with support vector machines for urban growth modeling. Comput. Environ. Urban Syst. 2015, 49, 66–81. [Google Scholar] [CrossRef]
- Jat, M.K.; Garg, P.K.; Khare, D. Monitoring and modelling of urban sprawl using remote sensing and GIS techniques. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 26–43. [Google Scholar] [CrossRef]
- Iranian Statistic Center. Census Data; Iranian Statistic Center: Tehran, Iran, 2011. [Google Scholar]
- Dubovyk, O.; Sliuzas, R.; Flacke, J. Spatio-temporal modelling of informal settlement development in Sancaktepe district, Istanbul, Turkey. ISPRS J. Photogramm. Remote Sens. 2011, 66, 235–246. [Google Scholar] [CrossRef]
- Peng, C.-Y.J.; Lee, K.L.; Ingersoll, G.M. An introduction to logistic regression analysis and reporting. J. Educ. Res. 2002, 96, 3–14. [Google Scholar] [CrossRef]
- Alsharif, A.A.A.; Pradhan, B. Urban sprawl analysis of Tripoli Metropolitan city (Libya) using remote sensing data and multivariate logistic regression model. J. Indian Soc. Remote Sens. 2014, 42, 149–163. [Google Scholar] [CrossRef]
- Xie, C.; Huang, B.; Claramunt, C.; Chandramouli, C. Spatial logistic regression and GIS to model rural-urban land conversion. In Proceedings of the PROCESSUS Second International Colloquium on the Behavioural Foundations of Integrated Land-Use and Transportation Models: Frameworks, Models and Applications, Toronto, ON, Canada, 12 June 2005; pp. 12–15.
- Clark, W.A.V. Markov chain analysis in geography: An application to the movement of rental housing areas. Ann. Assoc. Am. Geogr. 1965, 55, 351–359. [Google Scholar] [CrossRef]
- Kim, I.; Jeong, G.; Park, S.; Tenhunen, J. Predicted land use change in the Soyang river basin, South Korea. In Proceedings of the 2011 TERRECO Science Conference, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany, 2 October 2011; pp. 2–7.
- Drewett, J.R. A stochastic model of the land conversion process: An interim report. Reg. Stud. 1969, 3, 269–280. [Google Scholar] [CrossRef]
- Wu, Q.; Li, H.; Wang, R.; Paulussen, J.; He, Y.; Wang, M.; Wang, B.; Wang, Z. Monitoring and predicting land use change in Beijing using remote sensing and GIS. Landsc. Urban Plan. 2006, 78, 322–333. [Google Scholar] [CrossRef]
- Yang, X.; Zheng, X.-Q.; Lv, L.-N. A spatiotemporal model of land use change based on ant colony optimization, Markov chain and cellular automata. Ecol. Model. 2012, 233, 11–19. [Google Scholar] [CrossRef]
- Zhang, Q.; Ban, Y.; Liu, J.; Hu, Y. Simulation and analysis of urban growth scenarios for the Greater Shanghai Area, China. Comput. Environ. Urban Syst. 2011, 35, 126–139. [Google Scholar] [CrossRef]
- Fan, F.; Wang, Y.; Wang, Z. Temporal and spatial change detecting (1998–2003) and predicting of land use and land cover in Core corridor of Pearl River Delta (China) by using TM and ETM+ images. Environ. Monit. Assess. 2008, 137, 127–147. [Google Scholar] [CrossRef] [PubMed]
- Rabbani, A.; Aghababaee, H.; Rajabi, M.A. Modeling dynamic urban growth using hybrid cellular automata and particle swarm optimization. J. Appl. Remote Sens. 2012, 6, 63581–63582. [Google Scholar] [CrossRef]
- Maguire, D.J.; Batty, M.; Goodchild, M.F. GIS, Spatial Analysis, and Modeling; Esri Press: New York, NY, USA, 2005. [Google Scholar]
- Deep, S.; Saklani, A. Urban sprawl modeling using cellular automata. Egypt. J. Remote Sens. Space Sci. 2014, 17, 179–187. [Google Scholar] [CrossRef]
Class Name | Land Use 1989 | Land Use 2001 | Land Use 2013 | |||
---|---|---|---|---|---|---|
Ha | % | Ha | % | Ha | % | |
Built-up Area | 36,012.50 | 2.56 | 54,853 | 3.91 | 59,754.80 | 4.26 |
Forest Coverage | 782,870 | 55.76 | 768,541 | 54.74 | 751,242 | 53.5 |
Barren/Open Land | 318,986 | 22.72 | 281,880 | 20.08 | 266,963 | 19.01 |
Water Bodies | 8632.54 | 0.61 | 12,237.60 | 0.87 | 7213.15 | 0.51 |
Agricultural Land | 257,559 | 18.34 | 286,548 | 20.41 | 318,887 | 22.71 |
1989 | 2001 | |||||
Class | Built-up Area | Forest Coverage | Barren/Open Land | Agricultural Land | Total | |
Built-up Area | 36,012.5 | 0 | 0 | 0 | 36,012.5 | |
Forest Coverage | 1835.46 | 774,539 | 2407.86 | 9017.68 | 787,800 | |
Barren/Open Land | 6785.91 | 2138 | 313,619.1 | 30,395.5 | 352,938.51 | |
Agricultural Land | 10,075.2 | 6193 | 2959 | 218,145.2 | 237,372.43 | |
Total | 54,709.07 | 782,870 | 318,986 | 257,558.4 | 1,414,123.5 | |
2001 | 2013 | |||||
Class | Built-up Area | Forest Coverage | Barren/Open Land | Agricultural Land | Total | |
Built-up Area | 54,853 | 0 | 0 | 0 | 54,853 | |
Forest Coverage | 240.84 | 741,270.7 | 10,229.6 | 16,799.9 | 768,541.04 | |
Barren/Open Land | 1858.5 | 1180.98 | 247,402.2 | 31,438.3 | 281,880 | |
Agricultural Land | 2547.81 | 7788.96 | 3785 | 272,426.2 | 286,548 | |
Total | 59,500.15 | 750,240.6 | 261,416.8 | 320,664.4 | 1,391,822 | |
1989 | 2013 | |||||
Class | Built-up Area | Forest Coverage | Barren/Open Land | Agricultural Land | Total | |
Built-up Area | 36,411.08 | 0 | 0 | 0 | 36,411.08 | |
Forest Coverage | 2076.3 | 733,941 | 12,637.46 | 25,818.17 | 774,472.93 | |
Barren/Open Land | 8644.41 | 3319 | 247,581.54 | 61,833.8 | 321,378.75 | |
Agricultural Land | 12,623.01 | 13,982 | 6744 | 231,235.03 | 264,584.04 | |
Total | 59,754.8 | 751,242 | 266,963 | 318,887 | 1,396,846.8 |
1989–2001 | CA-Markov 2013 | Built-up Area | Forest Coverage | Barren/Open Land | Water Body | Agricultural Land |
Built-up Area | 0.9697 | 0.0098 | 0.0084 | 0.0053 | 0.0068 | |
Forest Coverage | 0.0548 | 0.8397 | 0.0915 | 0.0003 | 0.0137 | |
Barren/Open Land | 0.1367 | 0.0069 | 0.7349 | 0.0068 | 0.1147 | |
Water Body | 0.0000 | 0.0014 | 0.0089 | 0.9858 | 0.0039 | |
Agricultural Land | 0.0557 | 0.0239 | 0.0489 | 0.0000 | 0.8715 | |
2001–2013 | CA-Markov 2025 | Built-up Area | Forest Coverage | Barren/Open Land | Water Body | Agricultural Land |
Built-up Area | 0.9859 | 0.0084 | 0.0031 | 0.0002 | 0.0024 | |
Forest Coverage | 0.0431 | 0.8195 | 0.1289 | 0.0002 | 0.0083 | |
Barren/Open Land | 0.1235 | 0.0043 | 0.7456 | 0.0049 | 0.1217 | |
Water Body | 0.0000 | 0.0013 | 0.0106 | 0.9872 | 0.0009 | |
Agricultural Land | 0.0521 | 0.0102 | 0.0445 | 0.0000 | 0.8932 | |
1989–2013 | CA-Markov 2037 | Built-up Area | Forest Coverage | Barren/Open Land | Water Body | Agricultural Land |
Built-up Area | 0.9881 | 0.0055 | 0.0033 | 0.0002 | 0.0029 | |
Forest Coverage | 0.0691 | 0.8164 | 0.1023 | 0.0006 | 0.0116 | |
Barren/Open Land | 0.1449 | 0.0074 | 0.7095 | 0.0059 | 0.1323 | |
Water Body | 0.0000 | 0.0007 | 0.0085 | 0.9892 | 0.0016 | |
Agricultural Land | 0.0579 | 0.0312 | 0.0504 | 0.0000 | 0.8605 |
CA-Markov 2013 | CA-Markov 2025 | CA-Markov 2037 | ||||
---|---|---|---|---|---|---|
Class Name | Ha | % | Ha | % | Ha | % |
Built-up Area | 58,749 | 4.18 | 71,263 | 5.08 | 78,073 | 5.56 |
Forest Coverage | 747,154 | 53.21 | 733,291 | 52.23 | 726,141 | 51.72 |
Barren/Open Land | 265,397 | 18.90 | 257,032 | 18.31 | 245,189 | 17.46 |
Water Bodies | 6302 | 0.45 | 7078 | 0.5 | 7309 | 0.52 |
Agricultural Land | 326,458 | 23.25 | 335,396 | 23.89 | 347,348 | 24.74 |
Variables | Coefficient | Standard Error | |
---|---|---|---|
X 1 | Distance to CBD | 0.034231 | 0.014891 |
X 2 | Distance to airports | 0.001698 | 0.001291 |
X 3 | Distance to rivers | 0.014287 | 0.012732 |
X 4 | Distance to major roads | 0.035783 | 0.023195 |
X 5 | Distance to sea line | 0.000031 | 0.000012 |
X 6 | Distance to nearest cities | −0.000498 | 0.000184 |
X 7 | Forest lands | 8.363241 | 3.984701 |
X 8 | Agricultural lands | 17.901376 | 11.390572 |
X 9 | Northing coordination | −0.000835 | 0.000364 |
X 10 | Easting coordination | −0.000068 | 0.000046 |
X 11 | DEM | −0.001973 | 0.001394 |
X 12 | Slope in percent | −0.000319 | 0.000185 |
Intercept | −19.13703 | 10.380974 |
Independent Variables | Odds Ratio | ROC | Standard Error |
---|---|---|---|
Collection 1 | 2.397853 | 0.9017 | 0.014891 |
Collection 2 | 1.852981 | 0.9164 | 0.023195 |
Collection 3 | 2.461983 | 0.8735 | 0.012732 |
Collection 4 | 1.679826 | 0.8436 | 0.001291 |
Collection 5 | 2.789532 | 0.9216 | 0.000012 |
Collection 6 | 0.000085 | 0.7351 | 0.000364 |
Collection 7 | 9.873901 | 0.9431 | 3.984701 |
Collection 8 | 0.000381 | 0.7539 | 0.000185 |
Collection 9 | 2.287643 | 0.9142 | 0.000184 |
Collection 10 | 0.090367 | 0.8974 | 0.000046 |
Collection 11 | 7.679031 | 0.9673 | 11.390572 |
Collection 12 | 0.000238 | 0.7976 | 0.001394 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jafari, M.; Majedi, H.; Monavari, S.M.; Alesheikh, A.A.; Kheirkhah Zarkesh, M. Dynamic Simulation of Urban Expansion Based on Cellular Automata and Logistic Regression Model: Case Study of the Hyrcanian Region of Iran. Sustainability 2016, 8, 810. https://doi.org/10.3390/su8080810
Jafari M, Majedi H, Monavari SM, Alesheikh AA, Kheirkhah Zarkesh M. Dynamic Simulation of Urban Expansion Based on Cellular Automata and Logistic Regression Model: Case Study of the Hyrcanian Region of Iran. Sustainability. 2016; 8(8):810. https://doi.org/10.3390/su8080810
Chicago/Turabian StyleJafari, Meisam, Hamid Majedi, Seyed Masoud Monavari, Ali Asghar Alesheikh, and Mirmasoud Kheirkhah Zarkesh. 2016. "Dynamic Simulation of Urban Expansion Based on Cellular Automata and Logistic Regression Model: Case Study of the Hyrcanian Region of Iran" Sustainability 8, no. 8: 810. https://doi.org/10.3390/su8080810
APA StyleJafari, M., Majedi, H., Monavari, S. M., Alesheikh, A. A., & Kheirkhah Zarkesh, M. (2016). Dynamic Simulation of Urban Expansion Based on Cellular Automata and Logistic Regression Model: Case Study of the Hyrcanian Region of Iran. Sustainability, 8(8), 810. https://doi.org/10.3390/su8080810