Resource Usage Strategies and Trade-Offs between Cropland Demand, Fossil Fuel Consumption, and Greenhouse Gas Emissions—Building Insulation as an Example
Abstract
:1. Introduction
1.1. Need for Resource Usage Strategies
1.2. Material Alternatives for Building Insulations
1.3. Assessments of the Environmental Impacts of Building Insulations
1.4. Objectives
- Biomaterial strategy: Cropland is used to grow fiber plants as bioresources, which are further processed to an insulation material with fossil energy derived from crude oil and natural gas; or
- Bioenergy strategy: Cropland is used to grow energy crops (short rotation coppice or maize (Zea mays L.) as bioresources and the bioenergy is then used for the production of fossil fuel-based synthetic insulation materials.
2. Materials and Methods
2.1. Methodological Approach: Life Cycle Assessment
2.1.1. General Method
2.1.2. System Boundaries
2.1.3. Functional Unit
2.1.4. Criteria for Assessment
2.2. Biomaterial Strategy
2.2.1. European Hemp Market Conditions
2.2.2. Hemp Cultivation and Processing to Insulation
2.2.3. Land Use Change Effects
2.2.4. Co-Products
2.3. Bioenergy Strategy
2.3.1. EPS Production and Processing to Insulation
2.3.2. Potential Land Use Change Effects
2.3.3. Co-Products
2.4. Scenario Analyses
3. Results and Discussion
3.1. Comparison of Strategies and Scenario Analyses
3.1.1 Cropland Demand
3.1.2. Fossil Fuels Demand
3.1.3. Contribution to Climate Change
3.2. Discussion of Market Implications and Reference Systems
3.3. Excluded Effects
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
BBSR | Bundesamt für Bau-, Stadt- und Raumforschung im Bundesamt für Bauwesen und Raumordnung |
CAN | calcium ammonium nitrate |
CO2 | carbon dioxide |
CO2e | CO2 equivalents |
dLUC | direct land use change |
EPS | expanded polystyrene |
EPS45 | EPS with a share of 45% recyclate |
EPS45_LUC | EPS with a share of 45% recyclate and land use change effects considered |
EPS100 | pure recyclate EPS |
EU | European Union |
FU | functional unit |
GHG | greenhouse gas(es) |
Hemp83 | hemp insulation containing 83% hemp fibers |
Hemp95 | hemp insulation containing 95% hemp fibers |
iLUC | indirect land use change |
K2O | potassium oxide |
LCA | life cycle assessment |
LCC | life cycle costing |
LUC | land use change |
MJ | megajoule |
N | nitrogen |
P2O5 | phosphate |
SLCA | social life cycle assessment |
SRC | short rotation coppice |
Appendix A
Share of Expanded Polystyrene in the Insulation Material | Use Cycles | |||||
---|---|---|---|---|---|---|
%_recycled | %_new | 1 | 2 | 3 | 4 | 5 |
100 | 0 | 208.8 | −2.5 | −72.9 | −108.1 | −129.2 |
95 | 5 | 208.8 | 8.1 | −58.8 | −92.2 | −112.3 |
90 | 10 | 208.8 | 18.7 | −44.7 | −76.4 | −95.4 |
85 | 15 | 208.8 | 29.2 | −30.6 | −60.6 | −78.5 |
80 | 20 | 208.8 | 39.8 | −16.6 | −44.7 | −61.6 |
75 | 25 | 208.8 | 50.3 | −2.5 | −28.9 | −44.7 |
70 | 30 | 208.8 | 60.9 | 11.6 | −13.0 | −27.8 |
65 | 35 | 208.8 | 71.5 | 25.7 | 2.8 | −10.9 |
60 | 40 | 208.8 | 82.0 | 39.8 | 18.7 | 6.0 |
55 | 45 | 208.8 | 92.6 | 53.9 | 34.5 | 22.9 |
50 | 50 | 208.8 | 103.1 | 67.9 | 50.3 | 39.8 |
EPS45 | 55 | 208.8 | 113.7 | 82.0 | 66.2 | 56.7 |
40 | 60 | 208.8 | 124.3 | 96.1 | 82.0 | 73.6 |
35 | 65 | 208.8 | 134.8 | 110.2 | 97.9 | 90.5 |
30 | 70 | 208.8 | 145.4 | 124.3 | 113.7 | 107.4 |
25 | 75 | 208.8 | 156.0 | 138.4 | 129.5 | 124.3 |
20 | 80 | 208.8 | 166.5 | 152.4 | 145.4 | 141.2 |
15 | 85 | 208.8 | 177.1 | 166.5 | 161.2 | 158.1 |
10 | 90 | 208.8 | 187.6 | 180.6 | 177.1 | 175.0 |
5 | 95 | 208.8 | 198.2 | 194.7 | 192.9 | 191.9 |
0 | 100 | 208.8 | N/A | N/A | N/A | N/A |
References
- Alvarenga, R.A.F.; Dewulf, J. Plastic vs. Fuel: Which use of the brazilian ethanol can bring more environmental gains? Renew. Energy 2013, 59, 49–52. [Google Scholar] [CrossRef]
- Shah, D.U. Developing plant fibre composites for structural applications by optimising composite parameters: A critical review. J. Mater. Sci. 2013, 48, 6083–6107. [Google Scholar] [CrossRef]
- Change in the Raw Materials Base. Available online: http://www.dechema.de/dechema_media/Downloads/Positionspapiere/Positionpaper_Rohstoffbasis_engl_final.pdf (accessed on 31 July 2013).
- Wolf, J.; Bindraban, P.S.; Luijten, J.C.; Vleeshouwers, L.M. Exploratory study on the land area required for global food supply and the potential global production of bioenergy. Agric. Syst. 2003, 76, 841–861. [Google Scholar] [CrossRef]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Jakob, M.; Edenhofer, O. Green growth, degrowth, and the commons. Oxf. Rev. Econ. Policy 2014, 30, 447–468. [Google Scholar] [CrossRef]
- Bruch, C.; (GDI (Gesamtverband Dämmstoffindustrie), Berlin, Germany). Personal Communication, 2012.
- Danner, H. Handbuch Ökologische Wärmedämmstoffe (Handbook of Ecological Insulations). Available online: http://www.muenchen.de/rathaus/dms/Home/Stadtverwaltung/Referat-fuer-Gesundheit-und-Umwelt/Dokumente/Klimaschutz_und_Energie/Bauzentrum/Fachinformationen/Leitfaeden/oekolog_waermedaemmstoffe_v_2.pdf (accessed on 12 October 2013). (In German)
- Erlandsson, M.; Levin, P.; Myhre, L. Energy and environmental consequences of an additional wall insulation of a dwelling. Build. Environ. 1997, 32, 129–136. [Google Scholar] [CrossRef]
- Schmidt, A.C.; Jensen, A.A.; Clausen, A.U.; Kamstrup, O.; Postlethwaite, D. A comparative life cycle assessment of building insulation products made of stone wool, paper wool and flax (part 2). Int. J. LCA 2004, 9, 122–129. [Google Scholar] [CrossRef]
- The Federal Institute for Research on Building, Urban Affairs and Spatial Development (BBSR). Oekobau.dat. Available online: http://www.nachhaltigesbauen.de/oekobaudat/ (accessed on 3 December 2012). (In German)
- Dornburg, V.; Lewandowski, I.; Patel, M. Comparing the land requirements, energy savings, and greenhouse gas emissions reduction of biobased polymers and bioenergy. J. Ind. Ecol. 2003, 7, 93–116. [Google Scholar] [CrossRef]
- Kauffman, N.S.; Hayes, D.J. The trade-off between bioenergy and emissions with land constraints. Energy Policy 2013, 54, 300–310. [Google Scholar] [CrossRef]
- Cherubini, F.; Strømman, A.H. Life cycle assessment of bioenergy systems: State of the art and future challenges. Bioresour. Technol. 2011, 102, 437–451. [Google Scholar] [CrossRef] [PubMed]
- Kjaer, L.L.; Pagoropoulos, A.; Schmidt, J.H.; McAloone, T.C. Challenges when evaluating product/service-systems through life cycle assessment. J. Clean. Prod. 2016, 120, 95–104. [Google Scholar] [CrossRef] [Green Version]
- DIN EN ISO. Environmental management—Life cycle assessment—Principles and framework (ISO 14040:2006); german and english version EN ISO 14040:2006. In Environmental Protection, Occupational Safety, Safety; Beuth: Berlin, Germany, 2006.
- DIN EN ISO. Environmental management—Life cycle assessment—Requirements and guidelines (ISO 14044:2006); german and english version EN ISO 14044:2006. In Environmental Protection, Occupational Safety, Safety; Beuth: Berlin, Germany, 2006.
- Arcese, G.; Lucchetti, M.C.; Massa, I.; Valente, C. State of the art in S-LCA: Integrating literature review and automatic text analysis. Int. J. LCA 2016. [Google Scholar] [CrossRef]
- Hannouf, M.; Assefa, G. Comments on the relevance of life cycle costing in sustainability assessment of product systems. Int. J. LCA 2016, 21, 1059–1062. [Google Scholar] [CrossRef]
- European Commission-Joint Research Centre. Institute for Environment and Sustainability International reference life cycle data system (ilcd) handbook—General guide for life cycle assessment—Detailed guidance. Available online: http://eplca.jrc.ec.europa.eu/uploads/ILCD-Handbook-General-guide-for-LCA-DETAILED-GUIDANCE-12March2010-ISBN-fin-v1.0-EN.pdf (accessed on 15 March 2012).
- Ekvall, T.; Tillman, A.-M.; Molander, S. Normative ethics and methodology for life cycle assessment. J. Clean. Prod. 2005, 13, 1225–1234. [Google Scholar] [CrossRef]
- Pawelzik, P.; Carus, M.; Hotchkiss, J.; Narayan, R.; Selke, S.; Wellisch, M.; Weiss, M.; Wicke, B.; Patel, M.K. Critical aspects in the life cycle assessment (LCA) of bio-based materials—Reviewing methodologies and deriving recommendations. Resour. Conserv. Recycl. 2013, 73, 211–228. [Google Scholar] [CrossRef]
- BBSR. Nutzungsdauern von Bauteilen für Lebenszyklusanalysen nach Bewertungssystem Nachhaltiges Bauen (Bnb). Available online: http://www.nachhaltigesbauen.de/fileadmin/pdf/baustoff_gebauededaten/BNB_Nutzungsdauern_von_Bauteilen__2011-11-03.pdf (accessed on 2 November 2012). (In German)
- Ingrao, C.; Lo Giudice, A.; Bacenetti, J.; Tricase, C.; Dotelli, G.; Fiala, M.; Siracusa, V.; Mbohwa, C. Energy and environmental assessment of industrial hemp for building applications: A review. Renew. Sustain. Energy Rev. 2015, 51, 29–42. [Google Scholar] [CrossRef]
- FNR Basisdaten Bioenergie Deutschland 2014. Available online: https://mediathek.fnr.de/media/downloadable/files/samples/b/a/basisdaten_9x16_2014_web.pdf (accessed on 15 September 2015). (In German)
- ISO. EN ISO 6946. Building Components and Building Elements—Thermal Resistance and Thermal Transmittance—Calculation Method; ISO: Geneva, Switzerland, 2007. [Google Scholar]
- Schmidt, A.C.; Jensen, A.A.; Clausen, A.U.; Kamstrup, O.; Postlethwaite, D. A comparative life cycle assessment of building insulation products made of stone wool, paper wool and flax (part 1). Int. J. LCA 2004, 9, 53–66. [Google Scholar] [CrossRef]
- Canto-Perello, J.; Martinez-Garcia, M.; Curiel-Esparza, J.; Martin-Utrillas, M. Implementing sustainability criteria for selecting a roof assembly typology in medium span buildings. Sustainability 2015, 7, 6854–6871. [Google Scholar] [CrossRef]
- European Union About Corine Land Cover. Available online: http://ec.europa.eu/agriculture/publi/landscape/about.htm (accessed on 18 August 2014).
- Frischknecht, R.; Jungbluth, N.; Althaus, H.-J.; Doka, G.; Heck, T.; Hellweg, S.; Hischie, R.; Nemecek, T.; Rebitzer, G.; Spielmann, M.; et al. Overview and Methodology. Available online: http://www.ecoinvent.org/files/200712_frischknecht_jungbluth_overview_methodology_ecoinvent2.pdf (accessed on 5 November 2013).
- Chapter 3, Energy Conversion. Available online: http://www.uni-magdeburg.de/isut/TV/Download/Kapitel_3_Combustion_Engineering.pdf (accessed on 16 October 2014).
- IPCC Climate Change 2007: The Physical Science Basis. Available online: http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-errata.pdf (accessed on 4 March 2011).
- Carus, M.; Karst, S.; Kauffmann, A.; Hobson, J.; Bertucelli, S. The European Hemp Industry: Cultivation, Processing and Applications for Fibres, Shivs and Seeds. Available online: http://eiha.org/media/2014/10/13-06-European-Hemp-Industry.pdf (accessed on 9 March 2014).
- European Commission DG for Agriculture and Rural Development EU agriculture. Statistical and Economic Information. 2012. Available online: http://ec.europa.eu/agriculture/statistics/agricultural/2012/pdf/d11-1-411_en.pdf (accessed on 10 September 2013).
- Graf, T.; Reinhold, G.; Biertümpfel, A.; Zorn, W. Leitlinie zur effizienten und umweltverträglichen erzeugung von faserhanf. Available online: http://www.tll.de/ainfo/pdf/hanf0805.pdf (accessed on 5 October 2013). (In German)
- Bos, U. Aktualisierung der CO2-Bilanz des Dämmstoffes Thermo-Hanf Mit PES- und PLA-Faser; Fraunhofer Institut für Bauphysik IBP: Echterdingen, Germany, 2010; p. 11. (In German) [Google Scholar]
- Wötzel, K. Ökobilanz einer PKW-Seitenverkleidung aus einem Hanffaserverbundwerkstoff und Vergleich mit einem Referenzprodukt aus ABS-Kunststoff. Available online: https://www.tu-braunschweig.de/geooekologie/forschung/stoffstrom/wiss/1999 (accessed on 29 June 2016). (In German)
- ifu. IFEU Umberto®. version 5.5; ifu: Hamburg, Germany, 2011.
- Fargione, J.; Hill, J.; Tilman, D.; Polasky, S.; Hawthorne, P. Land clearing and the biofuel carbon debt. Sciences 2008, 319, 1235–1238. [Google Scholar] [CrossRef] [PubMed]
- Piemonte, V.; Gironi, F. Bioplastics and GHGs saving: The land use change (LUC) emissions issue. Energy Sources 2012, 34, 1995–2003. [Google Scholar] [CrossRef]
- De Rosa, M.; Knudsen, M.T.; Hermansen, J.E. A comparison of land use change models: Challenges and future developments. J. Clean. Prod. 2016, 113, 183–193. [Google Scholar] [CrossRef]
- IPCC. IPCC Guidelines For National Greenhouse Gas Inventories. Available online: http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2006gls_all_in.zip (accessed on 25 August 2010).
- Audsley, E.; Brander, M.; Chatterton, J.; Murphy-Bokern, D.; Webster, C.; Williams, A. How Low Can We Go? An Assessment of Greenhouse Gas Emissions from the UK Food System and the Scope to Reduce Them by 2050; WWF-UK: Surrey, UK, 2009. [Google Scholar]
- Tonini, D.; Hamelin, L.; Astrup, T.F. Environmental implications of the use of agro-industrial residues for biorefineries: Application of a deterministic model for indirect land-use changes. GCB Bioenergy 2015. [Google Scholar] [CrossRef] [Green Version]
- Verstegen, J.A.; van der Hilst, F.; Woltjer, G.; Karssenberg, D.; de Jong, S.M.; Faaij, A.P.C. What can and can’t we say about indirect land-use change in brazil using an integrated economic—Land-use change model? GCB Bioenergy 2016, 8, 561–578. [Google Scholar] [CrossRef]
- Schmidt, J.H.; Weidema, B.P.; Brandão, M. A framework for modelling indirect land use changes in life cycle assessment. J. Clean. Prod. 2015, 99, 230–238. [Google Scholar] [CrossRef]
- Finkbeiner, M. Indirect land use change—Help beyond the hype? Biomass Bioenerg 2014, 62, 218–221. [Google Scholar] [CrossRef]
- Schierhold, G.; (GEVO GmbH, Leer, Germany). Personal Communication, 2013.
- Ecoinvent Centre Ecoinvent data v2.2. Available online: www.ecoinvent.org (accessed on 22 April 2013).
- Hansen, A.; Meyer-Aurich, A.; Prochnow, A. Greenhouse gas mitigation potential of a second generation energy production system from short rotation poplar in eastern germany and its accompanied uncertainties. Biomass Bioenerg. 2013, 56, 104–115. [Google Scholar] [CrossRef]
- KTBL. Energiepflanzen—Daten für die Planung des Energiepflanzenanbaus; KTBL: Darmstadt, Germany, 2006. (In German) [Google Scholar]
- IINAS. Gemis—Global Emissions Model for Integrated Systems and Database (Version 4.93); IINAS: Darmstadt, Germany, 2014. [Google Scholar]
- Don, A.; Osborne, B.; Hastings, A.; Skiba, U.; Carter, M.S.; Drewer, J.; Flessa, H.; Freibauer, A.; Hyvönen, N.; Jones, M.B.; et al. Land-use change to bioenergy production in europe: Implications for the greenhouse gas balance and soil carbon. GCB Bioenergy 2012, 4, 372–391. [Google Scholar] [CrossRef]
- Walter, K.; Don, A.; Flessa, H. No general soil carbon sequestration under central european short rotation coppices. GCB Bioenergy 2014, 7, 727–740. [Google Scholar] [CrossRef]
- Fritsche, U.R.; Wiegmann, K. Treibhausgasbilanzen und kumulierter Primärenergieverbrauch von Bioenergie-Konversionspfaden unter Berücksichtigung möglicher Landnutzungsänderungen. Available online: http://www.wbgu.de/fileadmin/templates/dateien/veroeffentlichungen/hauptgutachten/jg2008/wbgu_jg2008_ex04.pdf (accessed on 17 September 2014). (In German)
- Vogt, R. Basisdaten zu THG-Bilanzen für Biogas-Prozessketten und Erstellung neuer THG-Bilanzen. Available online: http://www.ifeu.de/oekobilanzen/pdf/THG_Bilanzen_Bio_Erdgas.pdf (accessed on 22 August 2014). (In German)
- Delin, S.; Stenberg, B.; Nyberg, A.; Brohede, L. Potential methods for estimating nitrogen fertilizer value of organic residues. Soil Use Manag. 2012, 28, 283–291. [Google Scholar] [CrossRef]
- Hischier, R.; Althaus, H.-J.; Bauer, C.; Doka, G.; Frischknecht, R.; Jungbluth, N.; Nemecek, T.; Simons, A.; Sutter, J.; Stucki, M.; et al. Documentation of Changes Implemented in Ecoinvent Data v2.1 and v2.2; No. 16; Swiss Centre for Life Cycle Inventories: St. Gallen, Swizerland, 2010; p. 320. [Google Scholar]
- Nitsch, H.; Osterburg, B.; Roggendorf, W. Landwirtschaftliche Flächennutzung im Wandel—Folgen für Natur und Landschaft—Eine Analyse agrarstatistischer Daten (changing agricultural land use—Effects on nature and landscape—An analysis of agri-statistical data). Available online: http://www.foes.de/pdf/NABU,%20DVL_2009.pdf (accessed on 6 March 2015). (In German)
- BfN (Federal Agency for Nature Conservation). Grünland-Report: Alles im grünen Bereich? (grassland report). Available online: http://www.bfn.de/fileadmin/MDB/documents/presse/2014/PK_Gruenlandpapier_30.06.2014_final_layout_barrierefrei.pdf (accessed on 12 January 2015). (In German)
- FAO Faostat. Available online: http://faostat3.fao.org/home/E (accessed on 2 January 2015).
- Colwill, J.A.; Wright, E.I.; Rahimifard, S.; Clegg, A.J. Bio-plastics in the context of competing demands on agricultural land in 2050. Int. J. Sustain. Eng. 2011, 5, 3–16. [Google Scholar] [CrossRef]
- Silvestre, J.D.; de Brito, J.; Pinheiro, M.D. Environmental impacts and benefits of the end-of-life of building materials—Calculation rules, results and contribution to a “cradle to cradle” life cycle. J. Clean. Prod. 2014, 66, 37–45. [Google Scholar] [CrossRef]
- Weiss, M.; Haufe, J.; Carus, M.; Brandão, M.; Bringezu, S.; Hermann, B.; Patel, M.K. A review of the environmental impacts of biobased materials. J. Ind. Ecol. 2012, 16, S169–S181. [Google Scholar] [CrossRef]
- Canadian Hemp Trade Alliance. Grow Hemp. Sub-page—Markets. Available online: http://www.hemptrade.ca/grow-hemp (accessed on 12 November 2014).
- Danish Energy Agency. Energy Statistics. Available online: http://www.ens.dk/sites/ens.dk/files/info/tal-kort/statistik-noegletal/aarlig-energistatistik/energy_statistics_2012.pdf (accessed on 12 December 2014).
- Mankowski, J.; Kolodziej, J.; Baraniecki, P. Industrial hemp grown in remediated land used for energy. Chemik 2014, 10, 901–904. [Google Scholar]
- Lühr, C.; Pecenka, R.; Gusovius, H.-J.; Wallot, G.; Rinberg, R.; Tech, S. Development of an axial fractionator for hemp shive cleaning and industrial applications of shives. J. Agric. Sci. 2013, 5, 9–16. [Google Scholar] [CrossRef]
- Mazor, M.H.; Mutton, J.D.; Russell, D.A.M.; Keoleian, G.A. Life cycle greenhouse gas emissions reduction from rigid thermal insulation use in buildings. J. Ind. Ecol. 2011, 15, 284–299. [Google Scholar] [CrossRef]
- Ascione, F.; Bianco, N.; De Masi, R.F.; Mauro, G.M.; Vanoli, G.P. Design of the building envelope: A novel multi-objective approach for the optimization of energy performance and thermal comfort. Sustainability 2015, 7, 10809–10836. [Google Scholar] [CrossRef]
- Daioglou, V.; Wicke, B.; Faaij, A.P.C.; van Vuuren, D.P. Competing uses of biomass for energy and chemicals: Implications for long-term global CO2 mitigation potential. GCB Bioenergy 2014, 7, 1321–1334. [Google Scholar] [CrossRef]
- Feliciano, D.; Hunter, C.; Slee, B.; Smith, P. Climate change mitigation options in the rural land use sector: Stakeholders’ perspectives on barriers, enablers and the role of policy in north east scotland. Environ. Sci. Policy 2014, 44, 26–38. [Google Scholar] [CrossRef]
- Kilpeläinen, A.; Strandman, H.; Kellomäki, S.; Seppälä, J. Assessing the net atmospheric impacts of wood production and utilization. Mitig. Adapt. Strateg. Glob. Change 2014, 19, 955–968. [Google Scholar] [CrossRef]
- Jørgensen, S.; Hauschild, M.; Nielsen, P. The potential contribution to climate change mitigation from temporary carbon storage in biomaterials. Int. J. LCA 2015, 20, 451–462. [Google Scholar] [CrossRef] [Green Version]
- Benoit-Norris, C.; Cavan, D.A.; Norris, G. Identifying social impacts in product supply chains: Overview and application of the social hotspot database. Sustainability 2012, 4, 1946–1965. [Google Scholar] [CrossRef]
- Meynard, J.M.; Messéan, A.; Charlier, A.; Charrier, F.; Farès, M.; Bail, M.L.; Magrini, M.B.; Savini, I. Freins et leviers à la diversification des cultures. Etude au niveau des exploitations agricoles et des filières. Synthèse du rapport d’étude. Available online: http://www.inra.fr (accessed on 19 July 2013). (In French)
- TLL. Begleitung der Einführung des Praxisanbaus von Hanf in Thüringen—Abschlussbericht (monitoring of adoption of hemp cultivation in thuringia—Final report). Available online: http://www.tll.de/ainfo/pdf/hanf0107.pdf (accessed on 14 January 2015). (In German)
Unit | Amount | References | |
---|---|---|---|
Nitrogen | phosphate | potassium fertilizer | hemp seeds | kg·ha−1 | 80 | 100 | 180 | 45 | [35] |
Straw (15% water content) | Fiber yield (technical fibers 22%) | Mg·ha−1 | 8.00 | 1.76 | [35] |
Co-product hemp seeds | % w/w of total yield | 10 | [36] |
Co-product hemp shives | % w/w of straw yield | 57 | [33] |
Tractor employment (all necessary activities) | h·ha−1 | 6 | [37] |
Emissions from and resource demand of the production of Polyester fiber | Sodium hydroxide | kg CO2e·kg−1 | 4.43 | 1.43 | based on Eco-profiles of EU plastics industry [38] |
m2·kg‑1 | 8.3 × 10−5 | 3.8 × 10−5 | ||
MJ·kg−1 | 79.42 | 10.22 | ||
Transports | |||
| km | 150 | 235 | [36] |
| km | 400 | 40 | analogue to EPS |
| km | 40 | analogue to EPS |
Co-product | Alternative A | Unit a | Amount | Remarks b | Ref. |
---|---|---|---|---|
Hemp Seed | kg·FU−1 | 2.55 | Substitution rate 100%; substituted by sunflower seeds in birds” feed | [48] |
A: Sunflower Seed | kg CO2e·kg−1 | 1.02 | 1.24 | Production conditions: integrated Swiss | conventional Spanish #235 | #6961 | [49] |
m2·kg−1 | 3.6 | 12.1 | |||
MJ·kg−1 | 4.835 | 4.928 | |||
Hemp Shives | kg·FU−1 | 9.00 | Substitution rate 62%; by wheat straw in animal bedding | [33] |
A: Wheat straw | kg CO2e·kg−1 | 0.08 | Integrated Swiss production conditions; inputs and outputs of wheat cultivation are economically (7.5%) allocated to the straw (#240)) | [49] |
m2·kg−1 | 0.2 | |||
MJ·kg−1 | 0.519 | |||
Co-generated heat | MJ·FU−1 | 22.7 | Excess heat from electricity generation (from fossil fuels) | [38] |
A: Heat at industrial furnace from fuel oil | natural gas | kg CO2e·MJ−1 | 0.09 | 0.08 | #1582 | #1352 | [49] |
m2·MJ−1 | 3.4 × 10−7 | 5.7 × 10−8 | |||
MJ·MJ−1 | 1.287 | 1.285 | |||
Credits for energy-recovery (Crude oil | natural gas) | MJ·kg−1 | 0.24 | 18.96 | From waste co-incineration after detaching from building; total credit is 23.7 MJ·kg−1 according to dataset 2.22.01; 1% is from crude oil, 80% from natural gas | [11] |
Co-generation Characteristics | Unit | Bioenergy option | |
---|---|---|---|
Short rotation Coppice | Maize Silage | ||
Yield (wood chips50% wet ; maize yielddry) | Mg·ha−1 | 14.5 | 14.9 |
Power plant characteristics: | |||
| km | 30 | 50 |
| h·year−1 | 7000 | 6000 |
| % | 33 | 33 |
| MW | 6.4 | 1.5 |
| MW | 5 | 0.5 |
Co-product | Alternative A | Unit e | Amount | Remarks | Ref. |
---|---|---|---|---|
Co-generated electricity
| kWh·FU−1 | 8.1 | 7.2 | Already reduced by own electricity demand 0.14 kWh·kg−1 EPS | 0.3 kWh·kg−1 EPS100 #11792 | #11791 | [49] |
7.6 | 6.7 | ||||
A: Electricity from oil- | gas-fired plant | kg CO2e·kWh−1 | 1.13 | 0.56 | #1620 | #1384 | [49] |
m2·kWh−1 | 1.9 × 10−6 | 1.7 × 10−3 | |||
MJ·kWh−1 | 14.896 | 9.888 | |||
Digestate containing | kg N·kWh−1 heat | 0.003 | Values already corrected to represent plant-available nutrient content; 30% according to Ref. | [56] |
kg P2O5·kWh−1 heat | 0.005 | |||
kg K2O·kWh−1 heat | 0.013 | |||
A: CAN a-fertilizer | kg CO2e·kg−1 N b | 8.66 | #42 | [49] |
m2·kg−1 N b | 9.1 × 10−5 | |||
MJ·kg−1 N b | 51.4 | |||
A: P2O5c-fertilizer | kg CO2e·kg−1 P2O5 | 2.03 | #57 | [49] |
m2·kg−1 P2O5 | 9.2 × 10−5 | |||
MJ·kg−1 P2O5 | 18.612 | |||
A: K2O d-fertilizer | kg CO2e·kg−1 K2O | 1.44 | #53 | [49] |
m2·kg−1 K2O | 6.2 × 10−5 | |||
MJ·kg−1 K2O | 17.789 | |||
Credits for energy-recovery (Crude oil | natural gas) | MJ·kg−1 | 0.3 | 23.25 | From waste co-incineration after detaching from building; total credit is 30.2 MJ·kg−1 according to dataset 2.22.06; 1% is from crude oil, 77% from natural gas | [11] |
Biomaterial Strategy | Bioenergy Strategy | ||||||
---|---|---|---|---|---|---|---|
Hemp83 | Hemp95 | Hemp83_Sunfl | EPS45 | EPS_LUC | EPS100 | ||
Material Characteristics | |||||||
| 83 | 95 | 83 | N/A | N/A | N/A | |
| 5 | 5 | 5 | N/A | N/A | N/A | |
| 12 | 0 | 12 | N/A | N/A | N/A | |
| N/A | N/A | N/A | 45 | 45 | 100 | |
| 30 | 30 | 30 | 28 | 28 | 28 | |
| 0.04 | 0.04 | 0.04 | 0.036 | 0.036 | 0.036 | |
| 6 | 6 | 6 | 5 | 5 | 5 | |
Substitute for co-product; Sunflower seed yield (Mg·ha−1) | 3.15 | 3.15 | 1.03 | N/A | N/A | N/A | |
GHG b emission factor (kg·CO2e·kWhth−1) | N/A | N/A | N/A | 0.017 (SRC c) | 0.017 (SRC c) | 0.017 (SRC c) | |
0.253 (maize) | 0.277 (maize) | 0.253 (maize) | |||||
Electricity demand for production process (kWhel·kg−1 EPS a) | N/A | N/A | N/A | 0.14 | 0.14 | 0.31 | |
Description and main effect of variation | Basic assumptions | No additional synthetic fibers in insulation result in higher land demand and reductions in fossil fuels and GHG b emissions. | Alternative source for sunflower seed substituting hemp seed from region with lower yield levels (Spain instead of Switzerland) | Basic assumptions | Considering land use change for maize cultivation results in additional GHG b emissions. | Insulation production from 100% recyclate needs more electricity, resulting in higher fossil fuel demand and GHG b emissions. |
Cropland Use | Fossil Fuels Demand | Climate Change | |||||||
---|---|---|---|---|---|---|---|---|---|
Net Result | Deviation | Net Result | Deviation | Net Result | Deviation | ||||
m2·FU−1 | m2·FU−1 | % | MJ·FU−1 | MJ·FU −1 | % | kg CO2e·FU−1 | kg CO2e·FU−1 | % | |
Biomaterial strategy | |||||||||
Hemp83 | 21.25 | 8.10 | 10.47 (15.02) | ||||||
Hemp95 | 24.32 | 3.07 | 14 | −44.85 | −52.95 | −654 | 7.78 (13.00) | −2.69 (−2.03) | −26 (−14) |
Hemp83_Sunfl | −0.53 | −21.77 | −102 | 7.86 | −0.24 | −3 | 9.90 (14.46) | −0.57 (−0.57) | −5 (−4) |
Bioenergy strategy | |||||||||
Gasification of wood chips from short rotation coppice | |||||||||
EPS45 | 0.72 | 18.64 | 9.57 (9.68) | ||||||
EPS100 | 0.72 | 0 | 0 | −201.86 | −220.50 | −1183 | 0.39 (0.49) | −9.18 (−9.18) | −96 (−95) |
Biogas from maize silage | |||||||||
EPS45 | 6.78 | 25.04 | 12.20 (13.17) | ||||||
EPS45_LUC | 6.78 | 0 | 0 | 25.04 | 0.00 | 0 | 12.49 (13.46) | 0.28 (0.28) | 2 (2) |
EPS100 | 6.78 | 0 | 0 | −195.45 | −220.49 | −881 | 3.02 (3.99) | −9.18 (−9.18) | −75 (−70) |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hansen, A.; Budde, J.; Prochnow, A. Resource Usage Strategies and Trade-Offs between Cropland Demand, Fossil Fuel Consumption, and Greenhouse Gas Emissions—Building Insulation as an Example. Sustainability 2016, 8, 613. https://doi.org/10.3390/su8070613
Hansen A, Budde J, Prochnow A. Resource Usage Strategies and Trade-Offs between Cropland Demand, Fossil Fuel Consumption, and Greenhouse Gas Emissions—Building Insulation as an Example. Sustainability. 2016; 8(7):613. https://doi.org/10.3390/su8070613
Chicago/Turabian StyleHansen, Anja, Jörn Budde, and Annette Prochnow. 2016. "Resource Usage Strategies and Trade-Offs between Cropland Demand, Fossil Fuel Consumption, and Greenhouse Gas Emissions—Building Insulation as an Example" Sustainability 8, no. 7: 613. https://doi.org/10.3390/su8070613
APA StyleHansen, A., Budde, J., & Prochnow, A. (2016). Resource Usage Strategies and Trade-Offs between Cropland Demand, Fossil Fuel Consumption, and Greenhouse Gas Emissions—Building Insulation as an Example. Sustainability, 8(7), 613. https://doi.org/10.3390/su8070613