1. Introduction
The growing global attention to environmental sustainability has led to increased interest in green practices as a key factor in achieving sustainable development targets [
1]. Most green solutions reflect traditional “end-of-pipe” solutions in which a firm tries to reduce its existing adverse environmental impacts rather than adopting proactive approaches to reducing sources of waste or pollution [
2]. Focusing solely on issues within the boundary of a firm often exposes the firm to negative spillover effects from the poor environmental performance of its supply chain partners [
3]. In an attempt to reduce sources of waste and pollution throughout the entire supply chain, firms have begun to adopt an externally-oriented approach to extend their green initiatives beyond their organizational frontiers. This extended responsibility comprises multiple organizations, both upstream and downstream [
4]. Introducing a green supply chain early in the production process, rather than adopting an end-of-pipe control option during later stages, can improve the technical and economic performance of an entire industrial value chain [
5,
6].
The semiconductor industry is an important one for the study of green supply chains, as it has a long history of heavy resource usage and environmental challenges. Additionally, the semiconductor industry has a unique vertically disintegrated structure that consists of many firms specializing in a narrow range of the supply chain, such as semiconductor Integrated Circuit (IC) design and semiconductor manufacturing, packaging, and testing [
7]. A substantial body of research has investigated the life cycle impacts of semiconductors, including the impacts of raw material production, manufacture, use, and disposal [
8]. The semiconductor industry uses large amounts of toxic chemicals to manufacture the components used by electric and electronic devices. Many of these chemicals are known to be harmful to the environment and human health. Over the past several years, the industry has created a group with the sole mission of improving environmental sustainability. Most prior studies of green manufacturing practices have often taken their sample data from a number of different industries [
9,
10,
11], regardless of the industries’ characteristics or special requirements. However, environmental practices tend to be industry-specific [
12,
13,
14]. This paper focuses on the semiconductor industry—a less researched industry, but one that plays an important role with respect to environmentally sustainable manufacturing practices. As the semiconductor industry is an early environmental mover within the entire electronics industry [
15], results from a study such as this can provide insights for the rest of the electronics industry when considering the adoption of the green supply chain.
In the literature related to green practices, researchers address a number of reasons why organizations eventually adopt such practices [
16,
17,
18,
19,
20,
21,
22]. Most studies address the topic only within organizational and/or external environmental contexts; few do so from a technological perspective [
23,
24]. Because applying environmental criteria to corporate operations requires exploring new resource combinations, deploying existing resources in new ways, and implementing or modifying processes, techniques, and systems, green supply chain adoption can be regarded as a technical innovation process [
25,
26]. A theoretical model for innovation adoption needs to consider factors that are rooted in the specific technological, organizational, and environmental contexts of firms [
27]. To move beyond the limitations of current research, this study adopts the Technology-Organization -Environment (TOE) framework [
28] and adapts it to the adoption of green supply chains; in doing so, it offers a holistic view of and conceptual guidelines for exploring the determinants of green supply chain adoption in the context of the semiconductor industry.
The adoption of green supply chain is a complex decision-making process involving multiple criteria from various perspectives [
29,
30]. In light of the TOE framework and related theories, we develop a decision framework that comprises a comprehensive set of key consideration factors concerning the green supply chain adoption. One of the Multi-Criteria Decision-Making (MCDM) methods, the Decision Making Trial and Evaluation Laboratory (DEMATEL) is used to test the proposed decision framework by examining the semiconductor industry supply chain in Taiwan. Based on a survey of experts, the DEMATEL method enables the analysis of cause-and-effect relationships among various consideration factors.
In summary, the objectives of this study are as follows:
- (1)
To construct a TOE-based decision framework that comprises a comprehensive set of decision factors relating to green supply chain adoption.
- (2)
To explore the causal relationships among decision factors within the TOE decision framework.
The contributions of this research are twofold. First, its theoretical contribution consists of integrating previously separate strands of different, yet related, theories into a holistic framework and exploring the causal relationship among decision factors. Second, its practical contribution lies in its establishment of a strategic path that provides firms a set of priorities when adopting green supply chains.
The remainder of this paper is organized as follows.
Section 2 reviews the literature relating to green supply chains, the TOE framework, and theories concerning technological, organizational, and environmental factors.
Section 3 introduces the research method.
Section 4 presents the empirical study results.
Section 5 discusses the research results and their implications. Finally,
Section 6 highlights the findings of the research, considers its contributions and limitations, and offers suggestions for future studies.
2. Literature Review and Theoretical Background
This literature review aims to provide a clear background for green supply chains and a solid research framework for a decision model of green supply chain adoption. The review begins by considering the definition and scope of green supply chains and the theoretical underpinnings of the TOE framework. Subsequently, a comprehensive set of decision factors drawn from different, yet related, theories is explored; these factors situate the decision model in terms of technology, organization and environment.
Figure 1 provides an overview of the TOE framework and related theories that will be discussed in this section.
Figure 1.
Decision framework and related theories.
Figure 1.
Decision framework and related theories.
2.1. Green Supply Chain
A supply chain is a set of business entities that is directly involved in the upstream or downstream flows of products, services, and information from a source to a customer. From the standpoint of environmental sustainability, the customer is located at the end of the supply chain, while the chain itself reflects a linear production paradigm that assumes constant inputs of natural resources and an unlimited capacity to assimilate waste [
31]. Unlike traditional supply chain models, a green supply chain considers the environmental impacts of the production process as goods flow through the chain. In this sense, a green supply chain can be considered an innovation that extends the traditional supply chain to include activities that aim at minimizing the environmental impacts of a product throughout its life cycle; such activities include green design, resource saving, harmful material reduction, and product recycling [
2]. Firms embracing green supply chains attempt to “close the loop” by reusing, remanufacturing, and recycling products and materials through the systemic coordination of individual firms and their value networks [
32].
The environmental and social aspects of sustainability can extend beyond an organization’s boundary by incorporating the activities of its partners along the supply chain. When coupled with economic objectives to develop a clear, long-term strategy, the inclusion of supply chain management activities in a firm’s sustainability plan can actually encourage a longer-lasting and less imitable set of processes [
5]. In consequence, the benefits of adopting a green supply chain can be financial (e.g., cost reduction), physical (e.g., input and/or discharge reduction), legal (e.g., lowering emissions to avoid the need for an environmental permit), and personnel-related (e.g., fewer injuries) [
33]. However, successfully adopting a green supply chain is no easy task [
34]. The inherent complexity of environmental issues—their multiple stakeholders, the uncertain implications of competitiveness, and diverse socio-economic conditions—presents a significant challenge to firms. Green supply chains involve a number of closely related decision factors and constraints that affect the environmental performance of the entire supply chain; such factors and constraints may include designing and fabricating products, developing new manufacturing processes, and retrofitting existing ones [
35]. In other words, forming the drivers of green supply chain adoption is a multidimensional concept that measures the extent to which a set of motivators encourage firms to improve their environmental performances [
2]. The need for painting a holistic picture of the green supply chain adoption process can therefore not be underestimated.
2.2. The TOE Framework
The TOE framework identifies three context groups (technological, organizational, and environmental) that may influence organizational adoption of an innovation. The technological context refers to technological attributes relevant to the innovation in question. The organizational context refers to characteristics of the firm, including its size, its resources, and the complexity of its managerial structure. The environmental context refers to the arena in which a firm conducts its business; the arena in question may include the firm’s belonging industry, its customers, its competitors, and the government. The TOE framework, as originally presented in IT adoption studies [
36,
37,
38], provides a useful analytical model that can be used for studying the adoption of different types of innovations. The TOE framework has a solid theoretical basis and consistent empirical support, though specific factors identified within the three contexts may vary across different studies [
39]. For instance, Zhu and Kraemer [
37] considered the TOE as the important antecedents to understand the diffusion of e-business, while Wang et al. [
40] proposed a TOE-based model for understanding RFID adoption in manufacturing firms that wished to increase supply chain visibility and improve process efficiency. Finally, Weng and Lin [
25] employed the TOE framework to analyze the determinants that influenced the adoption of green practices by small-and medium-sized companies.
To construct this study’s TOE framework on solid theoretical ground, the consideration factors selected for the decision framework were deliberately drawn from a set of related theories. Those theories are described in the following sections.
2.3. Technological Context
The technological context established in this study has its origins in Innovation Diffusion Theory (IDT) [
41], the Technology Acceptance Model (TAM) [
42], and the Decomposed Theory of Planned Behavior (DTPB) [
43]. All three innovation adoption theories have been validated by a large number of studies in both organizational and individual settings [
44,
45,
46]. The IDT proposes five perceived attributes of an innovation that influence its adoption: relative advantage, compatibility, complexity, trialability, and observability. However, empirical studies have indicated that, of these five attributes, only relative advantage, compatibility, and complexity are consistently related to adoption or utilization decisions [
47,
48,
49,
50]. The TAM is an information systems theory that models how users accept and use a technology. The model suggests that behavioral intention is determined by two specific characteristics of an innovation: perceived usefulness and perceived ease of use. Moore and Benbasat [
51] and Fichman [
52] noted that the TAM’s perceived usefulness and perceived ease categories are conceptually similar to IDT’s relative advantage and complexity, respectively. Perceived usefulness and relative advantage both encapsulate the degree to which an adopter perceives the use of the target technology to be advantageous over the current practice. Perceived ease of use is, in essence, the opposite of complexity. Extending the scope of the TAM, Taylor and Todd [
43] proposed the model of Decomposed Theory of Planned Behavior (DTPB), which focuses exclusively on the study of technology adoption. The DTPB framework further includes the compatibility of a technology as one of the key characteristics and likens the importance of technological compatibility to that of perceived ease of use in the TAM. In the business organizational context, compatibility must be established between the general structure of an organization and the new technological system. Moreover, compatibility is obtained through the existing organizational operation system and through previous experience in the field of technology [
53,
54,
55].
Relying on the innovation theories discussed above, the current research draws on three of the aforementioned key attributes of innovation in order to identify the technological factors that affect a firm’s decision to adopt a green supply chain. The attributes in question are relative advantage (usefulness), complexity (ease of use), and compatibility.
2.3.1. Relative Advantage
Relative advantage captures the extent to which a potential adopter views an innovation as offering an advantage over previous ways of performing the same task. The perceived advantages can be measured in economic or social terms such as performance, satisfaction, reputation, and convenience [
41].
Traditionally, the relationship between the economy and the environment has been thought of in terms of a stark tradeoff. However, a growing body of empirical research has suggested that the adoption of a green supply chain enables firms to overcome the need for ‘either-or’ decisions [
56,
57]. Green supply chain initiatives, such as reductions in the use of natural resources, reductions in the amount of solid waste, and the recycling of production materials, can result in significant savings in manufacturing costs. In consequence, theoretical and case studies suggest that green supply chains are related to one of the traditional competitive manufacturing outcomes—cost [
13]. This positive effect follows classical economic theory by assuming that firms act to reduce their costs, potentially leading to competitive advantages and higher profits [
58]. This cost-saving effect, as well as the potential for improved resource productivity and the competitiveness of firms, should lead to the increased adoption of green supply chains.
Corporate decisions to adopt green supply chains are part of broader strategies to improve a firm’s overall business performance and environmental outcomes [
59]. Adopting a green supply chain can allow a firm to preempt its competitors with respect to establishing a reputation as a “green” company; by cultivating such a reputation, firms may also develop other relative advantages [
13]. Empirical studies have confirmed a positive and significant relationship between the adoption of green supply chains and company reputation [
60]. Moreover, going green in manufacturing will improve the quality of the production process, which will in turn impact product quality and attract the growing number of customers looking for green products [
61]. In sum, a green supply chain leads to reduced raw material costs, lower levels of pollution, production efficiency gains, better product quality, and improved corporate image.
2.3.2. Complexity
Complexity is the degree to which an innovation is perceived as relatively difficult to understand and use [
41]. Liu et al. [
62] defined complexity as “whether [an] innovation could be easily assimilated or not.” It has been suggested that the complexity of an innovation and the processes involved in its implementation negatively influence its adoption [
63].
Studies on green supply chains have reported that the reduced complexity of adopting green practices influences firms’ adoption intentions [
64,
65,
66]. Green supply chains are characterized by higher levels of complexity than individual green innovations [
67]. The higher level of complexity can be explained by the fact that green supply chains need to consider multiple supply chain members and to address the environmental impact caused by upstream and downstream partners during the different phases of product life cycle [
33]. Moreover, green supply chain contains certain tacit knowledge that is inherent in identifying sources of pollution, reacting to accidental spills, and proposing preventive solutions [
68]. An innovation containing various forms of tacit knowledge requires laborious efforts to learn [
28]. Complexity is therefore a fundamental issue in the adoption of the green supply chain, as such supply chain integrates and combines heterogeneous technologies and require profound knowledge resources. More specifically, the complexity of adopting a green supply chain involves both environmental issues and the many ways they can be managed (pollution prevention, waste handling, and emission cleaning) [
67]. Because a green supply chain requires the integration of multiple competencies and capabilities, it often necessitates the performance of several functions simultaneously and the application of different strategies at different phases of the product/process life cycle. The complexity of a green supply chain makes it difficult to learn and adopt within a firm.
2.3.3. Compatibility
Compatibility is the degree to which an innovation is perceived as consistent with existing values, past experience, and the needs of potential adopters [
41]. Liu et al. [
62] contended that an innovation diffuses more freely and easily where such innovation appears to match the adopter’s existing processes. Delone and McLean [
69] suggested that the compatibility of a system must be considered for the system to be implemented in an organization.
Literature on green supply chains has found that compatibility significantly influences the use intentions of potential adopters [
70]. Because some green supply chain practices are additions to firms’ current technologies and processes, adopting such supply chain is not a single event but can be described as a process of knowledge accumulation and integration [
23]. A green supply chain will be more easily adopted by a firm when the practices are more compatible with the firm’s current practices. Fit between previous experiences and environmental actions may generate greater environmental effectiveness [
18]. In a study of the adoption of energy conservation initiatives in the utility manufacturing industry, Völlink et al. [
66] contended that a green initiative that is an addition to existing practices is more likely to be adopted if (1) it is very consistent with the firm’s environmental objectives; (2) it is highly compatible with the firm’s ideas about successful strategies for stimulating environmental sustainability; and (3) it is compatible with other green initiatives that are already being implemented.
2.4. Organizational Context
The organizational context established in this study has its origins in the theory of Dynamic Capabilities [
71] and Stakeholder theory [
72]. These theories indicate that organizational factors matter significantly in firms’ adoption of organizational innovations [
71]. The theories also suggest that organizations vary in their internal resource bases and procedures, which in turn affect their ability to respond to internal and external challenges and their overall performance. The determining factors of organizational context are organizational resources and assets, organizational internal stakeholders, and organizational procedures of fostering innovative business practices. These factors affect whether organizations have, recognize, and can seize innovation to improve their competitive advantages [
33].
Grounded in Dynamic Capabilities and Stakeholder theories, the current study focuses on the organizational factors mentioned above. Organizational resources are the overall level of resources and specialized environmental resources and capacities possessed by firms. Internal stakeholders are the individuals and groups who have decision-making power in a firm or the ability to influence the business performance of a firm. Organizational innovativeness refers to firms′ previous commitment to and track record in implementing advanced organizational practices.
2.4.1. Organizational Resources
Organizational resources are the capabilities that an organization possesses for future needs or dynamic changes. These resources relate to the overall infrastructure of the organization and how well that infrastructure can support innovation [
73]. In the context of green supply chains, the resources dedicated to environmental sustainability are critical, as the entire supply chain calls for specialized types of expertise and capabilities. From the standpoint of organizational operation, a firm’s ability to absorb the immediate costs of adopting a green supply chain is not just a function of the absolute incremental costs involved but also a function of relative costs, including the cost of the time needed to research environmental issues, to consult with internal and external sources of expertise, and to develop options for addressing the issue [
74]. Because of the complex technical and legal ramifications of many environmental issues, both time and financial expenditures can be considerable. Among other things, environmental resources encompass the size of labor forces and sales, spending on research and development, and the size of the companies of which they are a part [
23]. These resources provide the embedded capacity which enable firms to respond to external stimuli and implement environmental innovations. In effect, these resources create the opportunity space from which individual firms and working partners can experiment with and implement advanced environmental practices [
75].
2.4.2. Organizational Innovativeness
Organizational innovations are conceived as an interrelated bundle of systems of practices (e.g., self-directed work teams, worker rotation, total quality management, and continuous process improvement) that helps a firm continuously uphold its innovation activities to meet market dynamics [
33]. Innovation usually follows an established trajectory; thus, an organization with rich experiences in the application or adoption of related innovative initiatives will have a greater ability to lead innovation advancement [
76]. In a comparative examination of environmental policy in Europe, the United States, and Japan, Wallace [
77] concluded that a firm’s pursuit of innovation in environmental products and processes creates substantial opportunities for pollution prevention and waste reduction. Florida et al. [
33] and Atlas and Florida [
78] also contended that firms that are always searching for, evaluating, and implementing innovations find it relatively easy to include environmental considerations into their product designs and manufacturing processes. That is, the more that firms practice continuous innovation, the more opportunity they have, and thus the more likely they are, to adopt green initiatives.
2.4.3. Internal Stakeholders
According to Stakeholder theory [
72], internal stakeholders can be divided into individuals or groups affecting a firm’s decisions. Internal stakeholders include managers, shareholders, and employees. In general, they play an important role in corporate environmental policy and are widely involved in research on environmental issues [
18,
79].
Much research reveals the positive relationship between a firm’s internal stakeholders and its environmental activities [
80,
81]. In a study on the adoption of green initiatives, Yunus et al. [
82] concluded that management support is the primary factor for successful green practice adoption. Many green practices require the collaboration and coordination of different departments and divisions during the process of adoption [
67]. In order to ensure successful adoption, green initiatives are usually endorsed and encouraged by managers. The central task of managers is to acquire resources and allocate them efficiently so that the firm is able to achieve its environmental goals [
19]. Additionally, managers’ support can help an organization to defeat prejudice, stereotypes, and negative feelings by legitimizing diversity within an organization’s society [
83].
Individual and institutional shareholders can express their concern about corporate environmental strategy and behaviors through investment decisions [
84]. Because the green supply chain is a strategy for both environmental sustainability and business success, firms can leverage the adoption of a green supply chain to indicate their intent to be environmentally friendly. A study confirms that that green certification (e.g., ISO 14001) has a positive effect on firms’ stock prices [
85]. If shareholders concur with the positive relationship between economic performance and environmental initiatives [
86,
87], they will further support the firms’ environmental endeavors.
Employees are the source of a company’s success, and successful environmental policy planning requires their active participation [
88]. Previous studies have indicated that the level of environmental awareness among employees and their willingness to get involved are essential to the success of green initiatives [
89,
90]. Therefore, firms are more likely to engage in environmental practices when their employees’ personal values align with corporate commitments to environmental responsibility.
2.5. Environmental Context
Institutional theory concerns firms’ responses to institutional pressures within their operating environments [
91] and assumes that firms commonly make normatively rational choices based on historical precedent and social justification [
92]. Institutions constrain firms’ behavior by defining legal, moral, and cultural boundaries and thus setting legitimate behaviors and practices apart from illegitimate ones. Institutional constraints can be regulative (coerced through rules, laws, and sanctions), normative (prescriptively imposed through codes of conduct, accreditation, or certification), or cultural-cognitive (mimetic common beliefs and logic of action) [
91]. Firms that conform to institutional demands or requirements are rewarded by increased legitimacy, stability, reduced uncertainty, and strengthened survival capabilities [
91,
93].
The literature has supported the use of Institutional theory understanding the drivers of green practice adoption [
94,
95]. In general, studies have increasingly agreed that the external pressures conceived by institutional theory play a significant role in determining the adoption of green practices [
16,
96,
97]. This study draws four constructs from prior studies based on Institutional theory. The first of these is that government regulation is a form of coercive regulatory isomorphism, as governments use rules, laws, persuasion, and pressure to encourage compliance. The second constrcut is that customer pressure is a form of normative isomorphism based on expectations that firms should be cognizant of feedback from customers in their operations. The third and the fourth constrcuts are the pressures from competitors and social communities, they are a type of mimetic cultural-cognitive isomorphism that reflects the rational desire to embrace initiatives that have proven valuable to others.
2.5.1. Government Regulation
Coercive pressures, such as threats or legal sanctions, can force firms to pursue specific behaviors [
98]. In the environmental context, the role of governmental pressure is so strong that threats of new environmental regulations or the explicit governmental support of sustainable practices are significant incentives for firms to participate in sustainability initiatives. These official mechanisms take the form of standards, laws, procedures, and incentives set by regulatory institutions to inspire firms to become environmentally responsible. Porter and van der Linde [
58] have argued that firms engage in green practices as a way of responding to increasingly stringent and comprehensive environmental regulation. According to their research, firms react creatively, and at times reevaluate their entire approach to operations, in order to respond to government regulations in a cost-effective manner [
78]. Such creative reactions can lead firms to incorporate green practices in manufacturing planning and processes and to insist that their upstream and downstream partners take similar measures; these across-the-board strategies for green practice implementation make it considerably more difficult for one firm to jeopardize the environmental and economic performance of the entire supply chain. Well-known legislative efforts to influence electronics production globally include the following: Restriction of the Use of Certain Hazardous Substances (RoHS), which regulates the use of toxic substances; Waste Electronics and Electrical Equipment (WEEE), which sets collection, recycling, and recovery targets for electrical goods; and the ISO 14000 series, which promotes more effective and efficient environmental management for gathering, interpreting, and communicating environmentally relevant information within organizations. In 2006, Taiwan’s Environmental Protection Administration (EPA) enforced similar acts. These international and domestic measures have regulated electronics and electrical manufacturing companies and forced them to comply with environmental standards. Those companies that fail to comply with the regulations incur sanctions, including the prohibition of importing and fabricating products until there has been demonstrated improvement of environmental performance.
2.5.2. Customer
Institutional theory holds that normative pressures cause firms to pursue legitimacy and trustworthiness [
99]. Such pressures are exerted by external stakeholders, including customers who have a vested interest in the firm [
100]. The green supply chain differs from stand-alone green initiatives in that it requires customer cooperation. To deal with uncertainty, firms adopting green supply chains create inter-organizational links that enable them to have long-term, mutually beneficial relationships with their customers. A growing body of studies also indicates that pressures from consumers force firms to adopt green practices [
2,
101,
102]. The closest bonds between firms and their customers are often most evident in manufacturing, since tighter relations can facilitate cleaner production and are needed to incorporate management strategies, including JIT (just in time), continuous improvement, and total quality management [
103]. To meet environmental challenges in an economically and environmentally sustainable way, a firm and its customers may form partnerships that allow them to find solutions for current issues and to seek innovations for future benefits [
104]. Within the semiconductor manufacturing industry, for instance, a large number of Original Equipment Manufacturing (OEM) companies are organized according to outsourcing models; customers thus remain critically dependent on their suppliers to promptly deliver goods of the needed quality. As a result of increased outsourcing, companies have become more sensitive to the performance of their suppliers, including their environmental performance. It is quite common for multinational companies to ask their suppliers to implement RoHS, WEEE, and/or the ISO 14000 series, as these standards have become a widespread tool for encouraging environmentally sound practices.
2.5.3. Competitor
According to Institutional theory, firms seek to accrue prestige by imitating those they perceive as successful [
105]. Such mimetic isomorphism occurs in all competing firms within an industry. Firms may follow or mimic competitors merely because of competitors’ success in operations and manufacturing. The rationale behind such mimicry is simple to understand: by imitating the actions of successful competitors, firms strive to become equally successful [
59]. Some studies have shown that competitive factors play a large role in determining corporate responses to environmental issues [
106]. Those firms that see their competitors succeed by attending to environmental issues often begin to attend to such issues as well. Moreover, similar firms within a specific industry become aware of each other’s environmental practices and use that awareness to assess and compete with other firms. Global competition has further encouraged the switch to green supply chains [
2,
59]. Firms working with leading global corporations have been forced to evaluate not only their immediate suppliers but also their second- and third-tier ones; without doing this, they face the likelihood of being replaced by competitors with better environmental performances.
2.5.4. Social Community
Within Institutional theory, cultural-cognitive isomorphism is held to occur as a result of a firm’s rational desire to engage in behaviors that it perceives as valuable. A firm may feel a voluntary obligation to society based on social expectations, norms, and codes of conduct [
107]. A firm’s social community includes environmental organizations, community groups, and other special interest groups. In the past, firms were less likely to be influenced by the social community, which they either considered a nuisance or ignored [
108]. As public concern about environmental sustainability has increased, however, firms can no longer ignore the social community, which can directly or indirectly influence their environmental strategies by mobilizing public sentiment in favor of or against firms’ environmental approaches [
109]. Research has shown that social responsibility plays a significant role in encouraging firms to adopt green practices [
81,
110]. Firms often adopt those practices that enable them to establish a socially acceptable image consistent with the obligations and values of the society in which they function.
Table 1 groups previously discussed consideration factors according to their place within the contexts of the TOE framework; the table also includes definitions of consideration factors. A graphical representation of the proposed decision framework is given in
Figure 2.
Table 1.
Green Supply Chain Adoption Consideration Factors.
Table 1.
Green Supply Chain Adoption Consideration Factors.
Aspects | Factors | Definitions |
---|
Technology | Relative advantage | The extent to which a potential adopter views the innovation as offering an advantage over previous ways of performing the same task. |
Compatibility | The degree to which an innovation is perceived as relatively difficult to understand and use. |
Complexity | The degree to which an innovation is perceived as consistent with existing values, past experience, and the needs of potential adopters |
Organization | Organizational resources | The capabilities that an organization possesses for future needs or dynamic changes. |
Organizational innovativeness | The interrelated bundle of systems of practices which helps a firm continuously uphold its innovation activities to meet market dynamics. |
Internal stakeholder | Managers, shareholders, and employees who affect a firm’s decisions. |
Environment | Government regulation | Official mechanisms (e.g., standards, laws, procedures, and incentives) that are determined by regulatory institutions and that require individual or organizational compliance. |
Customer | Clients whose response to corporate practices affects firms’ decisions to adopt sounder environmental policies. Customers tend to prefer firms with strong environmental performance and market success. |
Competitor | Other firms within the same industry whose economic and environmental success encourages imitation. |
Social Community | Environmental organizations, community groups, and other special interest groups that can influence a firm’s environmental policy. |
Figure 2.
Proposed decision framework.
Figure 2.
Proposed decision framework.
6. Conclusions
The adoption of innovative environmental practices within industries is a subject of considerable interest across disciplines. The green supply chain is a special type of green innovation, as it take accounts not only of green practices within a firm but also of industrial ecology as a whole. In green supply chains, the decision varies from a small scale of a single firm’s operation to a large scales of an integrated industrial sector. The concept of overall sustainability goes beyond corporate policy and reflects the dynamics of the entire supply chain. The decision to adopt green supply chains involves dealing with uncertainty in environmental, organizational, and technological contexts. The goal of this research is to construct a holistic decision framework for green supply chain adoption by identifying a series of key consideration factors and their causal relationships. The semiconductor industry was chosen as the research subject not only because it is rarely discussed in studies of green supply chains but also because it is a prime mover in the electronics industry as a whole.
This study makes a number of contributions. Theoretically, this research offers an unprecedented empirical approach to green supply chain adoption in the semiconductor industry by integrating previously separate strands of Innovation theory, Stakeholder theory, Dynamic Capabilities theory, and Institutional theory into a TOE framework. Although previous research has acknowledged the significant technological, organizational and environmental challenges facing green supply chain adoption, few studies have empirically examined those effects. This study is significant not only because it offers a theoretical foundation for the investigation of the determinants of green supply chain adoption but also because it explores the cause-and-effect relationship among those determinants. Practically, this study provides firms with a holistic view of the consideration factors important to green supply chain adoption. Furthermore, the cause-and-effect relationships identified through the decision framework provide firms with a list of priorities. This implication stands to reason, as the outcome gained from addressing the main cause factors will yield an immediate impact on the main effect ones; hence, it will lessen the firm’s overall efforts to adopt green supply chain.
As with any empirical research, this study has limitations. First, the research focuses on one industry in one region. Although the semiconductor industry in Taiwan plays a leading global role and has striven to achieve environmental sustainability, future research might consider extending the coverage to include other countries to compare the results. The second limitation of this study is that its empirical data was gathered from a limited number of domain experts at the senior managment level. Although the DEMATEL method can yield good research results from a small sample size, future research might consider employing classical statistical methods with larger sample sizes that could include green supply chain users among firms’ staff and engineer groups. The results of such studies could then be compared against those of this study.