International Comparison of Total Factor Ecology Efficiency: Focused on G20 from 1999–2013
Abstract
:1. Introduction
2. Literature Overview
3. Methodology and Data Source
3.1. Ecological Footprint
3.2. Slacks-Based Measure (SBM) Model
3.3. Total-Factor Ecology Efficiency (TFEcE)
3.4. Data and Material
4. Empirical Analysis
4.1. Evaluation of EF in G20 from 1999 to 2013
4.2. Analysis of the G20’s TFEcE
4.3. Comparison of G20 Countries’ TFEcE and TFEE
4.4. Factors of National TFEcE
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- World Business Council for Sustainable Development. Eco-Efficiency: Creating More with Less. 2000. Available online: http://www.wbcsd.org/web/publications/eco_efficiency_creating_more_value.pdf (accessed on 1 August 2016).
- Patterson, M.G. What is energy efficiency? Concepts, indicators and methodological issues. Energy Policy 1996, 24, 377–390. [Google Scholar] [CrossRef]
- Hu, J.L.; Wang, S.C. Total-factor energy efficiency of regions in China. Energy Policy 2006, 34, 3206–3217. [Google Scholar] [CrossRef]
- Freeman, A.M.; Haveman, R.H.; Kneese, A.V. Economics of Environmental Policy; John Wiley & Sons: New York, NY, USA, 1973. [Google Scholar]
- Schaltegger, S.; Sturm, A. Öologische Rationalität. Die Unternehmung 1990, 4, 117–131. (In German) [Google Scholar]
- Schmidheiny, S. Changing Course: A Global Business Perspective on Development and the Environment; MIT Press: Cambridge, UK, 1992. [Google Scholar]
- Zhao, M.Y.; Cheng, C.T.; Chau, K.W.; Li, G. Multiple criteria data envelopment analysis for full ranking units associated to environment impact assessment. Int. J. Environ. Pollut. 2006, 28, 448–464. [Google Scholar] [CrossRef]
- Zhang, B.; Bi, J.; Fan, Z.; Yuan, Z.; Ge, J. Eco-efficiency analysis of industrial system in China: A data envelopment analysis approach. Ecol. Econ. 2008, 68, 306–316. [Google Scholar] [CrossRef]
- Yu, Y.D.; Chen, D.J.; Zhu, B.; Hu, S.Y. Eco-efficiency trends in China, 1978–2020: Decoupling environmental pressure from economic growth. Ecol. Indic. 2013, 24, 177–184. [Google Scholar] [CrossRef]
- Wang, W.; Jiang, D.; Chen, D.J.; Chen, Z.B.; Zhou, W.J.; Zhu, B. A Material Flow Analysis (MFA)-based potential analysis of eco-efficiency indicators of China’s cement and cement-based materials industry. J. Clean. Prod. 2015, 112, 787–796. [Google Scholar] [CrossRef]
- Rees, W.E. Ecological footprint and appropriated carrying capacity: What urban economics leaves out. Environ. Urban. 1992, 4, 121–130. [Google Scholar] [CrossRef]
- Wackernagel, M.; Rees, W.E. Our Ecological Footprint: Reducing Human Impact on the Earth; New Society Publishers: Gabriola Island, BC, Canada, 1996. [Google Scholar]
- Moffatt, L. Ecological footprints and sustainable development. Ecol. Econ. 2000, 32, 359–362. [Google Scholar]
- Kratena, K. “Ecological value added” in an integrated ecosystem model—An indicator for sustainability. Ecol. Econ. 2004, 48, 189–200. [Google Scholar] [CrossRef]
- Chen, D.J.; Cheng, G.D.; Xu, Z.M.; Zhang, Z.Q. Ecological footprint of the Chinese population, environment and development. Environ. Conserv. 2004, 31, 63–68. [Google Scholar]
- Fu, W.; Turner, J.C.; Zhao, J.Q.; Du, G.Z. Ecological footprint (EF): An expanded role in calculating resource productivity (RP) using China and the G20 member countries as examples. Energy Policy 2015, 48, 464–471. [Google Scholar] [CrossRef]
- Miao, C.L.; Sun, L.Y.; Yang, L. The studies of ecological environmental quality assessment in Anhui province based on ecological footprint. Ecol. Indic. 2016, 60, 879–883. [Google Scholar] [CrossRef]
- Hu, J.L.; Wang, S.C.; Yeh, F.Y. Total-factor water efficiency of regions in China. Resour. Policy 2006, 31, 217–230. [Google Scholar] [CrossRef]
- Hu, J.L.; Kao, C.H. Efficient energy-saving targets for APEC economies. Energy Policy 2007, 35, 373–382. [Google Scholar] [CrossRef]
- Honma, S.; Hu, J.L. Total-factor energy efficiency of regions in Japan. Energy Policy 2008, 36, 821–833. [Google Scholar] [CrossRef]
- Zhang, X.P.; Cheng, X.M.; Yuan, J.H.; Gao, X.J. Total-factor energy efficiency in developing countries. Energy Policy 2011, 39, 644–650. [Google Scholar] [CrossRef]
- Chang, T.P.; Hu, J.L. Total-factor energy productivity growth, technical progress, and efficiency change: An empirical study of China. Appl. Energ. 2010, 87, 3262–3270. [Google Scholar] [CrossRef]
- Li, L.B.; Hu, J.L. Ecological total-factor energy efficiency of regions in China. Energy Policy 2012, 46, 216–224. [Google Scholar] [CrossRef]
- Zhang, N.; Kong, F.B.; Yu, Y.N. Measuring ecological total-factor energy efficiency incorporating regional heterogeneities in China. Ecol. Indic. 2015, 51, 165–172. [Google Scholar] [CrossRef]
- World Wildlife Fund. Living Planet Report. 2006. Available online: http://wwf.panda.org/about_our_earth/all_publications/living_planet_report/living_planet_report_timeline/lp_2006/ (accessed on 8 August 2016).
- Wackernagel, M.; Onisto, L.; Bello, P.; Linares, A.C.; Falfan, I.S.L.; Garcia, J.M.; Guerrero, A.I.S.; Guerrero, M.G.S. National natural capital accounting with the ecological footprint concept. Ecol. Econ. 1999, 29, 375–390. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale efficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Fukuyama, H.; Weber, W.L. A directional slacks-based measure of technical efficiency. Socio-Econ. Plan. Sci. 2009, 43, 274–287. [Google Scholar] [CrossRef]
- Young, A. Gold into base metals: Productivity growth in the People’s Republic of China during the reform period. J. Political Econ. 2003, 6, 1220–1261. [Google Scholar] [CrossRef]
- Nehru, V.; Dhareshwar, A. A new database on physical capital stock: Sources, methodology and results. Econ. Anal. Rev. 1993, 8, 37–59. [Google Scholar]
Country | 1999 | 2001 | 2003 | 2005 | 2007 | 2009 | 2011 | 2013 |
---|---|---|---|---|---|---|---|---|
Argentina | 14.300 | 12.697 | 13.011 | 14.628 | 15.451 | 15.806 | 15.668 | 17.982 |
Australia | 18.171 | 19.589 | 20.588 | 20.148 | 19.967 | 19.079 | 19.038 | 18.047 |
Brazil | 56.337 | 56.131 | 63.123 | 62.603 | 65.376 | 64.610 | 70.363 | 72.958 |
Canada | 52.264 | 50.286 | 50.966 | 55.581 | 47.944 | 38.424 | 44.034 | 45.613 |
France | 32.510 | 32.970 | 31.140 | 31.796 | 31.779 | 30.973 | 30.466 | 29.471 |
Germany | 39.436 | 39.998 | 41.125 | 42.017 | 44.893 | 40.650 | 42.199 | 43.103 |
India | 105.680 | 109.126 | 113.883 | 121.451 | 131.497 | 137.890 | 148.858 | 153.258 |
Indonesia | 28.795 | 26.894 | 29.429 | 28.806 | 29.879 | 31.059 | 34.722 | 35.370 |
Italy | 22.529 | 21.891 | 22.016 | 22.485 | 21.955 | 20.385 | 20.495 | 18.806 |
Japan | 36.860 | 35.777 | 36.273 | 36.309 | 35.873 | 32.181 | 33.826 | 35.254 |
Republic of Korea | 12.980 | 13.604 | 14.287 | 14.384 | 15.003 | 15.064 | 16.264 | 16.908 |
Mexico | 22.168 | 23.402 | 23.925 | 24.882 | 26.087 | 25.356 | 26.274 | 26.512 |
Russian | 66.106 | 75.103 | 74.506 | 74.765 | 80.060 | 75.070 | 81.699 | 80.829 |
Saudi Arabia | 7.237 | 7.731 | 8.707 | 9.747 | 10.553 | 11.609 | 13.195 | 14.351 |
South Africa | 11.473 | 11.599 | 12.446 | 13.077 | 13.141 | 13.682 | 13.398 | 13.321 |
Turkey | 14.643 | 14.168 | 15.593 | 16.530 | 18.293 | 18.366 | 21.336 | 23.095 |
UK | 22.343 | 22.470 | 22.628 | 22.537 | 22.338 | 21.039 | 20.612 | 20.949 |
USA | 244.785 | 240.907 | 245.511 | 255.476 | 252.503 | 226.666 | 234.256 | 239.207 |
China | 153.842 | 156.807 | 167.147 | 209.142 | 234.635 | 254.332 | 281.315 | 298.441 |
Country | 1999 | 2001 | 2003 | 2005 | 2007 | 2009 | 2011 | 2013 |
---|---|---|---|---|---|---|---|---|
Argentina | 0.267 | 0.290 | 0.270 | 0.182 | 0.167 | 0.150 | 0.191 | 0.154 |
Australia | 0.384 | 0.373 | 0.356 | 0.379 | 0.389 | 0.378 | 0.376 | 0.408 |
Brazil | 0.333 | 0.334 | 0.288 | 0.323 | 0.312 | 0.208 | 0.283 | 0.260 |
Canada | 0.220 | 0.269 | 0.354 | 0.208 | 0.225 | 0.408 | 0.307 | 0.251 |
France | 0.930 | 0.933 | 0.672 | 0.657 | 0.642 | 0.630 | 0.647 | 0.648 |
Germany | 0.758 | 0.743 | 0.688 | 0.652 | 0.615 | 0.641 | 0.620 | 0.598 |
India | 0.245 | 0.250 | 0.299 | 0.392 | 0.264 | 0.265 | 0.177 | 0.203 |
Indonesia | 0.356 | 0.414 | 0.417 | 0.507 | 0.363 | 0.365 | 0.357 | 0.359 |
Italy | 1.000 | 1.000 | 0.811 | 0.770 | 0.766 | 0.770 | 0.741 | 0.830 |
Japan | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Republic of Korea | 0.702 | 0.675 | 0.711 | 0.693 | 0.669 | 0.668 | 0.594 | 0.593 |
Mexico | 0.557 | 0.569 | 0.574 | 0.425 | 0.508 | 0.580 | 0.568 | 0.614 |
Russian | 0.467 | 0.629 | 0.436 | 0.394 | 0.230 | 0.121 | 0.238 | 0.239 |
Saudi Arabia | 0.648 | 0.673 | 0.568 | 0.568 | 0.593 | 0.640 | 0.545 | 0.514 |
South Africa | 0.462 | 0.582 | 0.574 | 0.533 | 0.404 | 0.203 | 0.204 | 0.208 |
Turkey | 0.649 | 0.585 | 0.612 | 0.552 | 0.275 | 0.248 | 0.254 | 0.242 |
UK | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
USA | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
China | 0.238 | 0.253 | 0.238 | 0.271 | 0.281 | 0.330 | 0.268 | 0.285 |
Developed countries | 0.764 | 0.767 | 0.716 | 0.692 | 0.690 | 0.714 | 0.683 | 0.684 |
Developing countries | 0.397 | 0.434 | 0.412 | 0.398 | 0.312 | 0.274 | 0.282 | 0.285 |
Countries | Mann-Whitney U | Wilcoxon W | Z-Value | p-Value |
---|---|---|---|---|
Developed vs. Developing | 0.000 | 120.000 | −4.666 | <0.001 |
Country | Total-Factor Energy Efficiency | Difference between TFEcE and TFEE | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1999 | 2001 | 2005 | 2009 | 2013 | 1999 | 2001 | 2005 | 2009 | 2013 | |
Argentina | 0.558 | 0.563 | 0.409 | 0.312 | 0.295 | 0.291 | 0.273 | 0.228 | 0.162 | 0.141 |
Australia | 0.604 | 0.604 | 0.588 | 0.521 | 0.524 | 0.219 | 0.231 | 0.210 | 0.143 | 0.116 |
Brazil | 0.527 | 0.571 | 0.477 | 0.560 | 0.445 | 0.194 | 0.237 | 0.154 | 0.352 | 0.186 |
Canada | 0.483 | 0.565 | 0.459 | 0.443 | 0.430 | 0.263 | 0.296 | 0.251 | 0.034 | 0.179 |
France | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.070 | 0.067 | 0.343 | 0.370 | 0.352 |
Germany | 0.720 | 0.709 | 0.896 | 0.880 | 0.799 | −0.038 | −0.034 | 0.244 | 0.238 | 0.200 |
India | 0.383 | 0.320 | 0.476 | 0.458 | 0.454 | 0.138 | 0.070 | 0.084 | 0.193 | 0.250 |
Indonesia | 0.481 | 0.419 | 0.432 | 0.512 | 0.450 | 0.125 | 0.005 | −0.075 | 0.148 | 0.091 |
Italy | 1.000 | 1.000 | 0.914 | 0.905 | 0.938 | 0.000 | 0.000 | 0.144 | 0.135 | 0.108 |
Japan | 0.784 | 0.754 | 0.908 | 0.872 | 0.741 | −0.216 | −0.246 | −0.092 | −0.128 | −0.259 |
Republic of Korea | 0.633 | 0.691 | 0.660 | 0.637 | 0.461 | −0.069 | 0.016 | −0.033 | −0.030 | −0.133 |
Mexico | 0.674 | 0.664 | 0.739 | 0.660 | 0.555 | 0.117 | 0.095 | 0.314 | 0.080 | −0.059 |
Russian | 0.509 | 0.510 | 0.418 | 0.386 | 0.327 | 0.042 | −0.119 | 0.025 | 0.265 | 0.088 |
Saudi Arabia | 0.360 | 0.367 | 0.266 | 0.272 | 0.229 | −0.288 | −0.306 | −0.301 | −0.367 | −0.285 |
South Africa | 0.450 | 0.501 | 0.481 | 0.186 | 0.186 | −0.013 | −0.080 | −0.052 | −0.017 | −0.023 |
Turkey | 0.533 | 0.644 | 0.770 | 0.577 | 0.437 | −0.116 | 0.059 | 0.218 | 0.330 | 0.195 |
UK | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
USA | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
China | 0.328 | 0.391 | 0.269 | 0.284 | 0.318 | 0.090 | 0.139 | −0.002 | −0.046 | 0.033 |
Indicators | Mann-Whitney U | Wilcoxon W | Z-Value | p-Value |
---|---|---|---|---|
TFEcE vs. TFEE | 66,386.000 | 146,186.000 | −4.071 | <0.001 |
Variables | All the Countries | Developed Countries | Developing Countries | |||
---|---|---|---|---|---|---|
Coefficient | Significant Test | Coefficient | Significant Test | Coefficient | Significant Test | |
p-Value | p-Value | p-Value | ||||
Independent Variable | ||||||
R&D | 0.2507 | 0.000 | 0.5328 | 0.019 | −0.0950 | 0.001 |
Tra | −0.0010 | 0.594 | −0.0085 | 0.138 | 0.0045 | 0.000 |
Ind | −0.0214 | 0.000 | −0.0738 | 0.024 | −0.0003 | 0.894 |
Constant term | 0.8487 | 0.000 | 2.3007 | 0.002 | 0.1934 | 0.013 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, S.; Yang, Y.; Shao, J.; Zhu, Y. International Comparison of Total Factor Ecology Efficiency: Focused on G20 from 1999–2013. Sustainability 2016, 8, 1129. https://doi.org/10.3390/su8111129
Yue S, Yang Y, Shao J, Zhu Y. International Comparison of Total Factor Ecology Efficiency: Focused on G20 from 1999–2013. Sustainability. 2016; 8(11):1129. https://doi.org/10.3390/su8111129
Chicago/Turabian StyleYue, Shujing, Yang Yang, Jun Shao, and Yuting Zhu. 2016. "International Comparison of Total Factor Ecology Efficiency: Focused on G20 from 1999–2013" Sustainability 8, no. 11: 1129. https://doi.org/10.3390/su8111129
APA StyleYue, S., Yang, Y., Shao, J., & Zhu, Y. (2016). International Comparison of Total Factor Ecology Efficiency: Focused on G20 from 1999–2013. Sustainability, 8(11), 1129. https://doi.org/10.3390/su8111129