Coping with Change: A Closer Look at the Underlying Attributes of Change and the Individual Response to Unstable Environments
Abstract
:1. Introduction
2. Defining the Process of Change
3. Unravelling Attributes of Change
Forest fire [24] | Urban noise [25] | Climate change [26] | ||
---|---|---|---|---|
Event-related attributes | ||||
Onset | Does the event come on rapidly or gradually? | rapid | gradual | gradual |
Duration | Is the event a temporary occurrence or a lasting influence? | temporary | lasting | lasting |
Magnitude | What is the strength of the event? | great | great | small |
Scale | Does the event affect a large portion of the territory? | yes | no | yes |
Novelty | Has the event occurred often in the individual’s past? | yes | no | yes |
Individual-related attributes | ||||
Perception | Can the individual perceive the event? | yes | yes | no |
Predictability | Is the individual capable of predicting the event? | no | yes | some |
Tolerance | Does the event fall within the individual's tolerance levels? | no | yes | yes |
Selective direction | Does the event call for a response in the same direction as the individual is moving towards? | no | yes | no |
Level | Mechanism | Response | Predictive attributes | Counter-predictive attributes | ||
---|---|---|---|---|---|---|
Event | Individual | Event | Individual | |||
Behavioural | Relocation | Individuals (temporarily) relocate to a better habitat | Large magnitude | Low tolerance | Large scale | Low perception |
Conditional strategies | Individuals flexibly use distinct canalised behaviours | Long duration | High prediction | High novelty | Low perception | |
Behavioural plasticity | Individuals flexibly choose appropriate behaviours | High novelty | Low prediction | Low perception | Low tolerance | |
Ecosystem engineering | Individuals change their environment to better suit their needs | Long duration | Similar direction | Short duration | Opposing direction | |
Physical | Developmental plasticity | Juveniles adjust life history choices to develop more adaptively | Long duration | Similar direction | Fast onset | Low tolerance |
Morphological plasticity | Individuals adjust physiological traits to better survive | High novelty | Low tolerance | High novelty | Opposing direction | |
Generational | Maternal effects | Mothers affect offspring physiology during ontogeny | Long duration | Similar direction | High novelty | Low prediction |
Conditional reproduction | Individuals adjust reproductive effort or mate choice | Long duration | Similar direction | Fast onset | Low tolerance |
3.1. Event-Related Attributes
3.1.1. Onset
3.1.2. Duration
3.1.3. Magnitude
3.1.4. Scale
3.1.5. Novelty
3.2. Individual-Related Attributes
3.2.1. Perception
3.2.2. Prediction
3.2.3. Tolerance
3.2.4. Selective Direction
3.3. Interactions
4. Consequences for the Adaptive Response
4.1. Behavioural Responses
4.1.1. Relocation
4.1.2. Conditional Strategies
4.1.3. Behavioural Plasticity
4.1.4. Ecosystem Engineering
4.2. Physiological Responses
4.2.1. Developmental Plasticity
4.2.2. Morphological Plasticity
4.3. Generational Responses
4.3.1. Maternal Effects
4.3.2. Conditional Reproduction
4.3.3. Natural Selection
5. Practical Applications
5.1. Facilitating Communication
5.2. Clearer Analysis of Change
5.3. Predicting and Interpreting Responses
6. Case Study
7. Conclusions
Acknowledgments
Conflict of Interest
References and Notes
- Nelson, D.R.; Adger, W.N.; Brown, K. Adaptation to Environmental Change: Contributions of a Resilience Framework. Annu. Rev. Environ. Resour. 2007, 32, 395–419. [Google Scholar] [CrossRef]
- Hoffmann, A.A.; Sgrò, C.M. Climate change and evolutionary adaptation. Nature 2011, 470, 479–485. [Google Scholar] [CrossRef]
- Bakker, M.R.; Jolicoeur, E.; Trichet, P.; Augusto, L.; Plassard, C.; Guinberteau, J.; Loustau, D. Adaptation of fine roots to annual fertilization and irrigation in a 13-year-old Pinus pinaster stand. Tree Physiol. 2009, 29, 229–238. [Google Scholar]
- Bradshaw, W.E.; Holzapfel, C.M. Genetic response to rapid climate change: it’s seasonal timing that matters. Mol. Ecol. 2008, 17, 157–166. [Google Scholar] [CrossRef]
- Wysujack, K.; Greenberg, L.A.; Bergman, E.; Olsson, I.C. The role of the environment in partial migration: food availability affects the adoption of a migratory tactic in brown trout Salmo trutta. Ecol. Freshw. Fish 2009, 18, 52–59. [Google Scholar] [CrossRef]
- Robson, A.A.; Leaniz, C.G. D.; Wilson, R.P.; Halsey, L.G. Behavioural adaptations of mussels to varying levels of food availability and predation risk. J. Mollus. Stud. 2010, 76, 348–353. [Google Scholar] [CrossRef] [Green Version]
- Morris, D.W. Adaptation and habitat selection in the eco-evolutionary process. Proc. R. Soc. B 2011, 278, 2401–2411. [Google Scholar] [CrossRef]
- Hedenström, A. Adaptations to migration in birds: behavioural strategies, morphology and scaling effects. Phil. Trans. R. Soc. B 2008, 363, 287–299. [Google Scholar] [CrossRef]
- Sih, A.; Ferrari, M.C.O.; Harris, D.J. Evolution and behavioural responses to human-induced rapid environmental change. Evol. Appl. 2011, 4, 367–387. [Google Scholar] [CrossRef]
- Bell, G.; Collins, S. Adaptation, extinction and global change. Evol. Appl. 2008, 1, 3–16. [Google Scholar] [CrossRef]
- Vitousek, P.M. Human Domination of Earth’s Ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef]
- Meyers, L.A.; Bull, J.J. Fighting change with change: adaptive variation in an uncertain world. Trends Ecol. Evol. 2002, 17, 551–557. [Google Scholar] [CrossRef]
- Hendry, A.P.; Farrugia, T.J.; Kinnison, M.T. Human influences on rates of phenotypic change in wild animal populations. Mol. Ecol. 2008, 17, 20–29. [Google Scholar] [CrossRef]
- Tuomainen, U.; Candolin, U. Behavioural responses to human-induced environmental change. Biol. Rev. 2011, 86, 640–657. [Google Scholar] [CrossRef]
- Raubenheimer, D.; Simpson, S.J.; Tait, A.H. Match and mismatch: conservation physiology, nutritional ecology and the timescales of biological adaptation. Phil. Trans. R. Soc. B 2012, 367, 1628–1646. [Google Scholar] [CrossRef]
- O’Brien, K.L.; Eriksen, S.; Schjolden, A.; Nygaard, L. What’s in a word? Conflicting interpretations of vulnerability in climate change research. Available online: http://dspace.cigilibrary.org/jspui/handle/123456789/7304/ (accessed on 20November 2012).
- Ionescu, C.; Klein, R.J. T.; Hinkel, J.; Kumar, K.S.K.; Klein, R. Towards a Formal Framework of Vulnerability to Climate Change. Environ. Model. Assess. 2009, 14, 1–16. [Google Scholar] [CrossRef]
- Turner, B.L., II; Kasperson, R.E.; Meyer, W.B.; Dow, K.M.; Golding, D.; Kasperson, J.X.; Mitchell, R.C.; Ratick, S.J. Two types of global environmental change: Definitional and spatial-scale issues in their human dimensions. Global Environmen. Change 1990, 1, 14–22. [Google Scholar] [CrossRef]
- Gardner, A.; Grafen, A. Capturing the superorganism: A formal theory of group adaptation. J. Evol. Biol. 2009, 22, 659–671. [Google Scholar] [CrossRef]
- Hamilton, W.D. The genetical evolution of social behaviour. I. J. Theor. Biol. 1964, 7, 1–16. [Google Scholar] [CrossRef]
- Paenke, I.; Jin, Y.; Branke, J. Balancing Population- and Individual-Level Adaptation in Changing Environments. Adapt. Behav. 2009, 17, 153–174. [Google Scholar] [CrossRef]
- Reed, T.E.; Waples, R.S.; Schindler, D.E.; Hard, J.J.; Kinnison, M.T. Phenotypic plasticity and population viability: the importance of environmental predictability. Proc. R. Soc. B 2010, 277, 3391–3400. [Google Scholar] [CrossRef]
- Valdesalici, S.; Cellerino, A. Extremely short lifespan in the annual fish Nothobranchius furzeri. Proc. R. Soc. B 2003, 270, S189–S191. [Google Scholar] [CrossRef]
- Bagne, K.E.; Purcell, K.L. Short-term responses of birds to prescribed fire in fire-suppressed forests of California. J. Wildlife Manage. 2011, 75, 1051–1060. [Google Scholar] [CrossRef]
- Brumm, H. Animal Communication: City Birds Have Changed Their Tune. Curr. Biol. 2006, 16, R1003–R1004. [Google Scholar] [CrossRef]
- Both, C.; Bouwhuis, S.; Lessells, C.M.; Visser, M.E. Climate change and population declines in a long-distance migratory bird. Nature 2006, 441, 81–83. [Google Scholar]
- Nicholls, R.J.; Cazenave, A. Sea-Level Rise and Its Impact on Coastal Zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef]
- Hecky, R.E.; Mugidde, R.; Ramlal, P.S.; Talbot, M.R.; Kling, G.W. Multiple stressors cause rapid ecosystem change in Lake Victoria. Freshwater Biol. 2010, 55, 19–42. [Google Scholar] [CrossRef]
- Bell, G.; Gonzalez, A. Evolutionary rescue can prevent extinction following environmental change. Ecol. Lett. 2009, 12, 942–948. [Google Scholar] [CrossRef]
- Warner, K.; Hamza, M.; Oliver-Smith, A.; Renaud, F.; Julca, A. Climate change, environmental degradation and migration. Nat. Hazards 2010, 55, 689–715. [Google Scholar] [CrossRef]
- Knutson, T.R.; McBride, J.L.; Chan, J.; Emanuel, K.; Holland, G.; Landsea, C.; Held, I.; Kossin, J.P.; Srivastava, A.K.; Sugi, M. Tropical cyclones and climate change. Nat. Geosci. 2010, 3, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Calsbeek, R. Experimental evidence that competition and habitat use shape the individual fitness surface. Journal of Evolutionary Biology 2009, 22, 97–108. [Google Scholar] [CrossRef]
- Both, C.; Van Asch, M.; Bijlsma, R.G.; van den Burg, A.B.; Visser, M.E. Climate change and unequal phenological changes across four trophic levels: constraints or adaptations? J. Anim. Ecol. 2009, 78, 73–83. [Google Scholar] [CrossRef]
- Dingemanse, N.J.; Wright, J.; Kazem, A.J. N.; Thomas, D.K.; Hickling, R.; Dawnay, N. Behavioural syndromes differ predictably between 12 populations of three-spined stickleback. J. Anim. Ecol. 2007, 76, 1128–1138. [Google Scholar] [CrossRef]
- Rothwell, P.E.; Kourrich, S.; Thomas, M.J. Environmental novelty causes stress-like adaptations at nucleus accumbens synapses: Implications for studying addiction-related plasticity. Neuropharmacology 2011, 61, 1152–1159. [Google Scholar] [CrossRef]
- Proppe, D.S.; Sturdy, C.B.; St. Clair, C.C. Flexibility in Animal Signals Facilitates Adaptation to Rapidly Changing Environments. PLoS One 2011, 6, e25413. [Google Scholar] [CrossRef]
- Adger, W.N.; Eakin, H.; Winkels, A. Nested and teleconnected vulnerabilities to environmental change. Front. Ecol. Environ. 2009, 7, 150–157. [Google Scholar] [CrossRef]
- Bell, A.M.; Dingemanse, N.J.; Hankison, S.J.; Langenhof, M.B.W.; Rollins, K. Early exposure to nonlethal predation risk by size-selective predators increases somatic growth and decreases size at adulthood in threespined sticklebacks. J. Evol. Biol. 2011, 24, 943–953. [Google Scholar] [CrossRef]
- Fuller, A.; Dawson, T.; Helmuth, B.; Hetem, R.S.; Mitchell, D.; Maloney, S.K. Physiological Mechanisms in Coping with Climate Change. Physiol. Biochem. Zool. 2010, 83, 713–720. [Google Scholar] [CrossRef]
- Lürling, M.; Scheffer, M. Info-disruption: pollution and the transfer of chemical information between organisms. Trends Ecol. Evol. 2007, 22, 374–379. [Google Scholar] [CrossRef]
- Swaddle, J.P.; Page, L.C. High levels of environmental noise erode pair preferences in zebra finches: implications for noise pollution. Anim. Behav. 2007, 74, 363–368. [Google Scholar] [CrossRef]
- Rabin, L.A.; McCowan, B.; Hooper, S.L.; Owings, D.H. Anthropogenic Noise and its Effect on Animal Communication: An Interface Between Comparative Psychology and Conservation Biology. Int. J. Comp. Psych. 2003, 16, 172–192. [Google Scholar]
- Waxman, D.; Peck, J.R. Sex and Adaptation in a Changing Environment. Genetics 1999, 153, 1041–1053. [Google Scholar]
- Paglianti, A.; Ceccolini, F.; Berti, R. Fright reaction in light and dark: How visual information availability modulates the response to chemical alarm cues. Ethol. Ecol. Evol. 2010, 22, 63–71. [Google Scholar] [CrossRef]
- Raby, C.S.; Clayton, N.S. Prospective cognition in animals. Behav. Proc. 2009, 314–324. [Google Scholar] [CrossRef]
- Balbontín, J.; Møller, A.P.; Hermosell, I.G.; Marzal, A.; Reviriego, M.; de Lope, F. Individual responses in spring arrival date to ecological conditions during winter and migration in a migratory bird. J. Anim. Ecol. 2009, 78, 981–989. [Google Scholar] [CrossRef]
- Leimar, O.; Hammerstein, P.; van Dooren, T.J. M. A New Perspective on Developmental Plasticity and the Principles of Adaptive Morph Determination. Am. Nat.t 2006, 167, 367–376. [Google Scholar]
- Lof, M.E.; Reed, T.E.; McNamara, J.M.; Visser, M.E. Timing in a fluctuating environment: environmental variability and asymmetric fitness curves can lead to adaptively mismatched avian reproduction. Proc. R. Soc. B 2012, 279, 3161–3169. [Google Scholar] [CrossRef]
- Gottlieb, D.H.; Coleman, K.; McCowan, B. The effects of predictability in daily husbandry routines on captive rhesus macaques (Macaca mulatta). Appl. Anim. Behav. Sci. 2013, 143, 117–127. [Google Scholar] [CrossRef]
- Janssena, M.; Ostromb, E. Resilience, vulnerability, and adaptation: A cross-cutting theme of the International Human Dimensions Programme on Global Environmental Change. Global Environmen. Change 2009, 16, 237–239. [Google Scholar] [CrossRef]
- Preston, B.L.; Yuen, E.J.; Westaway, R.M. Putting vulnerability to climate change on the map: a review of approaches, benefits, and risks. Sustain. Sci. 2011, 6, 177–202. [Google Scholar] [CrossRef]
- Chevin, L.-M.; Lande, R.; Mace, G.M. Adaptation, Plasticity, and Extinction in a Changing Environment: Towards a Predictive Theory. PLoS Biol. 2010, 8, e1000357. [Google Scholar] [CrossRef]
- Richter, K.; Haslbeck, M.; Buchner, J. The Heat Shock Response: Life on the Verge of Death. Mol. Cell 2010, 40, 253–266. [Google Scholar] [CrossRef]
- Warren, M.S.; Hill, J.K.; Thomas, J.A.; Asher, J.; Fox, R.; Huntley, B.; Roy, D.B.; Telfer, M.G.; Jeffcoate, S.; Harding, P.; et al. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 2001, 414, 65–69. [Google Scholar]
- Moran, D.T.; Dias, G.M.; Marshall, D.J. Associated costs and benefits of a defended phenotype across multiple environments. Funct. Ecol. 2010, 24, 1299–1305. [Google Scholar] [CrossRef]
- Ghalambor, C.K.; McKay, J.K.; Carroll, S.P.; Reznick, D.N. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 2007, 21, 394–407. [Google Scholar] [CrossRef]
- Pulido, F. Phenotypic changes in spring arrival: Evolution, phenotypic plasticity, effects of weather and condition. Clim. Res. 2007, 35, 5–23. [Google Scholar] [CrossRef]
- Brook, B.W.; Sodhi, N.S.; Bradshaw, C.J.A. Synergies among extinction drivers under global change. Trends Ecol. Evol. 2008, 23, 453–460. [Google Scholar] [CrossRef]
- Jenssen, B.M. Endocrine-Disrupting Chemicals and Climate Change: A Worst-Case Combination for Arctic Marine Mammals and Seabirds? Environ. Health Persp.s 2005, 114, 76–80. [Google Scholar] [CrossRef]
- Feil, R.; Fraga, M.F. Epigenetics and the environment: emerging patterns and implications. Nat. Rev. Genet. 2012, 13, 97–109. [Google Scholar]
- Eriksen, S.; Aldunce, P.; Bahinipati, C.S.; Martins, R.D.; Molefe, J.I.; Nhemachena, C.; O’Brien, K.; Olorunfemi, F.; Park, J.; Sygna, L.; Ulsrud, K. When not every response to climate change is a good one: Identifying principles for sustainable adaptation. Clim. Develop. 2011, 3, 7–20. [Google Scholar] [CrossRef]
- Lande, R. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. J. Evolution. Biol. 2009, 22, 1435–1446. [Google Scholar] [CrossRef]
- Hansen, M.M.; Olivieri, I.; Waller, D.M.; Nielsen, E.E.; Group, T.G.W. Monitoring adaptive genetic responses to environmental change. Mol. Ecol. 2012, 21, 1311–1329. [Google Scholar] [CrossRef]
- Wcislo, W.T. Behavioral Environments and Evolutionary Change. Annu. Rev. Ecol. Syst. 1989, 20, 137–169. [Google Scholar]
- Davis, M.B. Range Shifts and Adaptive Responses to Quaternary Climate Change. Science 2001, 292, 673–679. [Google Scholar] [CrossRef]
- Gienapp, P.; Teplitsky, C.; Alho, J.S.; Mills, J.A.; Merilä, J. Climate change and evolution: disentangling environmental and genetic responses. Mol. Ecol. 2008, 17, 167–178. [Google Scholar] [CrossRef]
- Dingemanse, N.J.; Kazem, A.J.N.; Réale, D.; Wright, J. Behavioural reaction norms: animal personality meets individual plasticity. Trends Ecol. Evol. 2010, 25, 81–89. [Google Scholar] [CrossRef]
- Bauer, S.; Klaassen, M. Mechanistic models of animal migration behaviour—their diversity, structure and use. J. Anim. Ecol. 2013, in press. [Google Scholar]
- Dingle, H. Rowley Review: Bird migration in the southern hemisphere: A review comparing continents. Emu 2008, 108, 341–359. [Google Scholar] [CrossRef]
- Ewen, J.G.; Armstrong, D.P.; Parker, K.A.; Seddon, P.J. Reintroduction Biology: Integrating Science and Management; John Wiley & Sons: West-Sussex, UK, 2011. [Google Scholar]
- Serrano, D.; Tella, J.L. Lifetime fitness correlates of natal dispersal distance in a colonial bird. J. Anim. Ecol. 2012, 81, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Bilton, D.T.; Paula, J.; Bishop, J.D.D. Dispersal, Genetic Differentiation and Speciation in Estuarine Organisms. Estuar. Coast. Shelf S. 2002, 55, 937–952. [Google Scholar] [CrossRef]
- Switzer, P.V. Factors affecting site fidelity in a territorial animal, Perithemis tenera. Anim. Behav. 1997, 53, 865–877. [Google Scholar]
- Bowler, D.E.; Benton, T.G. Causes and consequences of animal dispersal strategies: Relating individual behaviour to spatial dynamics. Biol. Rev. 2005, 80, 205–225. [Google Scholar] [CrossRef]
- Crooks, K.R.; Burdett, C.L.; Theobald, D.M.; Rondinini, C.; Boitani, L. Global patterns of fragmentation and connectivity of mammalian carnivore habitat. Phil. Trans. R. Soc. B 2011, 366, 2642–2651. [Google Scholar] [CrossRef]
- Komdeur, J. Conserving the seychelles warbler Acrocephalus sechellensis by translocation from Cousin Island to the islands of Aride and Cousine. Biol. Conserv. 1994, 67, 143–152. [Google Scholar] [CrossRef]
- Vercken, E.; Massot, M.; Sinervo, B.; Clobert, J. Colour variation and alternative reproductive strategies in females of the common lizard Lacerta vivipara. J. Evolution. Biol. 2007, 20, 221–232. [Google Scholar]
- Oh, K.P.; Badyaev, A.V. Structure of Social Networks in a Passerine Bird: Consequences for Sexual Selection and the Evolution of Mating Strategies. Am. Nat. 2010, 176, E80–E89. [Google Scholar]
- Bonte, D.; de la Peña, E. Evolution of body condition-dependent dispersal in metapopulations. J. Evolution. Biol. 2009, 22, 1242–1251. [Google Scholar] [CrossRef]
- Mery, F.; Burns, J.G. Behavioural plasticity: an interaction between evolution and experience. Evol. Ecol. 2010, 24, 571–583. [Google Scholar] [CrossRef]
- Piersma, T.; Drent, J. Phenotypic flexibility and the evolution of organismal design. Trends Ecol. Evol. 2003, 18, 228–233. [Google Scholar] [CrossRef]
- Dingemanse, N.J.; Bouwman, K.M.; Van de Pol, M.; Van Overveld, T.; Patrick, S.C.; Matthysen, E.; Quinn, J.L. Variation in personality and behavioural plasticity across four populations of the great tit Parus major. J. Anim. Ecol. 2012, 81, 116–126. [Google Scholar] [CrossRef]
- Wolf, M.; Doorn, G.S., van; Weissing, F. Evolutionary emergence of responsive and unresponsive personalities. Proc. Nutl. Acad. Sci. USA 2008, 105, 15825–15830. [Google Scholar] [CrossRef]
- Gross, K.; Pasinelli, G.; Kunc, H.P. Behavioral Plasticity Allows Short-Term Adjustment to a Novel Environment. Am. Nat.t 2010, 176, 456–464. [Google Scholar] [CrossRef] [Green Version]
- Jones, C.G.; Lawton, J.H.; Shachak, M. Organisms as Ecosystem Engineers. Oikos 1994, 69, 373. [Google Scholar] [CrossRef]
- Casas-Crivillé, A.; Valera, F. The European bee-eater (Merops apiaster) as an ecosystem engineer in arid environments. J. Arid Environ. 2005, 60, 227–238. [Google Scholar] [CrossRef]
- Wright, J.P.; Jones, C.G.; Flecker, A.S. An ecosystem engineer, the beaver, increases species richness at the landscape scale. Oecologia 2002, 132, 96–101. [Google Scholar] [CrossRef]
- Charmantier, A.; Garant, D. Environmental quality and evolutionary potential: lessons from wild populations. Proc. R. Soc. B 2005, 272, 1415–1425. [Google Scholar] [CrossRef]
- Stuart-Fox, D.; Moussalli, A. Camouflage, communication and thermoregulation: lessons from colour changing organisms. Phil. Trans. R. Soc. B 2009, 364, 463–470. [Google Scholar] [CrossRef]
- Reed, W.L.; Clark, M.E. Beyond Maternal Effects in Birds: Responses of the Embryo to the Environment. Integr. Comp. Biol. 2011, 51, 73–80. [Google Scholar] [CrossRef]
- Warkentin, K.M. Plasticity of Hatching in Amphibians: Evolution, Trade-Offs, Cues and Mechanisms. Integr. Comp. Biol. 2011, 51, 111–127. [Google Scholar] [CrossRef]
- Monaghan, P. Early growth conditions, phenotypic development and environmental change. Phil. Trans. R. Soc. B 2008, 363, 1635–1645. [Google Scholar] [CrossRef]
- Beldade, P.; Mateus, A.R.A.; Keller, R.A. Evolution and molecular mechanisms of adaptive developmental plasticity. Mol. Ecol. 2011, 20, 1347–1363. [Google Scholar] [CrossRef]
- Hofmann, G.E.; Todgham, A.E. Living in the Now: Physiological Mechanisms to Tolerate a Rapidly Changing Environment. Annu. Rev. Physiol. 2010, 72, 127–145. [Google Scholar] [CrossRef]
- Møller, A.P.; Szép, T. Rapid evolutionary change in a secondary sexual character linked to climatic change. J. Evolution. Biol. 2005, 18, 481–495. [Google Scholar]
- Price, T.D.; Qvarnstrom, A.; Irwin, D.E. The role of phenotypic plasticity in driving genetic evolution. P. R.l Soc. B 2003, 270, 1433–1440. [Google Scholar] [CrossRef]
- Richter, S.; Kipfer, T.; Wohlgemuth, T.; Guerrero, C.C.; Ghazoul, J.; Moser, B. Phenotypic plasticity facilitates resistance to climate change in a highly variable environment. Oecologia 2012, 169, 269–279. [Google Scholar] [CrossRef]
- Mller, A.P.; Biard, C.; Karadas, F.; Rubolini, D.; Saino, N.; Surai, P.F. Maternal effects and changing phenology of bird migration. Clim. Res. 2011, 49, 201–210. [Google Scholar] [CrossRef]
- Bernardo, J. Maternal Effects in Animal Ecology. Amer. Zool. 1996, 36, 83–105. [Google Scholar]
- Meylan, S.; Miles, D.B.; Clobert, J. Hormonally mediated maternal effects, individual strategy and global change. Phil. Trans. R. Soc. B 2012, 367, 1647–1664. [Google Scholar] [CrossRef]
- Wells, J.C.K. An evolutionary perspective on the trans-generational basis of obesity. Ann. Hum. Biol. 2011, 38, 400–409. [Google Scholar] [CrossRef]
- Taborsky, B. Mothers Determine Offspring Size in Response to Own Juvenile Growth Conditions. Biol. Lett. 2006, 2, 225–228. [Google Scholar] [CrossRef]
- Räsänen, K.; Laurila, A.; Merilä, J. Maternal investment in egg size: Environment- and population-specific effects on offspring performance. Oecologia 2005, 142, 546–553. [Google Scholar] [CrossRef]
- Mousseau, T.A.; Fox, C.W. The adaptive significance of maternal effects. Trends Ecol. Evol. 1998, 13, 403–407. [Google Scholar] [CrossRef]
- Crean, A.J.; Marshall, D.J. Coping with environmental uncertainty: Dynamic bet hedging as a maternal effect. Phil. Trans. R. Soc. B 2009, 364, 1087–1096. [Google Scholar] [CrossRef]
- Burgess, S.C.; Marshall, D.J. Temperature-induced maternal effects and environmental predictability. J. Exp. Biol. 2011, 214, 2329–2336. [Google Scholar] [CrossRef]
- Hoyle, R.B.; Ezard, T.H.G. The benefits of maternal effects in novel and in stable environments. J. R. Soc. Interface 2012, 9, 2403–2413. [Google Scholar] [CrossRef] [Green Version]
- Candolin, U.; Salesto, T.; Evers, M. Changed environmental conditions weaken sexual selection in sticklebacks. J. Evolution. Biol. 2007, 20, 233–239. [Google Scholar] [CrossRef]
- Reser, J.P.; Swim, J.K. Adapting to and coping with the threat and impacts of climate change. Am. Psychol. 2011, 66, 277–289. [Google Scholar] [CrossRef]
- Wingfield, J.C.; Mukai, M. Endocrine disruption in the context of life cycles: Perception and transduction of environmental cues. Gen. Comp. Endocr. 2009, 163, 92–96. [Google Scholar] [CrossRef]
- Bjærke, O.; Østbye, K.; Lampe, H.M.; Vøllestad, L.A. Covariation in shape and foraging behaviour in lateral plate morphs in the three-spined stickleback. Ecol. Freshw. Fish 2010, 19, 249–256. [Google Scholar] [CrossRef]
- McKinnon, J.S.; Rundle, H.D. Speciation in nature: The threespine stickleback model systems. Trends Ecol. Evol. 2002, 17, 480–488. [Google Scholar] [CrossRef]
- Harcourt, J.L.; Biau, S.; Johnstone, R.; Manica, A. Boldness and Information Use in Three-Spined Sticklebacks. Ethology 2010, 116, 440–447. [Google Scholar] [CrossRef]
- Bell, A.M.; Stamps, J.A. Development of behavioural differences between individuals and populations of sticklebacks, Gasterosteus aculeatus. Anim. Behav. 2004, 68, 1339–1348. [Google Scholar] [CrossRef]
- Svanbäck, R.; Schluter, D. Niche specialization influences adaptive phenotypic plasticity in the threespine stickleback. Am. Nat. 2012, 180, 50–59. [Google Scholar] [CrossRef]
- Heuschele, J.; Mannerla, M.; Gienapp, P.; Candolin, U. Environment-dependent use of mate choice cues in sticklebacks. Behav. Ecol. 2009, 20, 1223–1227. [Google Scholar] [CrossRef]
- Garduño-Paz, M.V.; Couderc, S.; Adams, C.E. Habitat complexity modulates phenotype expression through developmental plasticity in the threespine stickleback. Biol. J. Linn. Soc. 2010, 100, 407–413. [Google Scholar] [CrossRef]
- Baker, J.A.; Foster, S.A. Phenotypic plasticity for life history traits in a stream population of the threespine stickleback, Gasterosteus aculeatus L. Ecol. Freshw Fish 2002, 11, 20–29. [Google Scholar] [CrossRef]
- Day, T.; McPhail, J.D. The effect of behavioural and morphological plasticity on foraging efficiency in the threespine stickleback (Gasterosteus sp.). Oecologia 1996, 108, 380–388. [Google Scholar]
- Langenhof, M.B.W.; Komdeur, J. Small variations in early-life environment affect adaptive behaviour in response to obstructed foraging conditions for three-spined sticklebacks. 2013. under Review. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Langenhof, M.B.W.; Komdeur, J. Coping with Change: A Closer Look at the Underlying Attributes of Change and the Individual Response to Unstable Environments. Sustainability 2013, 5, 1764-1788. https://doi.org/10.3390/su5051764
Langenhof MBW, Komdeur J. Coping with Change: A Closer Look at the Underlying Attributes of Change and the Individual Response to Unstable Environments. Sustainability. 2013; 5(5):1764-1788. https://doi.org/10.3390/su5051764
Chicago/Turabian StyleLangenhof, Minke B. W., and Jan Komdeur. 2013. "Coping with Change: A Closer Look at the Underlying Attributes of Change and the Individual Response to Unstable Environments" Sustainability 5, no. 5: 1764-1788. https://doi.org/10.3390/su5051764
APA StyleLangenhof, M. B. W., & Komdeur, J. (2013). Coping with Change: A Closer Look at the Underlying Attributes of Change and the Individual Response to Unstable Environments. Sustainability, 5(5), 1764-1788. https://doi.org/10.3390/su5051764