Challenges for Crop Production Research in Improving Land Use, Productivity and Sustainability
Abstract
:1. Introduction
1.1. Crop Productivity and Food Security
1.2. Biomass Production and Energy Security
1.3. Agriculture and Land Use
2. Constraints and Opportunities in Increasing Land Availability
3. Prospects for Improving Productivity of Plant Production Systems
- (1).
- At the plant/crop level:
- Improving resource capture and use efficiency, especially for water and nutrients.
- Improving the adaptation of crops to climate change, especially to extreme weather conditions.
- (2).
- At the farm level: a greater diversity of cropping systems to enhance ecological processes that contribute to short term yield stability and long term productivity and sustainability.
- (3).
- At the landscape and regional level: integrating biophysical and socio-economic research on productivity and sustainability of cropping systems, taking into account land use and global change.
Crops | Acreage* | Production value* | Publications** |
---|---|---|---|
A. Food Crops | (103 ha) | (106 USD) | (number of papers) |
Wheat | 216,974 | 81,236 | 14,947 |
Rice | 153,652 | 174,747 | 8,257 |
Soybean | 102,387 | 64,859 | 6,052 |
Potato | 18,596 | 44,519 | 3,155 |
B. Dual purpose crops | |||
Maize | 161,908 | 55,146 | 8,021 |
Sugar beet | 4,676 | 9,220 | 1,109 |
Palm oil | NA | (41.700) | 841 |
C. Energy crops | |||
Sugar cane | 23,815 | 53,639 | 679 |
Sweet sorghum | NA | NA | 210 |
Miscanthus | NA | NA | 266 |
Switch grass | NA | NA | 40 |
4. Institutional Change and Development
5. Conclusions
Conflict of Interest
References
- Fischer, R.A.; Edmeades, G.A. Breeding and cereal yield progress. Crop Sci. 2010, 50, S85–S98. [Google Scholar]
- Herdt, R.W. Establishing priorities for plant science research and developing world food security. Europ. J. Plant Pathol. 2006, 115, 75–93. [Google Scholar] [CrossRef]
- Misselhorn, A.; Aggarwal, P.; Ericksen, P.; Gregory, P.; Horn-Phathanothai, L.; Ingram, J.; Wiebe, K. A vision for attaining food security. Curr. Opion. Envir. Sustain. 2012, 4, 7–17. [Google Scholar]
- Bruinsma, J. The Resource Outlook to 2050: By How Much do Land, Water and Crop Yields need to Increase by 2050? In Expert Meeting on How to Feed the World in 2050, Rome, Italy, 24–26 June 2009; FAO: Rome, Italy, 2009; p. 31. [Google Scholar]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef]
- Valentine, J.; Clifton-Brown, J.; Hastings, A.; Robson, P.; Allison, G.; Smith, P. Food vs fuel: the use of land for lignocellulosic ‘next generation’ energy crops that minimize competition with primary food production. GCB Bioenergy 2012, 4, 1–19. [Google Scholar] [CrossRef]
- Cornelissen, S.; Koper, M.; Deng, Y.Y. The role of bioenergy in a fully sustainable global energy. Biomass Bioenerg. 2012, 41, 21–33. [Google Scholar] [CrossRef]
- Sang, T.; Zhu, W. China’s bioenergy potential. GCB Bioenergy 2011, 3, 79–90. [Google Scholar]
- Jiang, D.; Zhuang, D.; Fu, J.; Huang, Y.; Wen, K. Bioenergy potential from crop residues in China: Availability and distribution. Renew. Sust. Energy. Rev. 2012, 16, 1377–1382. [Google Scholar] [CrossRef]
- Nijsen, M.; Smeets, E.; Stehfest, E.; van Vuuren, D.P. An evaluation of the global potential of bioenergy production on degraded lands. GCB Bioenergy 2012, 4, 130–147. [Google Scholar] [CrossRef]
- Burgess, P.J.; Rivas Casado, M.; Gavu, J.; Mead, A.; Cockerill, T.; Lord, R.; van der Horst, D.; Howard, D.C. A frame-work for reviewing the trade-offs between renewable energy, food, feed and wood production at a local level. Renew. Sust. Energy Rev. 2012, 16, 129–142. [Google Scholar] [CrossRef] [Green Version]
- De Vries, S.C.; van de Ven, G.W.J.; van Ittersum, M.K.; Giller, K.E. Resource use efficiency and environmental performance of nine major biofuel crops, processed by first-generation conversion techniques. Biomass Bioenergy 2010, 34, 588–601. [Google Scholar] [CrossRef]
- Tong, C.; Hall, C.A.S.; Wang, H. Land use changes in rice, wheat and maize production in China (1961–1998). Agric. Ecosyst. Env. 2003, 95, 523–536. [Google Scholar] [CrossRef]
- Bringezu, S.; O’Brien, M.; Schutz, H. Beyond biofuels: assessing global land use for domestic consumption of biomass. A conceptual and empirical contribution to sustainable management of global resources. Land Use Policy 2012, 29, 224–232. [Google Scholar] [CrossRef]
- Van Latensteijn, H.C. Assessment of future options for land use in the European Community. Ecol. Enginer. 1995, 4, 211–222. [Google Scholar] [CrossRef]
- Fraser, E.D.G. Can economic, land use and stress lead to famine, disease, warfare and death? Using Europe’s calamitous 14th century as a parable for the modern age. Ecol. Econ. 2011, 70, 1269–1279. [Google Scholar] [CrossRef]
- Carino, M.; Castorena, L.; Maya, Y.; Wurl, J.; Urciaga, J.; Breceda, A. The conversion of arid ecosystems on lower Southern California for agricultural use: An analysis from the environmental historical perspective. Hist. Agrar. 2012, 56, 81. [Google Scholar]
- Wolf, J.; Bindraban, P.S.; Luijten, J.C.; Vleeshouwers, L.M. Exploratory study on the land area required for global food supply and the potential global production of bioenergy. Agric. Syst. 2003, 76, 841–861. [Google Scholar] [CrossRef]
- Prins, A.G.; Eickhout, B.; Banse, M.; Van Meijl, H.W.; Rienks, W.; Woltjer, G. Global impacts of European agricultural and biofuel policies. Ecol. Soc. 2011, 16, 49–65. [Google Scholar]
- Hill, J.; Tilman, D.; Polasky, S.; Hawthorne, P. Land clearing and the biofuel carbon debt. Science 2008, 319, 1235–1238. [Google Scholar] [CrossRef]
- Caride, C.; Pineiro, G.; Paruelo, J.M. How does agricultural management modify ecosystem services in the argentine Pampas? The effects of soil dynamics. Agric. Ecosys. Env. 2012, 154, 23–33. [Google Scholar] [CrossRef]
- Landis, D.A.; Gardiner, M.M.; Van der Werf, W.; Swinton, S.M. Increasing corn for biofuel production reduces biocontrol services in agricultural landscapes. Proc. Natl. Acad. Sci. USA 2008, 105, 20552–20557. [Google Scholar]
- Fresco, L.O. Challenges for food system adaptation today and tomorrow. Env. Sci. Policy 2009, 12, 378–385. [Google Scholar] [CrossRef]
- Spiertz, J.H.J. Nitrogen, sustainable agriculture and food security. A review. Agron. Sust. Dev. 2010, 30, 43–55. [Google Scholar] [CrossRef]
- Mingsheng, F.; Jianbo, S.; Lixing, Y.; Rongfeng, J.; Davies, W.J.; Fusuo, Z. Improving crop productivity and resource use efficiency to ensure food security and environmental quality. J. Exp. Bot. 2012, 63, 13–24. [Google Scholar]
- Spiertz, J.H.J. Avenues to meet future Food Security: the role of agronomy on solving complexity in food production and resource use. Europ. J. Agron. 2012, 43, 1–8. [Google Scholar] [CrossRef]
- Bennett, A.J.; Bending, G.D.; Chandler, D.; Hilton, S.; Mills, P. Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations. Biol. Rev. 2012, 87, 52–71. [Google Scholar]
- Lizarazu, W.; Monti, A. Energy crops in rotation. A review. Biomass Bioenergy 2011, 35, 12–25. [Google Scholar] [CrossRef]
- Ximing, C.; Xia, Z.; Dingbao, W. Land availability for biofuel production. Env. Sci. Techn. 2011, 45, 334–339. [Google Scholar] [CrossRef]
- Bhardway, A.K.; Zenone, T.; Jasrotia, P.; Robertson, G.P.; Chen, J.; Hamilton, S.K. Water and energy footprints of bioenergy crop production on marginal lands. GCB Bioenergy 2011, 3, 208–222. [Google Scholar] [CrossRef]
- MacDonald, G.K.; Bennett, E.A.; Taranu, Z.E. The influence of time, soil characteristics, and land-use history on soil phosphorus legacies: a global meta-analysis. Glob. Chang. Biol. 2012, 18, 1904–1917. [Google Scholar] [CrossRef]
- Hein, L.; Leemans, R. The impact of first-generation biofuels on the depletion of the global phosphorus reserve. Ambio 2012, 41, 341–349. [Google Scholar] [CrossRef]
- Xinyou, Y.; Struik, P.C.; Kropff, M.J. Role of crop physiology in predicting gene- to phenotype relationships. Trends Plant Sci. 2004, 9, 426–432. [Google Scholar] [CrossRef]
- Spiertz, J.H.J.; Ewert, F. Crop production and resource use to secure food, feed and energy supply: Opportunities and constraints. NJAS–Wageningen J. Life Sci. 2009, 56, 281–300. [Google Scholar] [CrossRef]
- Xie, T.; Su, P.; Shan, L.; Ma, J. Yield, quality and irrigation water use efficiency of sweet sorghum (Sorghum bicolor (L.) Moench) under different land types in arid regions. Austr. J. Crop Sci. 2012, 1, 10–16. [Google Scholar]
- Parry, M.A.J.; Hawkesford, M.J. Food security: increasing yield and improving resource use efficiency. Proc. Nutrition. Society 2010, 69, 592–600. [Google Scholar] [CrossRef]
- Zhangcai, Q.; Qianlai, Z.; Min, C. Impacts on land use change due to biofuel crops on carbon balance, bioenergy production, and agricultural yield, in the conterminous United States. GCB Bioenergy 2012, 4, 277–288. [Google Scholar]
- Young, H.; Somerville, C. Growing Better Biofuel Crops; research is underway to reduce the use of food crops for biofuels by shifting to dedicated energy crops and agricultural residues. The Scientist 2012, 7, 46–52. [Google Scholar] [CrossRef]
- Boyack, K; Borner, K. Indicator-assisted evaluation and funding of research: Visualizing the influence of grants on the number of citations counts of research papers. J. Americ. Soc. Inform. Sci. Technol. 2003, 54, 447–461. [Google Scholar]
- Ong, H.C.; Mahlia, T.M.I.; Masjuki, H.H.; Norhasyima, R.S. Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel. A review. Renew. Sustain. Energy Rev. 2011, 15, 3501–3515. [Google Scholar] [CrossRef]
- Erb, K.-H.; Haberl, H.; Plutzar, C. Dependency of global primary crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability. Energy Policy 2012, 47, 260–269. [Google Scholar] [CrossRef]
- Qu, F.; Kuyvenhoven, A.; Shi, X.; Heerink, N. Sustainable natural resource use in China: Recent trends and policies. China Economic Rev. 2011, 22, 444–460. [Google Scholar] [CrossRef]
- Sheppard, A.W.; Gillespie, I.; Hirsch, M.; Begley, C. Biosecurity and sustainability within the growing global economy. Curr. Opinion Environ. Sustain. 2011, 3, 4–10. [Google Scholar] [CrossRef]
- Acosta-Michlik, L.; Lucht, W.; Bondeau, A.; Beringer, T. Integrated assessment of sustainability trade-offs and pathways for global bioenergy production: Framing a novel hybrid approach. Renew. Sustain. Energy Rev. 2011, 15, 2791–2809. [Google Scholar] [CrossRef]
- Mendu, V.; Shearin, T.; Cambell, J.E., Jr.; Stork, J.; Jae, J.; Crocker, M.; Huber, G.; DeBolt, S. Global bioenergy potential from high-lignin agricultural residue. Proc. Natl. Acad. Sci. USA 2012, 109, 4014–4019. [Google Scholar]
- Peltonen-Sainio, P.; Niemi, J.K. Protein crop production at the northern margin of farming: To boost, or not to boost. Agric. Food Sci. 2012, 21, 370–383. [Google Scholar]
- Spiertz, J.H.J. Declaration of Hamburg. In Crop Science: Progress and Prospects; Nösberger, J., Geiger, H.H., Struik, P.C., Eds.; CABI Publishing/CAB International: Wallingford, UK, 2001; pp. 381–383. [Google Scholar]
- Byerlee, D.; de Janvry, A.; Sadoulet, E. Agriculture for development: Toward a new paradigm. Annu. Rev. Resour. Econ. 2009, 1, 15–31. [Google Scholar] [CrossRef]
- Zeigler, R.S.; Mohanty, S. Support for international agricultural research: current status and future challenges. New Biotechnol. 2010, 27, 565–572. [Google Scholar] [CrossRef]
- Spiertz, J.H.J.; Kropff, M.J. Adaptations of knowledge systems to changes in agriculture and society: The case of the Netherlands. NJAS-Wageningen J. Life Sci. 2011, 58, 1–10. [Google Scholar] [CrossRef]
- Herdt, R.W. People, institutions and technology: A personal view on the role of foundations in international agricultural research and development 1960–2010. Food Policy 2012, 37, 179–190. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Spiertz, H. Challenges for Crop Production Research in Improving Land Use, Productivity and Sustainability. Sustainability 2013, 5, 1632-1644. https://doi.org/10.3390/su5041632
Spiertz H. Challenges for Crop Production Research in Improving Land Use, Productivity and Sustainability. Sustainability. 2013; 5(4):1632-1644. https://doi.org/10.3390/su5041632
Chicago/Turabian StyleSpiertz, Huub. 2013. "Challenges for Crop Production Research in Improving Land Use, Productivity and Sustainability" Sustainability 5, no. 4: 1632-1644. https://doi.org/10.3390/su5041632
APA StyleSpiertz, H. (2013). Challenges for Crop Production Research in Improving Land Use, Productivity and Sustainability. Sustainability, 5(4), 1632-1644. https://doi.org/10.3390/su5041632