Energy Analysis of a Biomass Co-firing Based Pulverized Coal Power Generation System
Abstract
:Nomenclature
A | Ash fraction in fuel |
| Molar flow rate, kmol/s |
Cp | Specific heat at constant pressure, kJ/kg.K |
| Energy rate, MW |
F | Mass fraction of fixed carbon in fuel |
h | Specific enthalpy, kJ/kg |
| Molar specific enthalpy, kJ/kmol |
| Enthalpy of formation, kJ/kmol |
HHV | Higher heating value, kJ/kg |
k | Coefficients for correlation for specific heat capacity of ash, kJ/kmol |
LHV | Lower heating value, kJ/kg |
M | Molecular weight, kg/kmol |
| Mass flow rate, kg/s |
| Number of moles, kmol |
P | Co-firing ratio |
p | Pressure, bar |
| Heat interaction rate, MW |
T | Temperature, K |
V1 | Mass fraction of primary volatile matter in fuel, on dry ash-free basis |
V2 | Mass fraction of secondary volatile matter in fuel, on dry ash-free basis |
| Work rate, MW |
W | Weight percent |
Greek Letters
𝜂 | Energy efficiency, % |
Subscripts
b | Biomass |
C | Carbon |
c | Coal |
H | Hydrogen |
𝑖 | Identifies the constituent of a mixture |
in | Inlet |
O | Oxygen |
p | Products |
R | Reactants |
out | Outlet |
S | Sulphur |
V1 | Primary volatile matter |
V2 | Secondary volatile matter |
Superscripts
o | Standard environment state |
Acronyms
BFP | Boiler feed pump |
B/CL | Bituminous coal/chicken litter blend |
B/RFD | Bituminous coal/refuse derived fuel blend |
B/RH | Bituminous coal/rice husk blend |
B/SD | Bituminous coal/saw dust blend |
CP | Condensate pump |
FG | Flue gases |
FWH | Feedwater heater |
LPT | Low pressure turbine |
HPT | High pressure turbine |
L/CL | Lignite/chicken litter blend |
L/RFD | Lignite/refuse derived fuel blend |
L/RH | Lignite/rice husk blend |
L/SD | Lignite/saw dust blend |
M | Moisture |
1. Introduction
2. Characteristics of Fuels
3. System Configurations
Parameter | Chicken litter1 | Pine sawdust1 | Refuse derived fuel1 | Rice husk2 | Bituminous coal3 | Lignite3 | ||
---|---|---|---|---|---|---|---|---|
Proximate analysis (wt%) | ||||||||
Fixed carbon | 13.1 | 14.2 | 0.5 | 20.1 | 53.9 | 35.0 | ||
Volatile matter | 43.0 | 70.4 | 70.3 | 55.6 | 28.2 | 44.5 | ||
Moisture | 9.3 | 15.3 | 4.2 | 10.3 | 7.8 | 12.4 | ||
Ash | 34.3 | 0.1 | 25.0 | 14.0 | 10.1 | 8.1 | ||
Ultimate analysis (wt%) | ||||||||
Hydrogen | 3.8 | 5.0 | 5.5 | 4.5 | 3.9 | 4.1 | ||
Carbon | 34.1 | 43.2 | 38.1 | 38.0 | 70.3 | 51.0 | ||
Oxygen | 14.4 | 36.3 | 26.1 | 32.4 | 6.4 | 23.8 | ||
Nitrogen | 3.50 | 0.08 | 0.78 | 0.69 | 1.07 | 0.4 | ||
Sulphur | 0.67 | - | 0.33 | 0.06 | 0.41 | 0.16 | ||
Ash analysis (wt%) | ||||||||
SiO2 | 5.77 | 9.71 | 38.67 | 94.48 | 51.67 | 46.15 | ||
Al2O3 | 1.01 | 2.34 | 14.54 | 0.24 | 29.15 | 20.91 | ||
Fe2O3 | 0.45 | 0.10 | 6.26 | 0.22 | 10.73 | 6.77 | ||
CaO | 56.85 | 46.88 | 26.81 | 0.97 | 3.72 | 12.54 | ||
SO3 | 3.59 | 2.22 | 3.01 | 0.92 | 1.47 | 8.00 | ||
MgO | 4.11 | 13.80 | 6.45 | 0.19 | 1.41 | 2.35 | ||
K2O | 12.19 | 14.38 | 0.23 | 2.29 | 0.29 | 1.49 | ||
TiO2 | 0.03 | 0.14 | 1.90 | 0.02 | 1.24 | 0.77 | ||
Na2O | 0.60 | 0.35 | 1.36 | 0.16 | 0.31 | 0.73 | ||
P2O5 | 15.40 | 6.08 | 0.77 | 0.54 | - | 0.29 | ||
Heating value (kJ/kg) | ||||||||
Higher heating value | 14,240 | 17,280 | 16,620 | 14,980 | 28,330 | 20,070 | ||
Lower heating value | 13,410 | 16,180 | 15,410 | 13,990 | 27,340 | 19,070 |
Stream | Bituminous coal | Lignite | ||||||
---|---|---|---|---|---|---|---|---|
| | | | | | | | |
(kg/s) | (K) | (bar) | (MW) | (kg/s) | (K) | (bar) | (MW) | |
1 | 1.00 | 281.15 | 1.01 | 28.33 | 1.00 | 281.15 | 1.01 | 20.07 |
2 | 2.31 | 281.15 | 1.01 | 0.00 | 2.31 | 281.15 | 1.01 | 0.00 |
3 | 0.002 | 873.15 | 1.01 | 0.01 | 0.001 | 873.15 | 1.01 | 0.009 |
4 | 11.87 | 2159.15 | 1.01 | 26.22 | 8.40 | 2007.15 | 1.01 | 18.12 |
5 | 11.87 | 423.15 | 1.01 | 2.867 | 8.40 | 423.15 | 1.01 | 3.086 |
62 | 0.08 | 423.15 | 1.01 | 0.009 | 0.06 | 423.15 | 1.01 | 0.007 |
7 | 8.44 | 873.15 | 120.00 | 30.46 | 5.82 | 873.15 | 120.00 | 21.00 |
8 | 8.44 | 669.05 | 30.00 | 27.20 | 5.82 | 669.05 | 30.00 | 18.75 |
9 | 2.35 | 669.05 | 30.00 | 7.57 | 1.62 | 669.05 | 30.00 | 5.22 |
10 | 6.09 | 873.15 | 30.00 | 22.44 | 4.24 | 873.15 | 30.00 | 15.47 |
11 | 6.09 | 309.32 | 0.06 | 15.35 | 4.24 | 309.32 | 0.06 | 10.58 |
12 | 6.09 | 309.32 | 0.06 | 0.92 | 4.24 | 309.32 | 0.06 | 0.64 |
13 | 6.09 | 309.5 | 3.00 | 0.94 | 4.24 | 309.5 | 3.00 | 0.65 |
14 | 8.44 | 507.05 | 3.00 | 8.51 | 5.82 | 507.05 | 3.00 | 5.87 |
15 | 8.44 | 509.35 | 120.00 | 8.62 | 5.82 | 509.35 | 120.00 | 5.94 |
16 | 596.40 | 281.15 | 1.01 | 20.10 | 411.3 | 281.15 | 1.01 | 13.86 |
17 | 596.40 | 289.15 | 1.01 | 40.07 | 411.3 | 289.15 | 1.01 | 27.63 |
4. Analysis
4.1. Assumptions
- All components operate at steady state.
- All gases are ideal.
- Kinetic and potential energy effects are neglected.
- Ambient air is 79% nitrogen and 21% oxygen on a volume basis.
- The temperature and pressure of the reference environment are 8 ˚C and 1.013 bar respectively.
- 80% of the ash in the combusted fuel exits as fly ash, and the remainder is collected as bottom ash [40], which is inert.
- The bottom ash temperature is 600 °C, based on values reported for pulverized boilers with dry bottoms [38].
- The formation of NO takes place through three paths: fuel bound nitrogen conversion, thermal fixation of atmospheric nitrogen at elevated temperatures (typically greater than 1500° C), and due to prompt formation resulting from the fast reactions within the flame zone involving nitrogen and fuel bound hydrocarbon radicals. Fuel, thermal, and prompt NO constitute 80%, 16%, and 4% respectively of total NO formed [41,43].
- Flue gases leave the stack at 150 °C [38].
- All the components of the steam cycle have adiabatic boundaries.
- The isentropic efficiency for each steam turbine is 85% and for each pump is 88% [40].
4.2. Governing Equations
4.2.1. Energy Analysis of Boiler
Constituent | Molecular weight (kg/kmol) | Standard enthalpy (MJ/kmol) |
---|---|---|
Silica (SiO2) | 60 | –911.3 |
Aluminum Oxide (Al2O3) | 102 | –1674.4 |
Ferric Oxide (Fe2O3) | 160 | –825.9 |
Calcium Oxide (CaO) | 56 | –634.6 |
Magnesium Oxide (MgO) | 40 | –601.5 |
Titanium Oxide (TiO2) | 80 | –945.2 |
Alkalies (Na2O + K2O) | 62 | –418.2 |
Sulphur Trioxide (SO3) | 80 | –437.9 |
Phosphorus Pentaoxide (P2O5)1 | 142 | –1505.99 |
Constituent | K0 | K1 × 10-2 | K2 × 10-5 | K3 × 10-7 |
---|---|---|---|---|
SiO2 | 80.01 | –2.403 | –35.47 | 49.16 |
Al2O3 | 155.02 | –8.28 | –38.61 | 40.91 |
Fe2O3 | 146.86 | 0 | –55.77 | 52.56 |
CaO | 58.79 | –1.34 | –11.47 | 10.30 |
MgO | 58.179 | –1.61 | –14.05 | 11.27 |
TiO2 | 77.84 | 0 | –33.68 | 40.29 |
Na2O | 95.148 | 0 | –51.04 | 83.36 |
K2O | 105.40 | –5.77 | 0 | 0 |
4.2.2. Energy Analysis of Steam Cycle Components
Control volume | Balances | |
---|---|---|
Mass | Energy | |
High Pressure Turbine | | |
Low Pressure Turbine | | |
Condenser | | |
| ||
Condensate Pump | | |
Boiler Feed Pump | | |
Open Feedwater Heater | | |
5. Results and Discussion
5.1. Effect of Co-firing on Overall System Performance
Fuel blend1 | Fuel flow rate | Co-firing share | Input | Output | ||||
---|---|---|---|---|---|---|---|---|
| | Pc | Pb(%) | Air (mol/s) | | | | |
(kg/s) | (kg/s) | (%) | (MW) | (MW) | (MW) | |||
Base | 1.00 | 0.00 | 100 | 0 | 79.86 | 28.33 | 24.65 | 9.92 |
B/RH | 0.95 | 0.05 | 95 | 5 | 77.85 | 27.66 | 24.04 | 9.67 |
0.90 | 0.10 | 90 | 10 | 75.83 | 27.00 | 23.42 | 9.43 | |
0.85 | 0.15 | 85 | 15 | 73.81 | 26.33 | 22.80 | 9.18 | |
0.80 | 0.20 | 80 | 20 | 71.79 | 25.66 | 22.18 | 8.93 | |
0.75 | 0.25 | 75 | 25 | 69.77 | 24.99 | 21.56 | 8.68 | |
0.70 | 0.30 | 70 | 30 | 67.76 | 24.33 | 20.95 | 8.43 | |
B/SD | 0.95 | 0.05 | 95 | 5 | 78.10 | 27.78 | 24.14 | 9.71 |
0.90 | 0.10 | 90 | 10 | 76.34 | 27.23 | 23.62 | 9.51 | |
0.85 | 0.15 | 85 | 15 | 74.58 | 26.67 | 23.10 | 9.30 | |
0.80 | 0.20 | 80 | 20 | 72.81 | 26.12 | 22.58 | 9.09 | |
0.75 | 0.25 | 75 | 25 | 71.05 | 25.57 | 22.06 | 8.88 | |
0.70 | 0.30 | 70 | 30 | 69.29 | 25.02 | 21.54 | 8.67 | |
B/CL | 0.95 | 0.05 | 95 | 5 | 77.91 | 27.63 | 24.00 | 9.66 |
0.90 | 0.10 | 90 | 10 | 75.99 | 26.92 | 23.35 | 9.40 | |
0.85 | 0.15 | 85 | 15 | 74.03 | 26.22 | 22.69 | 9.14 | |
0.80 | 0.20 | 80 | 20 | 72.10 | 25.51 | 22.04 | 8.87 | |
0.75 | 0.25 | 75 | 25 | 70.13 | 24.81 | 21.39 | 8.61 | |
0.70 | 0.30 | 70 | 30 | 68.19 | 24.10 | 20.74 | 8.34 | |
B/RFD | 0.95 | 0.05 | 95 | 5 | 77.92 | 27.75 | 24.11 | 9.70 |
0.90 | 0.10 | 90 | 10 | 75.98 | 27.16 | 23.56 | 9.49 | |
0.85 | 0.15 | 85 | 15 | 74.02 | 26.57 | 23.02 | 9.27 | |
0.80 | 0.20 | 80 | 20 | 72.09 | 25.99 | 22.48 | 9.05 | |
0.75 | 0.25 | 75 | 25 | 70.14 | 25.40 | 21.93 | 8.83 | |
0.70 | 0.30 | 70 | 30 | 68.20 | 24.82 | 21.39 | 8.61 |
Fuel blend1 | Fuel flow rate | Co-firing share | Input | Output | ||||
---|---|---|---|---|---|---|---|---|
| | Pc | Pb(%) | Air (mol/s) | | | | |
(kg/s) | (kg/s) | (%) | (MW) | (MW) | (MW) | |||
Base | 1.00 | 0.00 | 100 | 0 | 54.53 | 20.07 | 17.00 | 6.84 |
L/RH | 0.95 | 0.05 | 95 | 5 | 53.75 | 19.82 | 16.76 | 6.75 |
0.90 | 0.10 | 90 | 10 | 53.00 | 19.56 | 16.53 | 6.65 | |
0.85 | 0.15 | 85 | 15 | 52.25 | 19.31 | 16.29 | 6.56 | |
0.80 | 0.20 | 80 | 20 | 51.50 | 19.05 | 16.06 | 6.46 | |
0.75 | 0.25 | 75 | 25 | 50.75 | 18.80 | 15.82 | 6.37 | |
0.70 | 0.30 | 70 | 30 | 50.00 | 18.54 | 15.59 | 6.27 | |
L/SD | 0.95 | 0.05 | 95 | 5 | 54.01 | 19.93 | 16.85 | 6.79 |
0.90 | 0.10 | 90 | 10 | 53.51 | 19.79 | 16.73 | 6.73 | |
0.85 | 0.15 | 85 | 15 | 53.02 | 19.65 | 16.58 | 6.67 | |
0.80 | 0.20 | 80 | 20 | 52.52 | 19.51 | 16.44 | 6.62 | |
0.75 | 0.25 | 75 | 25 | 52.03 | 19.37 | 16.29 | 6.56 | |
0.70 | 0.30 | 70 | 30 | 51.53 | 19.23 | 16.18 | 6.51 | |
L/CL | 0.95 | 0.05 | 95 | 5 | 53.82 | 19.78 | 16.73 | 6.73 |
0.90 | 0.10 | 90 | 10 | 53.14 | 19.49 | 16.47 | 6.63 | |
0.85 | 0.15 | 85 | 15 | 52.47 | 19.20 | 16.20 | 6.52 | |
0.80 | 0.20 | 80 | 20 | 51.79 | 18.90 | 15.94 | 6.41 | |
0.75 | 0.25 | 75 | 25 | 51.12 | 18.61 | 15.65 | 6.31 | |
0.70 | 0.30 | 70 | 30 | 50.44 | 18.32 | 15.39 | 6.19 | |
L/RFD | 0.95 | 0.05 | 95 | 5 | 53.83 | 19.90 | 16.85 | 6.78 |
0.90 | 0.10 | 90 | 10 | 53.15 | 19.73 | 16.67 | 6.71 | |
0.85 | 0.15 | 85 | 15 | 52.48 | 19.55 | 16.53 | 6.65 | |
0.80 | 0.20 | 80 | 20 | 51.80 | 19.38 | 16.35 | 6.58 | |
0.75 | 0.25 | 75 | 25 | 51.13 | 19.21 | 16.20 | 6.52 | |
0.70 | 0.30 | 70 | 30 | 50.45 | 19.04 | 16.03 | 6.45 |
Fuel blend | Fuel flow rate | Co-firing share | Input | Output | ||||
---|---|---|---|---|---|---|---|---|
| | Pc | Pb (%) | Air (mol/s) | | | | |
(kg/s) | (kg/s) | (%) | (MW) | (MW) | (MW) | |||
Base | 1.00 | 0.00 | 100 | 0 | 79.86 | 28.30 | 24.65 | 9.92 |
B/RH | 0.95 | 0.10 | 90.45 | 9.55 | 79.80 | 28.40 | 24.65 | 9.92 |
0.90 | 0.20 | 81.77 | 18.23 | 79.80 | 28.49 | 24.65 | 9.92 | |
0.85 | 0.30 | 73.85 | 26.15 | 79.70 | 28.58 | 24.65 | 9.92 | |
0.80 | 0.40 | 66.59 | 33.41 | 79.70 | 28.66 | 24.65 | 9.92 | |
0.75 | 0.50 | 59.91 | 40.09 | 79.70 | 28.75 | 24.65 | 9.92 | |
0.70 | 0.60 | 53.76 | 46.24 | 79.70 | 28.84 | 24.65 | 9.92 | |
B/SD | 0.95 | 0.09 | 91.63 | 8.37 | 79.70 | 28.40 | 24.65 | 9.92 |
0.90 | 0.17 | 83.84 | 16.16 | 79.60 | 28.48 | 24.65 | 9.92 | |
0.85 | 0.26 | 76.56 | 23.44 | 79.50 | 28.57 | 24.65 | 9.92 | |
0.80 | 0.35 | 69.74 | 30.26 | 79.30 | 28.65 | 24.65 | 9.92 | |
0.75 | 0.43 | 63.36 | 36.64 | 79.20 | 28.73 | 24.65 | 9.92 | |
0.70 | 0.52 | 57.35 | 42.65 | 79.10 | 28.81 | 24.65 | 9.92 | |
B/CL | 0.95 | 0.11 | 89.97 | 10.03 | 80.20 | 28.41 | 24.65 | 9.92 |
0.90 | 0.21 | 80.95 | 19.05 | 80.50 | 28.50 | 24.65 | 9.92 | |
0.85 | 0.32 | 72.79 | 27.21 | 80.90 | 28.59 | 24.65 | 9.92 | |
0.80 | 0.42 | 65.37 | 34.63 | 81.20 | 28.68 | 24.65 | 9.92 | |
0.75 | 0.53 | 58.60 | 41.40 | 81.60 | 28.78 | 24.65 | 9.92 | |
0.70 | 0.64 | 52.40 | 47.60 | 82.00 | 28.87 | 24.65 | 9.92 | |
B/RFD | 0.95 | 0.09 | 91.38 | 8.62 | 79.50 | 28.39 | 24.65 | 9.92 |
0.90 | 0.18 | 83.40 | 16.60 | 79.20 | 28.46 | 24.65 | 9.92 | |
0.85 | 0.27 | 75.97 | 24.03 | 78.90 | 28.54 | 24.65 | 9.92 | |
0.80 | 0.36 | 69.05 | 30.95 | 78.60 | 28.61 | 24.65 | 9.92 | |
0.75 | 0.45 | 62.59 | 37.41 | 78.20 | 28.68 | 24.65 | 9.92 | |
0.70 | 0.54 | 56.55 | 43.45 | 77.90 | 28.76 | 24.65 | 9.92 |
Fuel blend | Fuel flow rate | Co-firing share | Input | Output | ||||
---|---|---|---|---|---|---|---|---|
| | Pc | Pb(%) | Air (mol/s) | | | | |
(kg/s) | (kg/s) | (%) | (MW) | (MW) | (MW) | |||
Base | 1.00 | 0.00 | 100 | 0 | 54.53 | 20.07 | 17.00 | 6.84 |
L/RH | 0.95 | 0.07 | 93.27 | 6.73 | 54.51 | 20.10 | 17.00 | 6.84 |
0.90 | 0.14 | 86.74 | 13.26 | 54.49 | 20.13 | 17.00 | 6.84 | |
0.85 | 0.21 | 80.44 | 19.56 | 54.48 | 20.16 | 17.00 | 6.84 | |
0.80 | 0.28 | 74.36 | 25.64 | 54. 47 | 20.19 | 17.00 | 6.84 | |
0.75 | 0.34 | 68.50 | 31.50 | 54.46 | 20.22 | 17.00 | 6.84 | |
0.70 | 0.41 | 62.84 | 37.16 | 54.45 | 20.26 | 17.00 | 6.84 | |
L/SD | 0.95 | 0.06 | 94.12 | 5.88 | 54.42 | 20.09 | 17.00 | 6.84 |
0.90 | 0.12 | 88.31 | 11.69 | 54.36 | 20.12 | 17.00 | 6.84 | |
0.85 | 0.18 | 82.62 | 17.38 | 54.30 | 20.15 | 17.00 | 6.84 | |
0.80 | 0.24 | 77.03 | 22.97 | 54.25 | 20.18 | 17.00 | 6.84 | |
0.75 | 0.30 | 71.54 | 28.46 | 54.19 | 20.21 | 17.00 | 6.84 | |
0.70 | 0.36 | 66.16 | 33.84 | 54.13 | 20.24 | 17.00 | 6.84 | |
L/CL | 0.95 | 0.07 | 92.92 | 7.08 | 54.74 | 20.10 | 17.00 | 6.84 |
0.90 | 0.15 | 86.10 | 13.90 | 55.01 | 20.13 | 17.00 | 6.84 | |
0.85 | 0.22 | 79.57 | 20.43 | 55.28 | 20.17 | 17.00 | 6.84 | |
0.80 | 0.29 | 73.31 | 26.69 | 55.54 | 20.21 | 17.00 | 6.84 | |
0.75 | 0.36 | 67.32 | 32.68 | 55.81 | 20.24 | 17.00 | 6.84 | |
0.70 | 0.44 | 61.56 | 38.44 | 56.08 | 20.28 | 17.00 | 6.84 | |
L/RFD | 0.95 | 0.06 | 93.95 | 6.05 | 54.29 | 20.09 | 17.00 | 6.84 |
0.90 | 0.12 | 87.99 | 12.01 | 54.09 | 20.11 | 17.00 | 6.84 | |
0.85 | 0.18 | 82.16 | 17.84 | 53.89 | 20.13 | 17.00 | 6.84 | |
0.80 | 0.25 | 76.46 | 23.54 | 53.70 | 20.15 | 17.00 | 6.84 | |
0.75 | 0.31 | 70.89 | 29.11 | 53.50 | 20.18 | 17.00 | 6.84 | |
0.70 | 0.37 | 65.44 | 34.56 | 53.30 | 20.20 | 17.00 | 6.84 |
5.2. Effect of Co-firing on Energy Losses
Fuel blend | Co-firing share (%) | Energy loss rate (MW) | |||||
---|---|---|---|---|---|---|---|
Pc | Pb | M | FG | Ash | | | |
Base | 100 | 0 | 1.237 | 1.630 | 0.021 | 0.850 | 14.52 |
B/RH | 95 | 5 | 1.257 | 1.590 | 0.022 | 0.830 | 14.16 |
90 | 10 | 1.277 | 1.549 | 0.022 | 0.810 | 13.80 | |
85 | 15 | 1.297 | 1.509 | 0.023 | 0.790 | 13.44 | |
80 | 20 | 1.316 | 1.468 | 0.023 | 0.770 | 13.08 | |
75 | 25 | 1.336 | 1.428 | 0.024 | 0.750 | 12.71 | |
70 | 30 | 1.356 | 1.388 | 0.024 | 0.730 | 12.34 | |
B/SD | 95 | 5 | 1.297 | 1.595 | 0.020 | 0.833 | 14.23 |
90 | 10 | 1.356 | 1.560 | 0.019 | 0.817 | 13.92 | |
85 | 15 | 1.416 | 1.525 | 0.018 | 0.800 | 13.61 | |
80 | 20 | 1.475 | 1.490 | 0.017 | 0.784 | 13.30 | |
75 | 25 | 1.534 | 1.454 | 0.016 | 0.767 | 12.99 | |
70 | 30 | 1.594 | 1.419 | 0.015 | 0.750 | 12.68 | |
B/CL | 95 | 5 | 1.249 | 1.590 | 0.024 | 0.829 | 14.14 |
90 | 10 | 1.261 | 1.551 | 0.026 | 0.808 | 13.76 | |
85 | 15 | 1.273 | 1.511 | 0.028 | 0.787 | 13.39 | |
80 | 20 | 1.285 | 1.471 | 0.030 | 0.765 | 12.99 | |
75 | 25 | 1.297 | 1.431 | 0.033 | 0.744 | 12.61 | |
70 | 30 | 1.308 | 1.392 | 0.035 | 0.723 | 12.23 | |
B/RDF | 95 | 5 | 1.209 | 1.591 | 0.023 | 0.832 | 14.21 |
90 | 10 | 1.180 | 1.552 | 0.024 | 0.815 | 13.88 | |
85 | 15 | 1.151 | 1.513 | 0.026 | 0.797 | 13.56 | |
80 | 20 | 1.123 | 1.473 | 0.028 | 0.780 | 13.25 | |
75 | 25 | 1.094 | 1.434 | 0.029 | 0.762 | 12.92 | |
70 | 30 | 1.066 | 1.395 | 0.031 | 0.745 | 12.61 |
Fuel blend | Co-firing share (%) | Energy loss rate (MW) | |||||
---|---|---|---|---|---|---|---|
Pc | Pb | M | FG | Ash | | | |
Base | 100 | 0 | 1.967 | 1.126 | 0.017 | 0.602 | 10.01 |
L/RH | 95 | 5 | 1.950 | 1.111 | 0.018 | 0.595 | 9.88 |
90 | 10 | 1.933 | 1.095 | 0.018 | 0.587 | 9.74 | |
85 | 15 | 1.917 | 1.080 | 0.019 | 0.579 | 9.60 | |
80 | 20 | 1.900 | 1.065 | 0.020 | 0.572 | 9.46 | |
75 | 25 | 1.883 | 1.050 | 0.021 | 0.564 | 9.33 | |
70 | 30 | 1.867 | 1.035 | 0.021 | 0.556 | 9.19 | |
L/SD | 95 | 5 | 1.990 | 1.116 | 0.016 | 0.598 | 9.93 |
90 | 10 | 2.013 | 1.106 | 0.015 | 0.594 | 9.86 | |
85 | 15 | 2.036 | 1.096 | 0.014 | 0.590 | 9.77 | |
80 | 20 | 2.059 | 1.086 | 0.014 | 0.585 | 9.69 | |
75 | 25 | 2.082 | 1.076 | 0.013 | 0.581 | 9.60 | |
70 | 30 | 2.105 | 1.066 | 0.012 | 0.577 | 9.53 | |
L/CL | 95 | 5 | 1.942 | 1.111 | 0.020 | 0.593 | 9.86 |
90 | 10 | 1.918 | 1.097 | 0.022 | 0.585 | 9.70 | |
85 | 15 | 1.893 | 1.082 | 0.025 | 0.576 | 9.55 | |
80 | 20 | 1.868 | 1.068 | 0.027 | 0.567 | 9.39 | |
75 | 25 | 1.844 | 1.053 | 0.030 | 0.558 | 9.22 | |
70 | 30 | 1.819 | 1.039 | 0.032 | 0.550 | 9.07 | |
L/RFD | 95 | 5 | 1.902 | 1.112 | 0.019 | 0.597 | 9.93 |
90 | 10 | 1.837 | 1.098 | 0.021 | 0.592 | 9.82 | |
85 | 15 | 1.772 | 1.084 | 0.022 | 0.587 | 9.74 | |
80 | 20 | 1.707 | 1.070 | 0.024 | 0.581 | 9.64 | |
75 | 25 | 1.642 | 1.056 | 0.026 | 0.576 | 9.55 | |
70 | 30 | 1.577 | 1.042 | 0.028 | 0.571 | 9.45 |
Fuel blend | Co-firing share (%) | Energy loss rate (MW) | |||||
---|---|---|---|---|---|---|---|
Pc | Pb | M | FG | Ash | | | |
Base | 100.00 | 0.00 | 1.237 | 1.630 | 0.021 | 0.850 | 14.52 |
B/RH | 90.45 | 9.55 | 1.338 | 1.631 | 0.024 | 0.852 | 14.52 |
81.77 | 18.23 | 1.44 | 1.632 | 0.028 | 0.855 | 14.52 | |
73.85 | 26.15 | 1.542 | 1.633 | 0.032 | 0.857 | 14.52 | |
66.59 | 33.41 | 1.644 | 1.634 | 0.035 | 0.860 | 14.52 | |
59.91 | 40.09 | 1.746 | 1.635 | 0.039 | 0.863 | 14.52 | |
53.76 | 46.24 | 1.848 | 1.636 | 0.044 | 0.865 | 14.52 | |
B/SD | 91.63 | 8.37 | 1.384 | 1.628 | 0.021 | 0.852 | 14.52 |
83.84 | 16.16 | 1.533 | 1.627 | 0.020 | 0.855 | 14.52 | |
76.56 | 23.44 | 1.681 | 1.626 | 0.020 | 0.857 | 14.52 | |
69.74 | 30.26 | 1.83 | 1.625 | 0.019 | 0.859 | 14.52 | |
63.36 | 36.64 | 1.979 | 1.624 | 0.019 | 0.862 | 14.52 | |
57.35 | 42.65 | 2.127 | 1.623 | 0.018 | 0.864 | 14.52 | |
B/CL | 89.97 | 10.03 | 1.330 | 1.636 | 0.029 | 0.852 | 14.52 |
80.95 | 19.05 | 1.424 | 1.643 | 0.037 | 0.855 | 14.52 | |
72.79 | 27.21 | 1.519 | 1.650 | 0.046 | 0.858 | 14.52 | |
65.37 | 34.63 | 1.613 | 1.657 | 0.055 | 0.861 | 14.52 | |
58.60 | 41.40 | 1.708 | 1.664 | 0.065 | 0.863 | 14.52 | |
52.40 | 47.60 | 1.803 | 1.671 | 0.075 | 0.866 | 14.52 | |
B/RDF | 91.38 | 8.62 | 1.234 | 1.624 | 0.026 | 0.852 | 14.52 |
83.40 | 16.60 | 1.232 | 1.618 | 0.031 | 0.854 | 14.52 | |
75.97 | 24.03 | 1.23 | 1.613 | 0.036 | 0.856 | 14.52 | |
69.05 | 30.95 | 1.228 | 1.607 | 0.041 | 0.858 | 14.52 | |
62.59 | 37.41 | 1.226 | 1.601 | 0.047 | 0.861 | 14.52 | |
56.55 | 43.45 | 1.224 | 1.596 | 0.053 | 0.863 | 14.52 |
Fuel blend | Co-firing share (%) | Energy loss rate (MW) | |||||
---|---|---|---|---|---|---|---|
Pc | Pb | M | FG | Ash | | | |
Base | 100.00 | 0.00 | 1.967 | 1.126 | 0.017 | 0.602 | 10.01 |
L/RH | 93.27 | 6.73 | 1.980 | 1.127 | 0.019 | 0.603 | 10.01 |
86.74 | 13.26 | 1.995 | 1.128 | 0.020 | 0.604 | 10.01 | |
80.44 | 19.56 | 2.010 | 1.129 | 0.022 | 0.605 | 10.01 | |
74.36 | 25.64 | 2.024 | 1.130 | 0.024 | 0.606 | 10.01 | |
68.50 | 31.50 | 2.039 | 1.131 | 0.026 | 0.607 | 10.01 | |
62.84 | 37.16 | 2.054 | 1.132 | 0.028 | 0.608 | 10.01 | |
L/SD | 94.12 | 5.88 | 2.012 | 1.125 | 0.016 | 0.603 | 10.01 |
88.31 | 11.69 | 2.059 | 1.124 | 0.016 | 0.604 | 10.01 | |
82.62 | 17.38 | 2.106 | 1.123 | 0.015 | 0.605 | 10.01 | |
77.03 | 22.97 | 2.153 | 1.122 | 0.014 | 0.606 | 10.01 | |
71.54 | 28.46 | 2.200 | 1.121 | 0.013 | 0.606 | 10.01 | |
66.16 | 33.84 | 2.246 | 1.120 | 0.013 | 0.607 | 10.01 | |
L/CL | 92.92 | 7.08 | 1.975 | 1.130 | 0.022 | 0.603 | 10.01 |
86.10 | 13.90 | 1.984 | 1.135 | 0.026 | 0.604 | 10.01 | |
79.57 | 20.43 | 1.994 | 1.139 | 0.031 | 0.605 | 10.01 | |
73.31 | 26.69 | 2.003 | 1.144 | 0.036 | 0.606 | 10.01 | |
67.32 | 32.68 | 2.012 | 1.149 | 0.041 | 0.607 | 10.01 | |
61.56 | 38.44 | 2.022 | 1.153 | 0.047 | 0.608 | 10.01 | |
L/RFD | 93.95 | 6.05 | 1.909 | 1.121 | 0.020 | 0.603 | 10.01 |
87.99 | 12.01 | 1.852 | 1.117 | 0.022 | 0.603 | 10.01 | |
82.16 | 17.84 | 1.795 | 1.113 | 0.025 | 0.604 | 10.01 | |
76.46 | 23.54 | 1.738 | 1.109 | 0.028 | 0.605 | 10.01 | |
70.89 | 29.11 | 1.680 | 1.105 | 0.031 | 0.605 | 10.01 | |
65.44 | 34.56 | 1.623 | 1.101 | 0.034 | 0.606 | 10.01 |
5.3. Effect of Co-firing on Efficiencies
6. Conclusions
Acknowledgments
References
- International Energy Agency. Publications: CO2 Emissions from Fuel Combustion 2010 – Highlights. Available online: http://www.iea.org/co2highlights/CO2highlights.pdf (accessed on 16 February 2011).
- World Coal Association. Where is Coal Found. Available online: http://www.worldcoal.org/coal/what-is-coal/ (accessed on 27 January 2011).
- World Coal Association. Coal and Electricity. Available online: http://www.worldcoal.org/coal/uses-of-coal/coal-electricity/ (accessed on 27 January 2011).
- Demirbas, A. Sustainable Co-firing of Biomass with Coal. Energ. Convers. Manage. 2003, 44, 1465–1479. [Google Scholar]
- Savolainen, K. Co-firing of Biomass in Coal-fired Utility Boilers. Appl. Energ. 2003, 74, 369–381. [Google Scholar]
- Pronobis, M. The Influence of Biomass Co-Combustion on Boiler Fouling and Efficiency. Fuel 2006, 85, 474–480. [Google Scholar]
- Spliethoff, H.; Hein, K.R.G. Effect of Co-combustion of Biomass on Emissions in Pulverized Fuel Furnaces. Fuel Process. Technol. 1998, 54, 189–205. [Google Scholar]
- Skodras, G.; Grammelis, P.; Samaras, P.; Vourliotis, P.; Kakaras, E.; Sakellaropoulos, G.P. Emissions Monitoring during Coal Waste Wood Co-combustion in an Industrial Steam Boiler. Fuel 2002, 81, 547–554. [Google Scholar]
- Ye, T.H.; Azevedo, J.; Costa, M.; Semiao, V. Co-combustion of Pulverized Coal, Pine Shells, and Textile Wastes in a Propane-Fired Furnace: Measurements and Predictions. Combust. Sci. Technol. 2004, 176, 2071–2104. [Google Scholar]
- Gani, A.; Morishita, K.; Nishikawa, K.; Naruse, I. Characteristics of Co-combustion of Low-Rank Coal with Biomass. Energ. Fuel. 2005, 19, 1652–1659. [Google Scholar]
- Kruczek, H.; Raczka, P.; Tatarek, A. The Effect of Biomass on Pollutant Emission and Burnout in Co-combustion with Coal. Combust. Sci. Technol. 2006, 178, 1511–1539. [Google Scholar]
- Chao, C.Y.H.; Kwong, P.C.W.; Wang, J.H.; Cheung, C.W.; Kendall, G. Co-firing Coal with Rice Husk and Bamboo and the Impact on Particulate Matters and Associated Polycyclic Aromatic Hydrocarbon Emissions. Bioresoure Technol. 2008, 99, 83–93. [Google Scholar]
- Kwong, P.C.W.; Chao, C.Y.H.; Wang, J.H.; Cheung, C.W.; Kendall, G. Co-combustion Performance of Coal with Rice Husks and Bamboo. Atmos. Environ. 2007, 41, 7462–7472. [Google Scholar]
- Casaca, C.; Costa, M. Co-combustion of Biomass in a Natural Gas-fired Furnace. Combust. Sci. Technol. 2003, 175, 1953–1977. [Google Scholar]
- Lawrence, B.; Annamalai, K.; Sweeten, J.M.; Heflin, K. Co-firing Coal and Dairy Biomass in a 29 kWt Furnace. Appl. Energ. 2009, 86, 2359–2372. [Google Scholar]
- Patumsawad, S.; Cliffe, K.R. Experimental Study on Fludized Bed Combustion of High Moisture Municipal Solid Waste. Energ. Convers. Manage. 2002, 43, 2329–2340. [Google Scholar]
- Demirbas, A. Co-firing Coal and Municipal Solid Waste. Energ. Source. Part A 2008, 30, 361–369. [Google Scholar]
- Abbas, T.; Costen, P.; Kandamby, N.H.; Lockwood, F.C. The Influence of Burner Injection Mode on Pulverized Coal and Biomass Co-fired Flames. Combust.Flame 1994, 99, 617–625. [Google Scholar]
- Backreedy, R.I.; Fletcher, L.M.; Jones, J.M.; Ma, L.; Pourkashanian, M.; Williams, A. Co-firing Pulverized Coal and Biomass: A Modelling Approach. P. Combust. Inst. 2005, 30, 2955–2964. [Google Scholar]
- Doshi, V.; Vuthaluru, H.B.; Korbee, R.; Kiel, J.H.A. Development of Modeling Approach to Predict Ash Formation during Co-firing of Coal and Biomass. Fuel Process. Technol. 2009, 90, 1148–1156. [Google Scholar]
- Ghenai, C.; Janajreh, I. CFD Analysis of the Effects of Co-firing Biomass with Coal. Energ. Convers. Manage. 2010, 51, 1694–1701. [Google Scholar]
- Dong, C.; Yang, Y.; Yang, R.; Zhang, J. Numerical Modeling of the Gasification based Co-firing in a 600 MW Pulverized Coal Boiler. Appl. Energ. 2010, 87, 2838–2834. [Google Scholar]
- De, S.; Assadi, M. Impact of Biomass Co-firing with Coal in Power Plants: A Techno-economic Assessment. Biomass Bioenerg. 2009, 33, 283–293. [Google Scholar]
- Basu, P.; Butler, J.; Leon, M.A. Biomass Co-firing Options on the Emissions Reduction and Electricity Generation Costs in Coal-fired Power Plants. Renew. Energ. 2011, 36, 282–288. [Google Scholar]
- Wang, X.; Tan, H.; Niu, Y.; Pourkashanian, M.; Ma, L.; Chen, E.; Liu, Y.; Liu, Z.; Xu, T. Experimental Investigation on Biomass Co-firing in a 300 MW Pulverized Coal-fired Utility Furnace in China. P. Combust. Inst. 2011, 33, 2725–2733. [Google Scholar]
- Otero, M.; Sánchez, M.E.; Gómez, X. Co-firing of Coal and Manure Biomass: A TG–MS Approach. Bioresoure Technol. 2011, 102, 8304–8309. [Google Scholar]
- Teixeira, P.; Lopes, H.; Gulyurtlu, I.; Lapa, N.; Abelha, P. Evaluation of Slagging and Fouling Tendency during Biomass Co-firing with Coal in a Fluidized Bed. Biomass Bioenerg. 2012, 39, 192–203. [Google Scholar]
- Li, X.J.; Wang, Y.Z.; Yue, M.Z. Experimental Study on the Corrosion Characteristics during Co-firing of Cornstalk and Lean Coal. Adv. Mat. Res. 2012, 347-357, 2622–2625. [Google Scholar]
- Zuwala, J.; Sciazko, M. Full Scale Co-firing Tests of Sawdust and Bio-waste in Pulverized Coal-fired 230t/h Steam Boiler. Biomass Bioenerg. 2010, 34, 1165–1174. [Google Scholar]
- Huang, Y.; Wright, D.M.; Rezvani, S.; Wang, Y.D.; Hewitt, N.; Williams, B.C. Biomass Co-firing in a Pressurized Fluidized Bed Combustion (PFBC) Combined Cycle Power Plant: A Techno-Environmental Assessment based on Computational Simulations. Fuel Process. Technol. 2006, 87, 927–934. [Google Scholar]
- The Handbook of Biomass Combustion and Co-firirng; Loo, S.V.; Koppejan, J. (Eds.) Earthscan: London, UK, 2008.
- Ghamarian, A.; Cambel, A.B. Biomass Exergy Analysis of Illinois No. 6 Coal. Energy 1982, 7, 483–488. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An Overview of the Chemical Composition of Biomass. Fuel 2010, 89, 913–933. [Google Scholar]
- Madhiyanon, T.; Sathitruangsak, P.; Soponronnarit, S. Co-combustion of Rice Husk with Coal in a Cyclonic Fluidized-bed Combustor (ψ-FBC). Fuel 2009, 88, 132–138. [Google Scholar]
- Vassilev, S.V.; Vassileva, C.G. A New Approach for the Combined Chemical and Mineral Classification of the Inorganic Matter in Coal. 1. Chemical and Mineral Classification Systems. Fuel 2009, 88, 235–245. [Google Scholar] [CrossRef]
- Al-Mansour, F.; Zuwala, J. An Evaluation of Biomass Co-firing in Europe. Biomass Bioenerg. 2010, 34, 620–629. [Google Scholar]
- Maciejewska, A.; Veringa, H.; Sanders, J.; Peteves, S.D. Co-firing Biomass with Coal: Constraints and Role of Biomass Pre-treatment. JRC's Institute for Energy. 2006. Available online: http://library.wur.nl/way/bestanden/clc/1880856.pdf (accessed on 27 January 2011).
- Basu, P.; Kefa, C.; Jestin, L. Boilers and Burners: Design and Theory; Springer: New York, NY, USA, 2000. [Google Scholar]
- Thumann, A.; Williams, J.; Younger, T.N. Handbook of Energy Audits, 8th ed; The Fairmont Press Inc: Lilburn, GA, USA, 2009. [Google Scholar]
- Power Plant Engineering; Drbal, L.F.; Boston, P.G.; Westra, K.L. (Eds.) Springer: New Yok, NY, USA, 1996.
- Bellhouse, G.M.; Whittington, H.W. Simulation of Gaseous Emissions from Electricity Generation Plant. Int. Elect. Power 1996, 18, 501–507. [Google Scholar]
- Sarofim, A.; Flagan, R.C. NOx Control for Stationary Combustion Sources. Prog. Energ. Combust. 1976, 2, 1–25. [Google Scholar]
- Phong-Anant, D.; Wibberley, L.J.; Wall, T.F. Nitrogen Oxide Formation from Canadian Coals. Combust. Flame 1985, 62, 21–30. [Google Scholar]
- Miller, A.; Bowman, C.T. Mechanism and Modeling of Nitrogen Chemistry in Combustion. Prog. Energ. Combust. 1989, 15, 287–238. [Google Scholar]
- Grass, S.W.; Jenkins, B.M. Biomass Fluidized-bed Combustion: Atmospheric Emissions, Emissions Control Devices and Environmental Regulations. Biomass Bioenerg. 1994, 6, 243–260. [Google Scholar]
- De Souza-Santos, M.L. Solid Fuels Combustion and Gasification: Modeling, Simulation, and Equipment Operations, 2nd ed; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Tsatsaronis, G.; Winhold, M. Exergoeconomic Analysis and Evaluation of Energy-Conversion Plants—II. Analysis of a Coal-fired Steam Power Plant. Energy 1985, 10, 81–94. [Google Scholar] [CrossRef]
- Aljundi, I.H. Energy and Exergy Analysis of a Steam Power Plant in Jordan. Appl. Therm. Eng. 2009, 29, 324–328. [Google Scholar]
- Suresh, M.V.J.J.; Reddy, K.S.; Kolar, A.K. 3-E Analysis of Advanced Power Plants based on High Ash Coal. Int. J. Energ. Res. 2010, 34, 716–735. [Google Scholar]
- Dincer, I.; Rosen, M.A. Exergy: Energy, Environment and Sustainable Development; Elsevier: Oxford, UK, 2007. [Google Scholar]
- Moran, M.J.; Shapiro, H.N.; Boettner, D.D.; Bailey, M.B. Fundamentals of Engineering Thermodynamics, 7th ed; John Wiley & Sons Inc: Hoboken, NJ, USA, 2011. [Google Scholar]
- Eisermann, W.; Johnson, P.; Conger, W.L. Estimating Thermodynamic Properties of Coal, Char, Tar and Ash. Fuel Process. Technol. 1980, 3, 39–53. [Google Scholar]
- Woods, T.L.; Garrels, R.M. The Exergoecology Portal, 1987. Available online: http://www.exergoecology.com (accessed on 10 February 2011).
- National Institute of Standards and Technology (NIST). Standard Reference Data, 1965. Available online: http://webbook.nist.gov/cgi/cbook.cgi?ID=C7446119&Units=SI&Mask=1&Type=JANAFG&Plot=on#JANAFG (accessed on 31 January 2011).
- Berman, R.G.; Brown, T.H. Heat Capacity of Minerals in the System Na2O-K2O-CaO-MgO-FeO-Fe2O3-A12O3-SiO2-TiO2-H2O-CO2: Representation, Estimation, and High Temperature Extrapolation. Contrib. Mineral. Petrol. 1985, 89, 168–163. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Mehmood, S.; Reddy, B.V.; Rosen, M.A. Energy Analysis of a Biomass Co-firing Based Pulverized Coal Power Generation System . Sustainability 2012, 4, 462-490. https://doi.org/10.3390/su4040462
Mehmood S, Reddy BV, Rosen MA. Energy Analysis of a Biomass Co-firing Based Pulverized Coal Power Generation System . Sustainability. 2012; 4(4):462-490. https://doi.org/10.3390/su4040462
Chicago/Turabian StyleMehmood, Shoaib, Bale V. Reddy, and Marc A. Rosen. 2012. "Energy Analysis of a Biomass Co-firing Based Pulverized Coal Power Generation System " Sustainability 4, no. 4: 462-490. https://doi.org/10.3390/su4040462
APA StyleMehmood, S., Reddy, B. V., & Rosen, M. A. (2012). Energy Analysis of a Biomass Co-firing Based Pulverized Coal Power Generation System . Sustainability, 4(4), 462-490. https://doi.org/10.3390/su4040462