Automatic Layout Method for Seismic Monitoring Devices on the Basis of Building Geometric Features
Abstract
1. Introduction
2. Method
2.1. Regional Building Selection
2.2. Building Geometry Recognition
2.3. Installation List Calculation
3. Results
3.1. Deployment Area Construction
3.2. Simple Frame Structure
3.3. Complex Frame Structure
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, D.X.; Geng, G.S. Estimation of site amplification effect in North China from ambient seismic noise. China Earthq. Eng. J. 2017, 39, 719–724. [Google Scholar] [CrossRef]
- Peng, F.; Wang, W.J.; Kou, H.D. Microtremer H/V spectral ratio investigation in the Sanhe-Pinggu area: Site responses, shallow sedimentary structure, and fault activity revealed. Chin. J. Geophys. 2020, 63, 3775–3790. [Google Scholar] [CrossRef]
- Ansal, A.; İyisan, R.; Yıldırım, H. The cyclic behaviour of soils and effects of geotechnical factors in microzonation. Soil Dyn. Earthq. Eng. 2001, 21, 445–452. [Google Scholar] [CrossRef]
- Hall, J.F. Seismic response of steel frame buildings to near-source ground motions. Earthq. Eng. Struct. Dyn. 1998, 27, 1445–1464. [Google Scholar] [CrossRef]
- Hall, J.F.; Heaton, T.H.; Halling, M.W.; Wald, D.J. Near-Source Ground Motion and its Effects on Flexible Buildings. Earthq. Spectra 1995, 11, 569–605. [Google Scholar] [CrossRef]
- Heaton, T.H.; Hall, J.F.; Wald, D.J.; Halling, M.W. Response of High-Rise and Base-Isolated Buildings to a Hypothetical Mw 7.0 Blind Thrust Earthquake. Science 1995, 267, 206–211. [Google Scholar] [CrossRef]
- Huang, M.; Cheng, X.; Zhu, Z.; Luo, J.; Gu, J. A Novel Two-Stage Structural Damage Identification Method Based on Superposition of Modal Flexibility Curvature and Whale Optimization Algorithm. Int. J. Struct. Stab. Dyn. 2021, 21, 2150169. [Google Scholar] [CrossRef]
- Huang, M.; Li, X.; Lei, Y.; Gu, J. Structural damage identification based on modal frequency strain energy assurance criterion and flexibility using enhanced Moth-Flame optimization. Structures 2020, 28, 1119–1136. [Google Scholar] [CrossRef]
- Huang, M.; Ling, Z.; Sun, C.; Lei, Y.; Xiang, C.; Wan, Z.; Gu, J. Two-stage damage identification for bridge bearings based on sailfish optimization and element relative modal strain energy. Struct. Eng. Mech. 2023, 86, 715–730. [Google Scholar] [CrossRef]
- Wu, Y.; Cai, D.; Gu, S.; Nan, J.; Li, S. Compressive strength prediction of sleeve grouting materials in prefabricated structures using hybrid optimized XGBoost models. Constr. Build. Mater. 2025, 476, 141319. [Google Scholar] [CrossRef]
- Deng, Z.; Huang, M.; Wan, N.; Zhang, J. The Current Development of Structural Health Monitoring for Bridges: A Review. Buildings 2023, 13, 1360. [Google Scholar] [CrossRef]
- Larson, C.B.; Zimmerman, D.C.; Marek, E.L.A. A comparison of modal planning techniques excitation and sensor placement using the NASA 8-bay truss. In Proceedings of the 12th IMAC Conference, Honolulu, HI, USA, 31 January–3 February 1994; Allemang, R., Ed.; pp. 205–211. [Google Scholar]
- Wang, G.X.; Wang, W.Z. Optimal placement of accelerographs in a high-rise building. J. Vib. Shock 2008, 27, 179–182. [Google Scholar] [CrossRef] [PubMed]
- Kammer, D.C. Sensor Placement for On-Orbit Modal Identification and Correlation of Large Space Structures. In Proceedings of the 1990 American Control Conference, San Diego, CA, USA, 23–25 May 1990; pp. 2984–2990. [Google Scholar] [CrossRef]
- Guyan, R.J. Reduction of stiffness and mass matrices. AIAA J. 1965, 3, 380. [Google Scholar] [CrossRef]
- Li, G.; Qin, Q.; Dong, C. Optimal placement of sensors for monitoring systems on suspension bridges using genetic algorithms. Eng. Mech. 2000, 17, 25–34. [Google Scholar] [CrossRef]
- Park, Y.S.; Kim, H.B. Sensor placement guide for model comparison and improvement. In Proceedings of the 14th International Modal Analysis Conference, Dearborn, MI, USA, 12–15 February 1996; pp. 404–409. [Google Scholar]
- Liu, F.Q.; Zhang, L.M. Advances in optimal placement of actuators and sensors. Adv. Mech. 2000, 30, 506–516. [Google Scholar] [CrossRef]
- Bhat, H.S.; Olives, M.; Dmowska, R.; Rice, J.R. Role of fault branches in earthquake rupture dynamics. J. Geophys. Res. Solid Earth 2007, 112. [Google Scholar] [CrossRef]
- Hu, F.; Xu, J.K.; Zhang, Z.G.; Chen, X.F. Supershear transition mechanism induced by step over geometry. J. Geophys. Res. Solid Earth 2016, 121, 8738–8749. [Google Scholar] [CrossRef]
- Ma, C.H.; Qian, F.; Zhang, H.M. Simulation of rupture process and its influence factors of the 2013 MS7.0 Lushan earthquake. Chin. J. Geophys. 2021, 64, 170–181. [Google Scholar] [CrossRef]
- Zhang, L.F.; Bunichiro, S.; Liao, W.L.; Li, J.G.; Wang, Q.L. Controlling factors analysis of dynamic rupture propagation simulation of curved fault based on Boundary integral equation method. Chin. J. Geophys. 2016, 59, 981–991. [Google Scholar] [CrossRef]
- Zheng, L.L.; Qian, F.; Zhang, H.M. The transition conditions of supershear rupture propagation on fault-bend systems. Chin. J. Geophys. 2021, 64, 182–194. [Google Scholar] [CrossRef]
- Anderson, J.G.; Bodin, P.; Brune, J.N.; Prince, J.; Singh, S.K.; Quaas, R.; Onate, M. Strong Ground Motion from the Michoacan, Mexico, Earthquake. Science 1986, 233, 1043–1049. [Google Scholar] [CrossRef]
- Wang, H.Y.; Xie, L.L. Effects of topography on ground motion in the Xishan park, Zigong city. Chin. J. Geophys. 2010, 53, 1631–1638. [Google Scholar] [CrossRef]
- Wang, M.F.; Zheng, A.; Yu, X.W.; Zhang, W.B. Study on the influence of local mountainous topography to fault dynamic rupture. Acta Seismol. Sin. 2018, 40, 737–752. [Google Scholar] [CrossRef]
- Wang, Z.J.; Li, Y.L.; Wang, W.Q.; Zhang, W.Q.; Zhang, Z.G. Revisiting Paleoearthquakes with Numerical Modeling: A Case Study of the 1679 Sanhe–Pinggu Earthquake. Seismol. Res. Lett. 2022, 94, 720–730. [Google Scholar] [CrossRef]
- Andrews, D.J. Dynamic plane-strain shear rupture with a slip-weakening friction law calculated by a boundary integral method. Bull. Seismol. Soc. Am. 1985, 75, 1–21. [Google Scholar] [CrossRef]
- Madariaga, R.; Olsen, K.B. Criticality of Rupture Dynamics in 3-D. Pure Appl. Geophys. 2000, 157, 1981–2001. [Google Scholar] [CrossRef]
- Miyake, H.; Iwata, T.; Irikura, K. Source characterization for broadband ground-motion simulation: Kinematic heterogeneous source model and strong motion generation area. Bull. Seismol. Soc. Am. 2003, 93, 2531–2545. [Google Scholar] [CrossRef]
- Che, Z.H. Activity Research of the Nankou-Sunhe Fault. Seismol. Geol. 1994, 115–120. [Google Scholar]
- Liang, Y.N. A study of structure and activity of the north part of Nankou-Sunhe fault in Beijing. Geol. Bull. China 2019, 38, 858–865. [Google Scholar] [CrossRef]
- Jiang, W.L.; Hou, Z.H.; Xie, X.S. Paleoseismic Events in the Changping Jiuxian Trench of the Nankou-Sunhe Fault Zone in the Beijing Plain. Sci. China Earth Sci. 2001, 31, 501–509. [Google Scholar] [CrossRef]
- Gu, G.X. China Earthquake Catalog; Science Press: Beijing, China, 1984. [Google Scholar]
- Xie, Y.S.; Cai, M.B. Compilation of Historical Seismological Data in China; Science Press: Beijing, China, 1983. [Google Scholar]
- Ba, Z.N.; Zhao, J.X.; Liang, J.W.; Zhang, Y.S.; Zhang, Y.J. Simulation of Strong Ground Motion in Beijing Area Based on Finite Fault Source Model: Taking the 1679 Sanhe-Pinggu M8 Earthquake as an Example. J. Seismol. Res. 2022, 45, 479–488. [Google Scholar] [CrossRef]
- Fu, C.H.; Gao, M.T.; Yu, Y.X. Studying on amplification effect of Beijing basin on 3~10 s ground motion by numerical simulation method. J. Seismol. Res. 2015, 38, 448–460. [Google Scholar] [CrossRef]
- Gao, M.T.; Yu, Y.X.; Zhang, X.M.; Wu, J.; Hu, P.; Ding, Y.H. Three-Dimensional Finite-Difference Simulations of Ground Motions in the Beijing Area. Earthq. Res. China 2002, 18, 356–364. [Google Scholar] [CrossRef]
- Liu, B.Y.; Shi, B.P.; Zhang, J. Strong motion simulation by the composite source modeling: A case study of 1679 m8.0 sanhe-pinggu earthquake. Acta Seismol. Sin. 2007, 20, 319–331. [Google Scholar] [CrossRef]
- Pan, B.; Xu, J.D.; Guan Kou, C.Z.; He, H.L. Simulation of the near-fault strong ground motion in beijing region. Seismol. Geol. 2006, 28, 623–634. [Google Scholar] [CrossRef]
- Ding, Z.; Romanelli, F.; Chen, Y.T.; Panza, G.F. Realistic Modeling of Seismic Wave Ground Motion in Beijing City. Pure Appl. Geophys. 2004, 161, 1093–1106. [Google Scholar] [CrossRef]
- Liao, L. Simulation of three-dimensional topographic effects on seismic ground motion in Capital region based upon the spectral-element method. Seismol. Geomagn. Obs. Res. 2017, 38, 7–14. [Google Scholar] [CrossRef]
- Yang, Y.; Shi, B.P.; Sun, L. Seismic hazard estimation based on the distributed seismicity in northern China. Acta Seismol. Sin. 2008, 21, 202–212. [Google Scholar] [CrossRef]
- Xie, Z. Dynamics of the 1057 M 6 earthquake rupture and seismic hazard implications for the Beijing region, China. Front. Earth Sci. 2025, 13, 1669495. [Google Scholar] [CrossRef]
- Xu, X.W.; Han, Z.J.; Yang, X.P. Seismotectonic Map in China and Its Adjacent Regions; Science Press: Beijing, China, 2016. [Google Scholar] [CrossRef]
- Cui, Y.; Xu, X.Z.; Lin, C. Seismic performance of concentrically braced frames considering the brace fracture and gusset plate effect. Eng. Mech. 2020, 37, 85–92. [Google Scholar] [CrossRef]
- Kim, T.; Youn, B.D.; Oh, H. Development of a stochastic effective independence (SEFI) method for optimal sensor placement under uncertainty. Mech. Syst. Signal Process. 2018, 111, 615–627. [Google Scholar] [CrossRef]
- Meo, M.; Zumpano, G. On the optimal sensor placement techniques for a bridge structure. Eng. Struct. 2005, 27, 1488–1497. [Google Scholar] [CrossRef]
- Çelebi, M. Seismic Instrumentation of Buildings; Open-File Report; U.S. Geological Survey: Reston, VA, USA, 2000; 37p. [Google Scholar] [CrossRef]
- Wu, R.-T.; Jahanshahi, M.R. Data fusion approaches for structural health monitoring and system identification: Past, present, and future. Struct. Health Monit. 2020, 19, 552–586. [Google Scholar] [CrossRef]
- Xie, Y. Deep Learning in Earthquake Engineering: A Comprehensive Review. ASCE OPEN Multidiscip. J. Civ. Eng. 2025, 3, 03125001. [Google Scholar] [CrossRef]







| Parameter | Value |
|---|---|
| Coverage weight | 0.6 |
| Coverage lower bound | 0 |
| Composite index threshold | 0.05 |
| Target ratio | 0.4 |
| Selection scoring weight | 1 |
| Redundancy penalty weight | 0.2 |
| Redundancy upper limit | 0.35 |
| Minimum points per floor | 2 |
| Maximum deployment number | 30 |
| Spatial dispersion weight | 0.3 |
| Minimum points for key floors | 3 |
| Type entropy weight | 0.2 |
| Type entropy lower bound | 0.2 |
| Maximum points per floor | 12 |
| Allocation strategy | descending candidates |
| Middle-floor weighting | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Xie, Z. Automatic Layout Method for Seismic Monitoring Devices on the Basis of Building Geometric Features. Sustainability 2026, 18, 1384. https://doi.org/10.3390/su18031384
Xie Z. Automatic Layout Method for Seismic Monitoring Devices on the Basis of Building Geometric Features. Sustainability. 2026; 18(3):1384. https://doi.org/10.3390/su18031384
Chicago/Turabian StyleXie, Zhangdi. 2026. "Automatic Layout Method for Seismic Monitoring Devices on the Basis of Building Geometric Features" Sustainability 18, no. 3: 1384. https://doi.org/10.3390/su18031384
APA StyleXie, Z. (2026). Automatic Layout Method for Seismic Monitoring Devices on the Basis of Building Geometric Features. Sustainability, 18(3), 1384. https://doi.org/10.3390/su18031384

