Assessing an Agrivoltaic System Pilot in a Small-Scale Solar Farm: A Case Study in the Colombian Tropical Dry Forest
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Phase 1: Environmental Characterization
2.2.1. Climate Analysis
2.2.2. Soil Analysis
2.2.3. Solar Infrastructure Characterization
2.2.4. Photosynthetically Active Radiation (PAR) Distribution
2.3. Phase 2: Crop Selection
2.4. Phase 3: Pilot Implementation and Monitoring
2.5. Soil Mechanization
2.6. Statistical Analysis
3. Results
3.1. Environmental Characterization
3.1.1. Climate
3.1.2. Soil Properties
3.1.3. Solar Infrastructure and Cultivation Space
3.1.4. Photosynthetically Active Radiation (PAR Distribution)
3.2. Crop Selection
3.3. Pilot Implementation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| LCOE | Levelized cost of electricity |
| LERs | Land equivalent ratios |
| IDEAM | Colombian Institute of Hydrology, Meteorology, and Environmental Studies |
| PAR | Photosynthetically active radiation |
| AC | Alternating current |
| DC | Direct current |
References
- Kalair, A.; Abas, N.; Saleem, M.S.; Kalair, A.R.; Khan, N. Role of energy storage systems in energy transition from fossil fuels to renewables. Energy Storage 2021, 3, e135. [Google Scholar]
- Svanera, L.; Ghidesi, G.; Knoche, R. Agrovoltaico®: 10 years design and operation experience. AIP Conf. Proc. 2021, 2361, 090002. [Google Scholar] [CrossRef]
- Bolinger, M.; Seel, J.; Robson, D.; Warner, C. Utility-Scale Solar Data Update: 2020 Edition; Lawrence Berkeley National Laboratory (LBNL): Berkely, CA, USA, 2020.
- Amaducci, S.; Potenza, E.; Colauzzi, M. Developments in agrivoltaics: Achieving synergies by combining plants with solar photovoltaic power systems. In Energy-Smart Farming: Efficiency; Studying the Impact of Agrivoltaic Systems Across the Water-Energy-Food (WEF) Nexus; Burleigh Dodds Science Publishing: Cambridge, UK, 2022; p. 12. [Google Scholar]
- Tawalbeh, M.; Al-Othman, A.; Kafiah, F.; Abdelsalam, E.; Almomani, F.; Alkasrawi, M. Environmental impacts of solar photovoltaic systems: A critical review of recent progress and future outlook. Sci. Total Environ. 2021, 759, 143528. [Google Scholar] [CrossRef]
- FAAOOTUN. Faostat; Global Agricultural. Available online: https://www.fao.org/faostat/en/#data/RL (accessed on 15 October 2025).
- Livera, A.; Lodolini, E.M.; Saraginovski, N.; Crescenzi, S.; Neri, D.; Manganaris, G.A. Current trends and challenges of agrivoltaic systems towards sustainable production of temperate fruit crops under intensive orchard setups. Sci. Hortic. 2025, 348, 114210. [Google Scholar] [CrossRef]
- Asa’a, S.; Reher, T.; Rongé, J.; Diels, J.; Poortmans, J.; Radhakrishnan, H.S.; van der Heide, A.; Van de Poel, B.; Daenen, M. A multidisciplinary view on agrivoltaics: Future of energy and agriculture. Renew. Sustain. Energy Rev. 2024, 200, 114515. [Google Scholar] [CrossRef]
- Sarr, A.; Soro, Y.M.; Tossa, A.K.; Diop, L. Agrivoltaic, a synergistic co-location of agricultural and energy production in perpetual mutation: A comprehensive review. Processes 2023, 11, 948. [Google Scholar] [CrossRef]
- Magarelli, A.; Mazzeo, A.; Ali, S.A.; Ferrara, G. Shading enhanced microclimate variability, photomorphogenesis and yield components in a grapevine agrivoltaic system in semi-arid Mediterranean conditions in Puglia region, southeastern Italy. Sci. Hortic. 2025, 350, 114311. [Google Scholar] [CrossRef]
- Biró-Varga, K.; Sirnik, I.; Stremke, S. Landscape user experiences of interspace and overhead agrivoltaics: A comparative analysis of two novel types of solar landscapes in the Netherlands. Energy Res. Soc. Sci. 2024, 109, 103408. [Google Scholar] [CrossRef]
- Campana, P.E.; Stridh, B.; Amaducci, S.; Colauzzi, M. Optimisation of vertically mounted agrivoltaic systems. J. Clean. Prod. 2021, 325, 129091. [Google Scholar] [CrossRef]
- Chalgynbayeva, A.; Gabnai, Z.; Lengyel, P.; Pestisha, A.; Bai, A. Worldwide research trends in agrivoltaic systems—A bibliometric review. Energies 2023, 16, 611. [Google Scholar] [CrossRef]
- Pulido-Mancebo, J.S.; López-Luque, R.; Fernández-Ahumada, L.M.; Ramírez-Faz, J.C.; Gómez-Uceda, F.J.; Varo-Martínez, M. Spatial distribution model of solar radiation for agrivoltaic land use in fixed PV plants. Agronomy 2022, 12, 2799. [Google Scholar] [CrossRef]
- Zahrawi, A.A.; Aly, A.M. A review of agrivoltaic systems: Addressing challenges and enhancing sustainability. Sustainability 2024, 16, 8271. [Google Scholar] [CrossRef]
- Rodríguez-Urrego, D.; Rodríguez-Urrego, L. Photovoltaic energy in Colombia: Current status, inventory, policies and future prospects. Renew. Sustain. Energy Rev. 2018, 92, 160–170. [Google Scholar] [CrossRef]
- López, A.R.; Krumm, A.; Schattenhofer, L.; Burandt, T.; Montoya, F.C.; Oberländer, N.; Oei, P.-Y. Solar PV generation in Colombia-A qualitative and quantitative approach to analyze the potential of solar energy market. Renew. Energy 2020, 148, 1266–1279. [Google Scholar]
- Becerra-Fernandez, M.; Sarmiento, A.T.; Cardenas, L.M. Sustainability assessment of the solar energy supply chain in Colombia. Energy 2023, 282, 128735. [Google Scholar] [CrossRef]
- Thornthwaite, C.W. The Water Balance; Drexel Institute of Technology, Laboratory of Climatology: Centerton, NJ, USA, 1955. [Google Scholar]
- Dourado-Neto, D.; Jong van Lier, Q.d.; Metselaar, K.; Reichardt, K.; Nielsen, D.R. Critério geral para iniciar o balanço hídrico pelo método de Thornthwaite e Mather. Sci. Agric. 2010, 67, 87–95. [Google Scholar]
- Ezemonye, M.N.; Emeribe, C.N. Irrigation Schedules for Selected Food Crops Using Water Balance Book-Keeping Method. Agric. Trop. et Subtrop. 2014, 47, 87–93. [Google Scholar] [CrossRef][Green Version]
- Pardo, I.M.G.; Rodríguez, J.M.M.; Díaz, A.M.S. Guía de Muestreo de Suelo para Análisis Microbiológico; Corporación Colombiana de Investigación Agropecuaria—AGROSAVIA: Mosquera, Colombia, 2020. [Google Scholar]
- Brady, N.C.; Weil, R.R.; Weil, R.R. The Nature and Properties of Soils; Prentice Hall: Upper Saddle River, NJ, USA, 2008; Volume 13. [Google Scholar]
- Havlin, J.L.; Tisdale, S.L.; Nelson, W.L.; Beaton, J.D. Soil Fertility and Fertilizers; Pearson Education India: Noida, India, 2016. [Google Scholar]
- Pettigrew, W.T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol. Plant. 2008, 133, 670–681. [Google Scholar] [CrossRef]
- Marschner, H. Marschner’s Mineral Nutrition of Higher Plants; Academic Press: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Katsikogiannis, O.A.; Ziar, H.; Isabella, O. Integration of bifacial photovoltaics in agrivoltaic systems: A synergistic design approach. Appl. Energy 2022, 309, 118475. [Google Scholar] [CrossRef]
- Qin, S.; Li, S.; Yang, K.; Zhang, L.; Cheng, L.; Liu, P.; She, D. A method for estimating surface albedo and its components for partial plastic mulched croplands. J. Hydrometeorol. 2023, 24, 1069–1086. [Google Scholar] [CrossRef]
- Almarshoud, A.; Abdel-halim, M.; Almasri, R.A.; Alshwairekh, A.M. Experimental Study of Bifacial Photovoltaic Module Performance on a Sunny Day with Varying Backgrounds Using Exergy and Energy Analysis. Energies 2024, 17, 5456. [Google Scholar] [CrossRef]
- Anderson, K.; Mikofski, M. Slope-Aware Backtracking for Single-Axis Trackers; National Renewable Energy Lab. (NREL): Golden, CO, USA; Det Norske: Oslo, Norway, 2020.
- Marrou, H.; Guilioni, L.; Dufour, L.; Dupraz, C.; Wery, J. Microclimate under agrivoltaic systems: Is crop growth rate affected in the partial shade of solar panels? Agric. For. Meteorol. 2013, 177, 117–132. [Google Scholar] [CrossRef]
- Gomez-Casanovas, N.; Mwebaze, P.; Khanna, M.; Branham, B.; Time, A.; DeLucia, E.H.; Bernacchi, C.J.; Knapp, A.K.; Hoque, M.J.; Du, X.; et al. Knowns, uncertainties, and challenges in agrivoltaics to sustainably intensify energy and food production. Cell Rep. Phys. Sci. 2023, 4, 101518. [Google Scholar] [CrossRef]
- Díaz-Pérez, J.C. Bell pepper (Capsicum annum L.) crop as affected by shade level: Fruit yield, quality, and postharvest attributes, and incidence of phytophthora blight (caused by Phytophthora capsici Leon.). HortScience 2014, 49, 891–900. [Google Scholar] [CrossRef]
- Tafoya, F.A.; Juárez, M.G.Y.; Orona, C.A.L.; López, R.M.; Alcaraz, T.d.J.V.; Valdés, T.D. Sunlight transmitted by colored shade nets on photosynthesis and yield of cucumber. Ciência Rural. 2018, 48, e20170829. [Google Scholar]
- Pereira, B.d.J.; Rodrigues, G.A.; Santos, A.R.d.; Anjos, G.L.d.; Costa, F.M. Watermelon initial growth under different hydrogel concentrations and shading conditions. Rev. Caatinga 2020, 32, 915–923. [Google Scholar] [CrossRef]
- Murakami, K.; Fukuoka, N.; Noto, S. Improvement of greenhouse microenvironment and sweetness of melon (Cucumis melo L.) fruits by greenhouse shading with a new kind of near-infrared ray-cutting net in mid-summer. Sci. Hortic. 2017, 218, 1–7. [Google Scholar] [CrossRef]
- Gao, S.; Liu, X.; Liu, Y.; Cao, B.; Chen, Z.; Xu, K. The spectral irradiance, growth, photosynthetic characteristics, antioxidant system, and nutritional status of green onion (Allium fistulosum L.) grown under different photo-selective nets. Front. Plant Sci. 2021, 12, 650471. [Google Scholar] [CrossRef]
- Rachma, I.A.; Sulistyaningsih, E.; Suci Handayani, V.D. Effects of color shade-net on the growth and yield quality of garlic in the lowlands area. Agric. Sci./Ilmu Pertan. 2025, 10, 67. [Google Scholar] [CrossRef]
- López-Marín, J.; Galvez, A.; del Amor Saavedra, F.; Manera Bassa, F.J.; Carrero-Blanco, J.; Brotons Martínez, J. Photoselective Shade Netting in a Sweet Pepper Crop Accelerates Ripening Period and Enhances the Overall Fruits Quality and Yield. J. Agric. Sci. Technol. 2025, 24, 1171–1186. [Google Scholar]
- DANE. Boletín Mensual Insumos y Factores Asociados a la Producción Agropecuaria; DANE: Bogotá, Colombia, 2019.
- Calatayud, A.; Deltoro, V.; Alexandre, E.; Barreno, E. Acclimation potential to high irradiance of two cultivars of watermelon. Biol. Plant. 2000, 43, 387–391. [Google Scholar] [CrossRef]
- Nishizawa, T.; Ito, A.; Motomura, Y.; Ito, M.; Togashi, M. Changes in fruit quality as influenced by shading of netted melon plants (Cucumis melo L.’Andesu’and’Luster’). J. Jpn. Soc. Hortic. Sci. 2000, 69, 563–569. [Google Scholar]
- Klokov, A.V.; Loktionov, E.Y.; Loktionov, Y.V.; Panchenko, V.A.; Sharaborova, E.S. A mini-review of current activities and future trends in agrivoltaics. Energies 2023, 16, 3009. [Google Scholar] [CrossRef]
- Baquero Maestre, C.E.; Arcila Cardona, Á.M.; Arias Bonilla, H.; Yacomelo Hernández, M.J. Modelo Productivo del Cultivo de Melón (Cucumis melo L.) para la Región Caribe; Corporación Colombiana de Investigación Agropecuaria—AGROSAVIA: Mosquera, Colombia, 2017. [Google Scholar]
- Cohen Manrique, C.S.; Rodríguez Manrique, J.A.; Salgado Ordosgoitia, R.D. Modelado del microclima de un cultivo de candía (Citrullus lanatus) en la sub-región sabana del departamento de Sucre, Colombia. Inf. Tecnológica 2018, 29, 335–344. [Google Scholar] [CrossRef]
- León, G.A.; Chacón Díaz, A.; Linares, V.M.; Rey, C.A.; Orduz, J.O. El Cultivo de la Sandia o Patilla (Citrullus lanatus) en el Departamento del Meta; Corporación Colombiana de Investigación Agropecuaria—AGROSAVIA: Villavicencio, Colombia, 2000. [Google Scholar]
- Wang, D.; Sun, Y.; Lin, Y.; Gao, Y. Analysis of light environment under solar panels and crop layout. In Proceedings of the 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), Washington, DC, USA, 25–30 June 2017; pp. 2048–2053. [Google Scholar]
- Niinemets, Ü. A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecol. Res. 2010, 25, 693–714. [Google Scholar] [CrossRef]
- Riaz, M.H.; Imran, H.; Younas, R.; Butt, N.Z. The optimization of vertical bifacial photovoltaic farms for efficient agrivoltaic systems. Sol. Energy 2021, 230, 1004–1012. [Google Scholar] [CrossRef]
- Beck, M.; Bopp, G.; Goetzberger, A.; Obergfell, T.; Reise, C.; Schindele, S. Combining PV and food crops to Agrophotovoltaic–optimization of orientation and harvest. In Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition, EU PVSEC, Frankfurt, Germany, 24–28 September 2012. [Google Scholar]
- Dinesh, H.; Pearce, J.M. The potential of agrivoltaic systems. Renew. Sustain. Energy Rev. 2016, 54, 299–308. [Google Scholar] [CrossRef]
- Barron-Gafford, G.A.; Pavao-Zuckerman, M.A.; Minor, R.L.; Sutter, L.F.; Barnett-Moreno, I.; Blackett, D.T.; Thompson, M.; Dimond, K.; Gerlak, A.K.; Nabhan, G.P.; et al. Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands. Nat. Sustain. 2019, 2, 848–855. [Google Scholar] [CrossRef]
- Paulino, V.E.d.N.; Studart, T.M.d.C.; Campos, J.N.B.; Pestana, C.J.; Luna, R.M.; Alves, J.M.B. Trends in crop reference evapotranspiration and climatological variables across Ceará State–Brazil. Rev. Bras. de Meteorol. 2019, 34, 79–88. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, Y.; Malik, I.; Wistuba, M.; Sun, L.; Yang, M.; Wang, Q.; Yu, R. Water resources evaluation in arid areas based on agricultural water footprint—A case study on the edge of the Taklimakan Desert. Atmosphere 2022, 14, 67. [Google Scholar] [CrossRef]
- Weselek, A.; Bauerle, A.; Hartung, J.; Zikeli, S.; Lewandowski, I.; Högy, P. Agrivoltaic system impacts on microclimate and yield of different crops within an organic crop rotation in a temperate climate. Agron. Sustain. Dev. 2021, 41, 59. [Google Scholar] [CrossRef]
- Santra, P.; Meena, H.M.; Yadav, O. Spatial and temporal variation of photosynthetic photon flux density within agrivoltaic system in hot arid region of India. Biosyst. Eng. 2021, 209, 74–93. [Google Scholar] [CrossRef]
- Trommsdorff, M.; Kang, J.; Reise, C.; Schindele, S.; Bopp, G.; Ehmann, A.; Weselek, A.; Högy, P.; Obergfell, T. Combining food and energy production: Design of an agrivoltaic system applied in arable and vegetable farming in Germany. Renew. Sustain. Energy Rev. 2021, 140, 110694. [Google Scholar] [CrossRef]
- Weselek, A.; Ehmann, A.; Zikeli, S.; Lewandowski, I.; Schindele, S.; Högy, P. Agrophotovoltaic systems: Applications, challenges, and opportunities. A review. Agron. Sustain. Dev. 2019, 39, 35. [Google Scholar] [CrossRef]
- Jamil, U.; Hickey, T.; Pearce, J.M. Solar energy modelling and proposed crops for different types of agrivoltaics systems. Energy 2024, 304, 132074. [Google Scholar] [CrossRef]





| Parameter | Average Value (1991–2020) |
|---|---|
| Maximum annual temperature (°C) | 34.7 |
| Minimum annual temperature (°C) | 24.0 |
| Annual precipitation (mm) | 1016.7 |
| Annual evapotranspiration (mm) | 2662 |
| Mean relative humidity (%) | 65.3 |
| Positions | ||||||||
|---|---|---|---|---|---|---|---|---|
| Time Period | A | B | C | D | E | F | G | H |
| Morning | 1249 ± 69 | 1262 ± 85 | 1302 ± 72 | 1372 ± 95 | 1333 ± 111 | 1459 ± 96 | 1465 ± 100 | 1444 ± 85 |
| Midday | 1987 ± 53 | 2018 ± 47 | 2037 ± 48 | 1975 ± 58 | 1905 ± 63 | 2126 ± 47 | 2220 ± 32 | 2160 ± 32 |
| Afternoon | 336 ± 24 | 335 ± 25 | 344 ± 26 | 332 ± 26 | 322 ± 24 | 356 ± 26 | 361 ± 27 | 349 ± 26 |
| Average | 1322 | 1339 | 1364 | 1364 | 1320 | 1461 | 1500 | 1467 |
| Crop Candidate | Moderate Shade Condition | Suitability Under Climate Conditions | History or Traditional Crops in the Region | Trading Availability in Local Markets | Short Production Cycle |
|---|---|---|---|---|---|
| Melon—Cucumis melo | Y | Y | Y | Y | Y |
| Watermelon—Citrullus lanatus | Y | Y | Y | Y | Y |
| Chili pepper—Capsicum annuum | Y | Y | N | Y | N |
| Bunching onion (scallion)—Allium fistulosum | Y | Y | N | N | Y |
| Cowpea—Vigna unguiculata | Y | Y | N | N | Y |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Burgos-De La Cruz, C.M.; Anaya, B.J.; Duran, D.C.; Tirado, D.F.; Velasco, L. Assessing an Agrivoltaic System Pilot in a Small-Scale Solar Farm: A Case Study in the Colombian Tropical Dry Forest. Sustainability 2026, 18, 1197. https://doi.org/10.3390/su18031197
Burgos-De La Cruz CM, Anaya BJ, Duran DC, Tirado DF, Velasco L. Assessing an Agrivoltaic System Pilot in a Small-Scale Solar Farm: A Case Study in the Colombian Tropical Dry Forest. Sustainability. 2026; 18(3):1197. https://doi.org/10.3390/su18031197
Chicago/Turabian StyleBurgos-De La Cruz, Carlos M., Brayan J. Anaya, Diego C. Duran, Diego F. Tirado, and Leonardo Velasco. 2026. "Assessing an Agrivoltaic System Pilot in a Small-Scale Solar Farm: A Case Study in the Colombian Tropical Dry Forest" Sustainability 18, no. 3: 1197. https://doi.org/10.3390/su18031197
APA StyleBurgos-De La Cruz, C. M., Anaya, B. J., Duran, D. C., Tirado, D. F., & Velasco, L. (2026). Assessing an Agrivoltaic System Pilot in a Small-Scale Solar Farm: A Case Study in the Colombian Tropical Dry Forest. Sustainability, 18(3), 1197. https://doi.org/10.3390/su18031197

