Sustainable Trade Credit Access: The Role of Digital Transformation Under the Resource Dependence Theory
Abstract
1. Introduction
2. Literature Review
2.1. Research on Digital Transformation and Its Economic Consequences
2.2. Factors Affecting Trade Credit
3. Theoretical Analysis and Hypotheses
3.1. Digital Transformation and Trade Credit
3.2. The Supplier Diversification Mechanism Channel
3.3. The R&D Innovation Mechanism Channel
3.4. The Market Share Mechanism Channel
4. Research Design
4.1. Data and Sample
4.2. Measures
4.3. Empirical Model
4.4. Descriptive Statistics
5. Empirical Results
5.1. Baseline Results
5.2. Robustness Test
5.2.1. Replace the Dependent Variable
5.2.2. Eliminate Early Biases and Macro Events
5.2.3. Exclusion of Strategic Behavior
5.2.4. Exclude Economic and Industrial Particularities
6. Endogeneity
6.1. IV Method
6.2. Propensity Score Matching (PSM)
6.3. Multi-Period PSM-DID
7. Mechanism Analysis
7.1. Supplier Diversification
7.2. R&D Innovation
7.3. Market Share
8. Heterogeneity Analysis
8.1. Enterprise Property Rights
8.2. Corporate Life Cycle
8.3. Social Trust
9. Extended Analysis
9.1. Digital Transformation Spillover Effects
9.2. Digital Transformation and Trade Credit Periods
9.3. Digital Transformation and Financing Structure
10. Conclusions and Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
| Variable | Mean | Standard | Reduction of | T-Value | p-Value | ||
|---|---|---|---|---|---|---|---|
| Experimental | Control | Deviation | Standard | ||||
| Group | Group | (%) | Deviation (%) | ||||
| size | Before | 22.257 | 22.030 | 17.800 | 99.000 | 15.440 | 1.08 * |
| After | 22.253 | 22.251 | 0.200 | 0.180 | 0.92 * | ||
| age | Before | 2.014 | 2.011 | 0.300 | 54.000 | 0.230 | 0.990 |
| After | 2.013 | 2.014 | −0.100 | −0.130 | 1.020 | ||
| soe | Before | 0.303 | 0.390 | −18.300 | 89.100 | −16.090 | . |
| After | 0.304 | 0.313 | −2.000 | −2.200 | . | ||
| lev | Before | 0.402 | 0.411 | −4.400 | 53.600 | −3.900 | 0.85 * |
| After | 0.402 | 0.398 | 2.000 | 2.200 | 0.86 * | ||
| dep | Before | 0.379 | 0.372 | 11.600 | 98.700 | 10.020 | 1.09 * |
| After | 0.378 | 0.379 | −0.200 | −0.160 | 0.96 * | ||
| cflow | Before | 0.048 | 0.046 | 3.400 | 87.600 | 3.020 | 0.90 * |
| After | 0.048 | 0.049 | −0.400 | −0.460 | 0.94 * | ||
| roa | Before | 0.039 | 0.039 | 0.400 | −256.500 | 0.330 | 1.26 * |
| After | 0.039 | 0.040 | −1.400 | −1.430 | 1.13 * | ||
| borad | Before | 2.110 | 2.136 | −13.300 | 82.200 | −11.540 | 1.04 * |
| After | 2.110 | 2.106 | 2.400 | 2.450 | 0.93 * | ||
| Variable | Mean | Standard | Reduction of | T-Value | p-Value | ||
|---|---|---|---|---|---|---|---|
| Experimental | Control | Deviation | Standard | ||||
| Group | Group | (%) | Deviation (%) | ||||
| size | Before | 22.257 | 22.030 | 17.800 | 94.700 | 15.440 | 1.08 * |
| After | 22.253 | 22.241 | 0.900 | 0.970 | 0.92 * | ||
| age | Before | 2.014 | 2.011 | 0.300 | −401.200 | 0.230 | 0.990 |
| After | 2.013 | 2.001 | 1.300 | 1.400 | 1.010 | ||
| soe | Before | 0.303 | 0.390 | −18.3 | 96.800 | −16.090 | . |
| After | 0.304 | 0.307 | −0.6 | −0.650 | . | ||
| lev | Before | 0.402 | 0.411 | 4.400 | 42.600 | −3.900 | 0.85 * |
| After | 0.402 | 0.397 | 2.500 | 2.720 | 0.86 * | ||
| dep | Before | 0.379 | 0.372 | 11.600 | 97.600 | 10.020 | 1.09 * |
| After | 0.378 | 0.379 | −0.3 | −0.290 | 0.96 * | ||
| cflow | Before | 0.048 | 0.046 | 3.400 | 72.900 | 3.020 | 0.90 * |
| After | 0.048 | 0.049 | −0.9 | −1.000 | 0.93 * | ||
| roa | Before | 0.039 | 0.039 | 0.400 | −509.900 | 0.330 | 1.26 * |
| After | 0.039 | 0.040 | −2.3 | −2.450 | 1.13 * | ||
| borad | Before | 2.110 | 2.136 | −13.3 | 85.400 | −11.540 | 1.04 * |
| After | 2.110 | 2.106 | 1.900 | 2.030 | 0.95 * | ||
| Variable | Mean | Standard | Reduction of | T-Value | p-Value | ||
|---|---|---|---|---|---|---|---|
| Experimental | Control | Deviation | Standard | ||||
| Group | Group | (%) | Deviation (%) | ||||
| size | Before | 22.209 | 22.177 | 2.500 | 91.800 | 1.910 | 1.17 * |
| After | 22.208 | 22.205 | 0.200 | 0.220 | 1.11 * | ||
| age | Before | 2.011 | 2.072 | −6.400 | 82.900 | −4.840 | 1.08 * |
| After | 2.011 | 2.021 | −1.100 | −1.150 | 1.010 | ||
| soe | Before | 0.348 | 0.350 | −0.300 | 324.200 | −0.220 | . |
| After | 0.348 | 0.354 | −1.200 | −1.310 | . | ||
| lev | Before | 0.405 | 0.410 | −2.600 | 82.800 | −2.00 | 1.010 |
| After | 0.404 | 0.404 | 0.500 | 0.490 | 1.020 | ||
| dep | Before | 0.379 | 0.370 | 16.000 | 91.300 | 11.960 | 1.23 * |
| After | 0.379 | 0.379 | −1.400 | −1.430 | 0.980 | ||
| cflow | Before | 0.045 | 0.052 | −9.200 | 88.300 | −6.980 | 1.03 * |
| After | 0.045 | 0.046 | −1.100 | −1.140 | 1.00 | ||
| roa | Before | 0.038 | 0.040 | −2.600 | 1.700 | −2.040 | 0.97 * |
| After | 0.038 | 0.040 | −2.600 | −2.840 | 1.030 | ||
| borad | Before | 2.111 | 2.142 | −16.100 | 96.100 | −12.220 | 1.08 * |
| After | 2.111 | 2.110 | 0.600 | 0.670 | 0.980 | ||
Appendix B
| Dimension | Categorized Terms | Text combinations with Higher Frequency | Word Segmentation Dictionary |
|---|---|---|---|
| Application of Digital Technology | Data, numbers, digitization | Data management, data mining, data networking, data platforms, data centers, data science, digital control, digital technology, digital communication, digital networks, digital intelligence, digital terminals, digital marketing, digitalization | Data management, data mining, data networks, data platforms, data centers, data science, digital control, digital technology, digital communication, digital networks, digital intelligence, digital terminals, digital marketing, digitalization, big data, cloud computing, cloud IT, cloud ecosystem, cloud services, cloud platforms, blockchain, Internet of Things, machine learning |
| Internet Business Model | Internet and E-commerce | Mobile Internet, Industrial Internet, Industrial Internet of Things, Internet solutions, Internet technology, Internet thinking, Internet actions, Internet business, Internet mobility, Internet applications, Internet marketing, Internet strategy, Internet platforms, Internet models, Internet business models, Internet ecosystem, e-commerce, electronic commerce | Mobile Internet, Industrial Internet, Industry Internet, Internet Solutions, Internet Technology, Internet Thinking, Internet Actions, Internet Business, Mobile Internet, Internet Applications, Internet Marketing, Internet Strategy, Internet Platforms, Internet Models, Internet Business Models, Internet Ecosystem, E-commerce, Electronic Commerce, Internet, ‘Internet’, Online and Offline, Online to Offline, Online and Offline, O2O, B2B, C2C, B2C, C2B |
| Intelligent Manufacturing | Intelligent, intelligentized, automatic, CNC, integrated, combined | Artificial intelligence, advanced intelligence, industrial intelligence, mobile intelligence, intelligent control, intelligent terminals, intelligent mobility, intelligent management, smart factories, intelligent logistics, intelligent manufacturing, intelligent warehousing, intelligent technology, intelligent equipment, intelligent production, intelligent connectivity, intelligent systems, intelligentization, automatic control, automatic monitoring, automatic surveillance, automatic inspection, automated production, numerical control, integration, integrated, integrated solutions, integrated control, integrated systems | Artificial intelligence, advanced intelligence, industrial intelligence, mobile intelligence, intelligent control, intelligent terminals, intelligent mobility, intelligent management, smart factories, intelligent logistics, intelligent manufacturing, intelligent warehousing, intelligent technology, intelligent equipment, intelligent production, intelligent networking, intelligent systems, intelligence, automatic control, automatic monitoring, automatic surveillance, automatic detection, automatic production, numerical control, integration, integrated solutions, integrated control, integrated systems, industrial cloud, future factories, intelligent fault diagnosis, lifecycle management, manufacturing execution systems, virtualization, virtual manufacturing |
| Modern Information Systems | Information, Informatization, Networking | Information sharing, information management, information integration, information software, information systems, information networks, information terminals, information centers, informatization, networking | Information sharing, information management, information integration, information software, information systems, information networks, information terminals, information centers, informatization, networking, industrial information, industrial communication |
| Batcht | Pilot Year | Pilot Cities |
|---|---|---|
| Batch 1 | 2014 | Beijing, Tianjin, Shanghai, Chang-Zhu-Tan City Cluster, Shijiazhuang, Dalian, Benxi, Yanbian Korean Autonomous Prefecture, Harbin, Daqing, Nanjing, Suzhou, Zhenjiang, Kunshan, Jinhua, Wuhu, Anqing, Fuzhou (including Pingtan), Xiamen, Quanzhou, Nanchang, Shangrao, Qingdao, Zibo, Weihai, Linyi, Zhengzhou, Luoyang, Wuhan, Guangzhou, Shenzhen, Zhongshan, Chengdu, Panzhihua, Aba Tibetan and Qiang Autonomous Prefecture, Guiyang, Yinchuan, Wuzhong, Aral |
| Batch 2 | 2015 | Taiyuan, Hohhot, Ordos, Anshan, Panjin, Baishan, Yangzhou, Jiaxing, Hefei, Tongling, Putian, Xinyu, Ganzhou, Dongying, Jining, Dezhou, Xinxiang, Yongcheng, Huangshi, Xiangyang, Yichang, Shiyan, Suizhou, Yueyang, Shantou, Meizhou, Dongguan, Jiangjin District of Chongqing, Rongchang District of Chongqing, Mianyang, Neijiang, Yibin, Dazhou, Yuxi, Lanzhou, Zhangye, Guyuan, Zhongwei, Karamay |
| Batch 3 | 2016 | Yangquan, Jinzhong, Wuhai, Baotou, Tongliao, Shenyang, Mudanjiang, Wuxi, Taizhou, Nantong, Hangzhou, Suzhou (Anhui), Huangshan, Ma’anshan, Ji’an, Yantai, Zaozhuang, Shangqiu, Jiaozuo, Nanyang, Ezhou, Hengyang, Yiyang, Yulin, Haikou, Jiulongpo District, Beibei District, Ya’an, Luzhou, Nanchong, Zunyi, Wenshan Zhuang and Miao Autonomous Prefecture, Lhasa, Nyingchi, Weinan, Wuwei, Jiuquan, Tianshui, Xining |
References
- Alojail, M.; Khan, S.B. Impact of Digital Transformation toward Sustainable Development. Sustainability 2023, 15, 14697. [Google Scholar] [CrossRef]
- Martínez-Peláez, R.; Ochoa-Brust, A.; Rivera, S.; Félix, V.G.; Ostos, R.; Brito, H.; Félix, R.A.; Mena, L.J. Role of Digital Transformation for Achieving Sustainability: Mediated Role of Stakeholders, Key Capabilities, and Technology. Sustainability 2023, 15, 11221. [Google Scholar] [CrossRef]
- Xing, X.; Chen, T.; Yang, X.; Liu, T. Digital Transformation and Innovation Performance of China’s Manufacturers? A Configurational Approach. Technol. Soc. 2023, 75, 102356. [Google Scholar] [CrossRef]
- Luo, W.; Yu, Y.; Deng, M. The Impact of Enterprise Digital Transformation on Risk-Taking: Evidence from China. Res. Int. Bus. Financ. 2024, 69, 102285. [Google Scholar] [CrossRef]
- Zhuo, C.; Chen, J. Can Digital Transformation Overcome the Enterprise Innovation Dilemma: Effect, Mechanism and Effective Boundary. Technol. Forecast. Soc. Change 2023, 190, 122378. [Google Scholar] [CrossRef]
- Chen, L.; Moretto, A.; Jia, F.; Caniato, F.; Xiong, Y. The Role of Digital Transformation to Empower Supply Chain Finance: Current Research Status and Future Research Directions (Guest Editorial). Int. J. Oper. Prod. Manag. 2021, 41, 277–288. [Google Scholar] [CrossRef]
- Liao, H.; Wen, Z.; Liu, L. Integrating Bwm and Aras under Hesitant Linguistic Environment for Digital Supply Chain Finance Supplier Section. Technol. Econ. Dev. Econ. 2019, 25, 1188–1212. [Google Scholar] [CrossRef]
- Lee, C.H.; Rhee, B.-D. Trade Credit for Supply Chain Coordination. Eur. J. Oper. Res. 2011, 214, 136–146. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, Z. Corporate Digital Transformation and Trade Credit Financing. J. Bus. Res. 2023, 160, 113793. [Google Scholar] [CrossRef]
- Xu, X.; Chen, X.; Jia, F.; Brown, S.; Gong, Y.; Xu, Y. Supply Chain Finance: A Systematic Literature Review and Bibliometric Analysis. Int. J. Prod. Econ. 2018, 204, 160–173. [Google Scholar] [CrossRef]
- Miner, J.B. Organizational Behavior 2: Essential Theories of Process and Structure; Routledge: London, UK; Taylor and Francis Group: New York, NY, USA, 2015; Volume XVII, 444p, ISBN 978-1-315-70200-1. [Google Scholar]
- Permatasari, A.; Dhewanto, W.; Dellyana, D. The Role of Traditional Knowledge-Based Dynamic Capabilities to Improve the Sustainable Performance of Weaving Craft in Indonesia. J. Enterp. Communities People Places Glob. Econ. 2023, 17, 664–683. [Google Scholar] [CrossRef]
- Wilner, B.S. The Exploitation of Relationships in Financial Distress: The Case of Trade Credit. J. Financ. 2000, 55, 153–178. [Google Scholar] [CrossRef]
- Jiang, Z.; Xu, C. Disrupting the Technology Innovation Efficiency of Manufacturing Enterprises through Digital Technology Promotion: An Evidence of 5G Technology Construction in China. IEEE Trans. Eng. Manag. 2024, 71, 6918–6928. [Google Scholar] [CrossRef]
- Guo, J.; Wang, L.; Zhou, W.; Wei, C. Powering Green Digitalization: Evidence from 5G Network Infrastructure in China. Resour. Conserv. Recycl. 2022, 182, 106286. [Google Scholar] [CrossRef]
- Coşkun, R.; Öztürk, O. Dependence as Strategy: Extending Resource Dependence Theory and Clarifying Its Understanding of the Strategic Options of Dependent Firms. Int. J. Organ. Anal. 2024, 32, 1982–2009. [Google Scholar] [CrossRef]
- Zhang, X.; Zou, M.; Liu, W.; Zhang, Y. Does a Firm’s Supplier Concentration Affect Its Cash Holding? Econ. Model. 2020, 90, 527–535. [Google Scholar] [CrossRef]
- Parviziomran, E.; Elliot, V. The Effects of Bargaining Power on Trade Credit in a Supply Network. J. Purch. Supply Manag. 2023, 29, 100818. [Google Scholar] [CrossRef]
- Gupta, M.; George, J.F. Toward the Development of a Big Data Analytics Capability. Inf. Manag. 2016, 53, 1049–1064. [Google Scholar] [CrossRef]
- Mikalef, P.; Pappas, I.O.; Krogstie, J.; Giannakos, M. Big Data Analytics Capabilities: A Systematic Literature Review and Research Agenda. Inf. Syst. E Bus. Manag. 2018, 16, 547–578. [Google Scholar] [CrossRef]
- Lerch, C.; Gotsch, M. Digitalized Product-Service Systems in Manufacturing Firms: A Case Study Analysis. Res.-Technol. Manag. 2015, 58, 45–52. [Google Scholar] [CrossRef]
- Legner, C.; Eymann, T.; Hess, T.; Matt, C.; Böhmann, T.; Drews, P.; Mädche, A.; Urbach, N.; Ahlemann, F. Digitalization: Opportunity and Challenge for the Business and Information Systems Engineering Community. Bus. Inf. Syst. Eng. 2017, 59, 301–308. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Li, S.; Xing, C. The Digital Transformation Effect in Trade Credit Uptake: The Buyer Perspective. Emerg. Mark. Financ. Trade 2023, 59, 2056–2078. [Google Scholar] [CrossRef]
- Duan, S.; Lu, Y.; He, W.; Buitrago, G.A. The Effects of the Digital Transformation on Firm’s Trade Credit: Evidence from China. Emerg. Mark. Financ. Trade 2024, 60, 2748–2767. [Google Scholar] [CrossRef]
- Hu, M.; Yang, X.; Zhu, Y.; Uddin, G.S. Spillover Effect of Corporate Digitalization in the Supply Chain: Perspective of Trade Credit Financing. Glob. Financ. J. 2024, 62, 101009. [Google Scholar] [CrossRef]
- Xiao, Z.; Li, Y.; Xiang, C. Do Suppliers Value Customer Firms’ Digital Transformation? Evidence from Trade Credit Provision. Int. Rev. Financ. Anal. 2025, 99, 103976. [Google Scholar] [CrossRef]
- Robey, D. Computer Information Systems and Organization Structure. Commun. ACM 1981, 24, 679–687. [Google Scholar] [CrossRef]
- Meagher, K.J. Generalizing Incentives and Loss of Control in an Optimal Hierarchy: The Role of Information Technology. Econ. Lett. 2003, 78, 273–280. [Google Scholar] [CrossRef]
- Melville, N.; Kraemer, K.; Gurbaxani, V. Review: Information Technology and Organizational Performance: An Integrative Model of IT Business Value. MIS Q. 2004, 28, 283. [Google Scholar] [CrossRef]
- Swanson, E.B.; Ramiller, N.C. Innovating Mindfully with Information Technology. MIS Q. 2004, 28, 553. [Google Scholar] [CrossRef]
- Goldfarb, A.; Tucker, C. Digital Economics. J. Econ. Lit. 2019, 57, 3–43. [Google Scholar] [CrossRef]
- Zhao, T.; Yan, N.; Ji, L. Digital Transformation, Life Cycle and Internal Control Effectiveness: Evidence from China. Financ. Res. Lett. 2023, 58, 104223. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, X. Digital transformation of enterprises and the governance of executive corruption: Empirical evidence based on text analysis. J. Glob. Inf. Manag. 2022, 30, 1–18. [Google Scholar] [CrossRef]
- Matthyssens, P. Reconceptualizing Value Innovation for Industry 4.0 and the Industrial Internet of Things. J. Bus. Ind. Mark. 2019, 34, 1203–1209. [Google Scholar] [CrossRef]
- Wu, Y.; Li, H.; Luo, R.; Yu, Y. How Digital Transformation Helps Enterprises Achieve High-Quality Development? Empirical Evidence from Chinese Listed Companies. Eur. J. Innov. Manag. 2024, 27, 2753–2779. [Google Scholar] [CrossRef]
- Andersson, S.; Aagerup, U.; Svensson, L.; Eriksson, S. Challenges and Opportunities in the Digitalization of the B2B Customer Journey. J. Bus. Ind. Mark. 2024, 39, 160–174. [Google Scholar] [CrossRef]
- Mostaghel, R.; Oghazi, P.; Parida, V.; Sohrabpour, V. Digitalization Driven Retail Business Model Innovation: Evaluation of Past and Avenues for Future Research Trends. J. Bus. Res. 2022, 146, 134–145. [Google Scholar] [CrossRef]
- Dou, Q.; Gao, X. How Does the Digital Transformation of Corporates Affect Green Technology Innovation? An Empirical Study from the Perspective of Asymmetric Effects and Structural Breakpoints. J. Clean. Prod. 2023, 428, 139245. [Google Scholar] [CrossRef]
- Stewart, H. Digital Transformation Security Challenges. J. Comput. Inf. Syst. 2023, 63, 919–936. [Google Scholar] [CrossRef]
- Jardak, M.K.; Ben Hamad, S. The Effect of Digital Transformation on Firm Performance: Evidence from Swedish Listed Companies. J. Risk Financ. 2022, 23, 329–348. [Google Scholar] [CrossRef]
- Zhai, H.; Yang, M.; Chan, K.C. Does Digital Transformation Enhance a Firm’s Performance? Evidence from China. Technol. Soc. 2022, 68, 101841. [Google Scholar] [CrossRef]
- Wang, S.; Esperança, J.P. Can Digital Transformation Improve Market and ESG Performance? Evidence from Chinese SMEs. J. Clean. Prod. 2023, 419, 137980. [Google Scholar] [CrossRef]
- Chen, J.; Guo, Z.; Lei, Z. Research on the Mechanisms of the Digital Transformation of Manufacturing Enterprises for Carbon Emissions Reduction. J. Clean. Prod. 2024, 449, 141817. [Google Scholar] [CrossRef]
- Goel, A.; Masurkar, S.; Pathade, G.R. An Overview of Digital Transformation and Environmental Sustainability: Threats, Opportunities, and Solutions. Sustainability 2024, 16, 11079. [Google Scholar] [CrossRef]
- Meltzer, A.H. Mercantile Credit, Monetary Policy, and Size of Firms. Rev. Econ. Stat. 1960, 42, 429. [Google Scholar] [CrossRef]
- Nilsen, J.H. Trade Credit and the Bank Lending Channel. J. Money Credit Bank. 2002, 34, 226–253. [Google Scholar] [CrossRef]
- Love, I.; Preve, L.A.; Sarria-Allende, V. Trade Credit and Bank Credit: Evidence from Recent Financial Crises. J. Financ. Econ. 2007, 83, 453–469. [Google Scholar] [CrossRef]
- Fisman, R.; Love, I. Trade Credit, Financial Intermediary Development, and Industry Growth. J. Financ. 2003, 58, 353–374. [Google Scholar] [CrossRef]
- Altunok, F.; Mitchell, K.; Pearce, D.K. The Trade Credit Channel and Monetary Policy Transmission: Empirical Evidence from U.S. Panel Data. Q. Rev. Econ. Financ. 2020, 78, 226–250. [Google Scholar] [CrossRef]
- Jory, S.R.; Khieu, H.D.; Ngo, T.N.; Phan, H.V. The Influence of Economic Policy Uncertainty on Corporate Trade Credit and Firm Value. J. Corp. Financ. 2020, 64, 101671. [Google Scholar] [CrossRef]
- Lai, S.; Chen, L.; Wang, Q.S.; Anderson, H. Natural Disasters, Trade Credit, and Firm Performance. Econ. Model. 2022, 116, 106029. [Google Scholar] [CrossRef]
- Li, W.; Xu, X.; Long, Z. Confucian Culture and Trade Credit: Evidence from Chinese Listed Companies. Res. Int. Bus. Financ. 2020, 53, 101232. [Google Scholar] [CrossRef]
- Xiu, Z.; Liu, R.; Feng, P.; Yin, J. Does Social Culture Matter for Firms’ Access to Trade Credit? Evidence from China. Econ. Model. 2023, 119, 106163. [Google Scholar] [CrossRef]
- Wu, W.; Firth, M.; Rui, O.M. Trust and the Provision of Trade Credit. J. Bank. Financ. 2014, 39, 146–159. [Google Scholar] [CrossRef]
- Maksimovic, V. Firms as Financial Intermediaries: Evidence from Trade Credit Data; Policy Research Working Papers; The World Bank: Washington, DC, USA, 2001. [Google Scholar]
- Giannetti, M.; Burkart, M.; Ellingsen, T. What You Sell Is What You Lend? Explaining Trade Credit Contracts. Rev. Financ. Stud. 2011, 24, 1261–1298. [Google Scholar] [CrossRef]
- Ferrando, A.; Mulier, K. Do Firms Use the Trade Credit Channel to Manage Growth? J. Bank. Financ. 2013, 37, 3035–3046. [Google Scholar] [CrossRef]
- Ge, Y.; Qiu, J. Financial Development, Bank Discrimination and Trade Credit. J. Bank. Financ. 2007, 31, 513–530. [Google Scholar] [CrossRef]
- James, H.L.; Ngo, T.; Wang, H. The Impact of More Able Managers on Corporate Trade Credit. J. Behav. Exp. Financ. 2023, 40, 100857. [Google Scholar] [CrossRef]
- D’Mello, R.; Gao, X.; Jia, Y. Internal Control and Internal Capital Allocation: Evidence from Internal Capital Markets of Multi-Segment Firms. Rev. Acc. Stud. 2017, 22, 251–287. [Google Scholar] [CrossRef]
- Boisjoly, R.P.; Conine, T.E.; McDonald, M.B. Working Capital Management: Financial and Valuation Impacts. J. Bus. Res. 2020, 108, 1–8. [Google Scholar] [CrossRef]
- Zhang, Y.; García Lara, J.M.; Tribó, J.A. Unpacking the Black Box of Trade Credit to Socially Responsible Customers. J. Bank. Financ. 2020, 119, 105908. [Google Scholar] [CrossRef]
- Cai, H.; Huang, Y. Corporate Social Responsibility on Trade Credit Financing Capacity: Facilitation or Inhibition? Financ. Res. Lett. 2024, 69, 106073. [Google Scholar] [CrossRef]
- Shou, Y.; Shao, J.; Wang, W.; Lai, K. The Impact of Corporate Social Responsibility on Trade Credit: Evidence from Chinese Small and Medium-Sized Manufacturing Enterprises. Int. J. Prod. Econ. 2020, 230, 107809. [Google Scholar] [CrossRef]
- Li, C.; Sensoy, A.; Song, C.; Zhang, M. Does Corporate Green Innovation Behaviour Impact Trade Credit? Evidence from China. Res. Int. Bus. Financ. 2023, 66, 102056. [Google Scholar] [CrossRef]
- Cox, A. Understanding Buyer and Supplier Power: A Framework for Procurement and Supply Competence. J. Supply Chain Manag. 2001, 37, 8–15. [Google Scholar] [CrossRef]
- Osarenkhoe, A.; Fjellström, D. The Oxymoron of Digitalization: A Resource-Based Perspective. J. Inf. Technol. Res. 2021, 14, 122–138. [Google Scholar] [CrossRef]
- Oberländer, A.M.; Röglinger, M.; Rosemann, M. Digital Opportunities for Incumbents—A Resource-Centric Perspective. J. Strateg. Inf. Syst. 2021, 30, 101670. [Google Scholar] [CrossRef]
- Cheng, W.; Li, C.; Zhao, T. The Stages of Enterprise Digital Transformation and Its Impact on Internal Control: Evidence from China. Int. Rev. Financ. Anal. 2024, 92, 103079. [Google Scholar] [CrossRef]
- Xu, N.; Lv, W.; Wang, J. The Impact of Digital Transformation on Firm Performance: A Perspective from Enterprise Risk Management. Eurasian Bus. Rev. 2024, 14, 369–400. [Google Scholar] [CrossRef]
- Abbate, T.; Coppolino, R.; Schiavone, F. Linking Entities in Knowledge Transfer: The Innovation Intermediaries. J. Knowl. Econ. 2013, 4, 233–243. [Google Scholar] [CrossRef]
- Isaksson, O.H.D.; Simeth, M.; Seifert, R.W. Knowledge Spillovers in the Supply Chain: Evidence from the High Tech Sectors. Res. Policy 2016, 45, 699–706. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, S.; Ma, X.; Xu, W. Digital Technologies and Corporate Green Innovation: Opening the “Black Box” of Resource Orchestration Mechanisms. Sustain. Account. Manag. Policy J. 2024, 15, 884–912. [Google Scholar] [CrossRef]
- Lai, K.; Feng, Y.; Zhu, Q. Digital Transformation for Green Supply Chain Innovation in Manufacturing Operations. Transp. Res. Part E Logist. Transp. Rev. 2023, 175, 103145. [Google Scholar] [CrossRef]
- Kim, Y.H.; Henderson, D. Financial Benefits and Risks of Dependency in Triadic Supply Chain Relationships. J. Oper. Manag. 2015, 36, 115–129. [Google Scholar] [CrossRef]
- Ryals, L.J.; Rogers, B. Holding up the Mirror: The Impact of Strategic Procurement Practices on Account Management. Bus. Horiz. 2006, 49, 41–50. [Google Scholar] [CrossRef]
- Wagner, S.M.; Bode, C. An Empirical Investigation into Supply Chain Vulnerability. J. Purch. Supply Manag. 2006, 12, 301–312. [Google Scholar] [CrossRef]
- Duchin, R. Cash Holdings and Corporate Diversification. J. Financ. 2010, 65, 955–992. [Google Scholar] [CrossRef]
- Cavalcante, I.M.; Frazzon, E.M.; Forcellini, F.A.; Ivanov, D. A Supervised Machine Learning Approach to Data-Driven Simulation of Resilient Supplier Selection in Digital Manufacturing. Int. J. Inf. Manag. 2019, 49, 86–97. [Google Scholar] [CrossRef]
- Obal, M.; Lancioni, R.A. Maximizing Buyer–Supplier Relationships in the Digital Era: Concept and Research Agenda. Ind. Mark. Manag. 2013, 42, 851–854. [Google Scholar] [CrossRef]
- Huang, H.; Li, R.; Bai, Y. Investor Sentiment, Market Competition and Trade Credit Supply. China Financ. Rev. Int. 2019, 9, 284–306. [Google Scholar] [CrossRef]
- Li, R.; Rao, J.; Wan, L. The Digital Economy, Enterprise Digital Transformation, and Enterprise Innovation. Manag. Decis. Econ. 2022, 43, 2875–2886. [Google Scholar] [CrossRef]
- Blichfeldt, H.; Faullant, R. Performance Effects of Digital Technology Adoption and Product & Service Innovation—A Process-Industry Perspective. Technovation 2021, 105, 102275. [Google Scholar] [CrossRef]
- Burmeister, C.; Lüttgens, D.; Piller, F.T. Business Model Innovation for Industrie 4.0: Why the “Industrial Internet” Mandates a New Perspective on Innovation. Unternehmung 2016, 70, 124–152. [Google Scholar] [CrossRef]
- Chen, D.Q.; Preston, D.S.; Swink, M. How the Use of Big Data Analytics Affects Value Creation in Supply Chain Management. J. Manag. Inf. Syst. 2015, 32, 4–39. [Google Scholar] [CrossRef]
- Zhao, X.; Huo, B.; Flynn, B.B.; Yeung, J.H.Y. The Impact of Power and Relationship Commitment on the Integration between Manufacturers and Customers in a Supply Chain. J. Oper. Manag. 2008, 26, 368–388. [Google Scholar] [CrossRef]
- Feliciano-Cestero, M.M.; Ameen, N.; Kotabe, M.; Paul, J.; Signoret, M. Is Digital Transformation Threatened? A Systematic Literature Review of the Factors Influencing Firms’ Digital Transformation and Internationalization. J. Bus. Res. 2023, 157, 113546. [Google Scholar] [CrossRef]
- Rollins, M.; Pekkarinen, S.; Mehtälä, M. Inter-firm Customer Knowledge Sharing in Logistics Services: An Empirical Study. Int. J. Phys. Distrib. Logist. Manag. 2011, 41, 956–971. [Google Scholar] [CrossRef]
- Han, Z.; Hu, M.; Zuo, Y.; Jiang, S. Supplier-Base Concentration and Efficiency: The Moderating Roles of R&D Expenditure and Market Share. Int. J. Phys. Distrib. Logist. Manag. 2022, 52, 748–770. [Google Scholar] [CrossRef]
- De Haes, S.; Van Grembergen, W. An Exploratory Study into IT Governance Implementations and Its Impact on Business/IT Alignment. Inf. Syst. Manag. 2009, 26, 123–137. [Google Scholar] [CrossRef]
- Tambe, P.; Hitt, L.M. The Productivity of Information Technology Investments: New Evidence from IT Labor Data. Inf. Syst. Res. 2012, 23, 599–617. [Google Scholar] [CrossRef]
- Mantena, R.; Saha, R.L. Market Share Contracts in B2B Procurement Settings with Heterogeneous User Preferences. Prod. Oper. Manag. 2022, 31, 1290–1308. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Morgan, N.A.; Rego, L.L. Examining Why and When Market Share Drives Firm Profit. J. Mark. 2022, 86, 73–94. [Google Scholar] [CrossRef]
- Fabbri, D.; Klapper, L.F. Bargaining Power and Trade Credit. J. Corp. Financ. 2016, 41, 66–80. [Google Scholar] [CrossRef]
- Bloom, P.N.; Perry, V.G. Retailer Power and Supplier Welfare. J. Retail. 2001, 77, 379–396. [Google Scholar] [CrossRef]
- Qiao, Y.; Li, X.; Hu, J. From Digital to Innovative: How Does Digital Transformation Affect Corporate Innovation? Econ. Lett. 2025, 247, 112210. [Google Scholar] [CrossRef]
- Wang, B.; He, X. Fintech and Corporate Advertising Expenditures: The Role of Financial Constraints. Asia-Pac. J. Account. Econ. 2025, 32, 1–18. [Google Scholar] [CrossRef]
- Ding, F.; Liu, Q.; Shi, H.; Wang, W.; Wu, S. Firms’ Access to Informal Financing: The Role of Shared Managers in Trade Credit Access. J. Corp. Financ. 2023, 79, 102388. [Google Scholar] [CrossRef]
- Lin, T.-T.; Chou, J.-H. Trade Credit and Bank Loan: Evidence from Chinese Firms. Int. Rev. Econ. Financ. 2015, 36, 17–29. [Google Scholar] [CrossRef]
- Lewbel, A. Constructing Instruments for Regressions with Measurement Error When No Additional Data Are Available, with an Application to Patents and R&D. Econometrica 1997, 65, 1201. [Google Scholar] [CrossRef]
- Liu, Y.; He, Q. Digital Transformation, External Financing, and Enterprise Resource Allocation Efficiency. Manag. Decis. Econ. 2024, 45, 2321–2335. [Google Scholar] [CrossRef]
- Taylor, A.B.; MacKinnon, D.P.; Tein, J.-Y. Tests of the Three-Path Mediated Effect. Organ. Res. Methods 2008, 11, 241–269. [Google Scholar] [CrossRef]
- Jaffe, A.B.; Trajtenberg, M.; Henderson, R. Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations. Q. J. Econ. 1993, 108, 577–598. [Google Scholar] [CrossRef]
- Jaffe, A.B.; Trajtenberg, M. International Knowledge Flows: Evidence from Patent Citations. Econ. Innov. New Technol. 1999, 8, 105–136. [Google Scholar] [CrossRef]
- Bereskin, F.L.; Campbell, T.L.; Hsu, P. Corporate Philanthropy, Research Networks, and Collaborative Innovation. Financ. Manag. 2016, 45, 175–206. [Google Scholar] [CrossRef]
- Chen, X.; Chen, X.; Xu, L.; Wen, F. Attention to Climate Change and Downside Risk: Evidence from China. Risk Anal. 2023, 43, 1011–1031. [Google Scholar] [CrossRef]
- Miller, D.; Friesen, P.H. A Longitudinal Study of the Corporate Life Cycle. Manag. Sci. 1984, 30, 1161–1183. [Google Scholar] [CrossRef]
- Lu, M.; Han, Q.; Hao, Q. Can Digital Transformation Help Alleviate Corporate Financial Redundancy? Int. Rev. Econ. Financ. 2025, 97, 103772. [Google Scholar] [CrossRef]
- Anthony, J.H.; Ramesh, K. Association between Accounting Performance Measures and Stock Prices. J. Account. Econ. 1992, 15, 203–227. [Google Scholar] [CrossRef]
- De Blick, T.; Paeleman, I.; Laveren, E. Financing Constraints and SME Growth: The Suppression Effect of Cost-Saving Management Innovations. Small Bus. Econ. 2024, 62, 961–986. [Google Scholar] [CrossRef]
- Hitt, M.A.; Ireland, R.D.; Hoskisson, R.E. Strategic Management: Competitiveness and Globalization; Concepts and Cases; Volberda, H.W., Ed.; South-Western Cengage Learning: Andover, UK, 2011; ISBN 978-1-4080-1918-4. [Google Scholar]
- Yang, L.; Qin, H.; Xia, W.; Gan, Q.; Li, L.; Su, J.; Yu, X. Resource Slack, Environmental Management Maturity and Enterprise Environmental Protection Investment: An Enterprise Life Cycle Adjustment Perspective. J. Clean. Prod. 2021, 309, 127339. [Google Scholar] [CrossRef]
- Chen, G.; Liu, P.; Jiang, A. Does Digital Transformation in Enterprises Reduce Debt Default Risk? Int. Rev. Econ. Financ. 2024, 96, 103529. [Google Scholar] [CrossRef]
- Bjørnskov, C. Determinants of Generalized Trust: A Cross-Country Comparison. Public Choice 2007, 130, 1–21. [Google Scholar] [CrossRef]
- Saaranen, A. Social Trust during the Pandemic: Longitudinal Evidence from Three Waves of the Swiss Household Panel Study. J. Trust Res. 2024, 14, 188–212. [Google Scholar] [CrossRef]
- Algan, Y.; Cahuc, P. Inherited Trust and Growth. Am. Econ. Rev. 2010, 100, 2060–2092. [Google Scholar] [CrossRef]
- Li, X.; Wang, S.S.; Wang, X. Trust and IPO Underpricing. J. Corp. Financ. 2019, 56, 224–248. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, Y. Does Social Trust Affect Firms’ ESG Performance? Int. Rev. Financ. Anal. 2024, 93, 103153. [Google Scholar] [CrossRef]
- Qiu, B.; Ren, H.; Zuo, J.; Cheng, B. Social Trust and Female Board Representation: Evidence from China. J. Bus. Ethics 2023, 188, 187–204. [Google Scholar] [CrossRef]
- Gu, L.; Liu, Z.; Ma, S.; Wang, H. Social Trust and Corporate Financial Asset Holdings: Evidence from China. Int. Rev. Financ. Anal. 2022, 82, 102170. [Google Scholar] [CrossRef]
- Robbins, B.G. From the General to the Specific: How Social Trust Motivates Relational Trust. Soc. Sci. Res. 2016, 55, 16–30. [Google Scholar] [CrossRef]
- Zan, H.; Jiang, K.; Ma, J. Social Trust, Green Finance, and Enterprise Innovation. Financ. Res. Lett. 2024, 63, 105386. [Google Scholar] [CrossRef]
- Liu, B.; Huang, W.; Chan, K.C.; Chen, T. Social Trust and Internal Control Extensiveness: Evidence from China. J. Account. Public Policy 2022, 41, 106940. [Google Scholar] [CrossRef]
- Cuñat, V. Trade Credit: Suppliers as Debt Collectors and Insurance Providers. Rev. Financ. Stud. 2007, 20, 491–527. [Google Scholar] [CrossRef]
- Cosci, S.; Meliciani, V.; Sabato, V. Relationship Lending and Innovation: Empirical Evidence on a Sample of European Firms. Econ. Innov. New Technol. 2016, 25, 335–357. [Google Scholar] [CrossRef]

| Dependent Variables | |
| AP | Accounts Payable divided by Total Assets. |
| AP1 | (Accounts Payable + Notes Payable)/Total Assets |
| Independent Variables | |
| DCG | ln(Frequency of Digital Transformation Terms + 1) |
| DCG1 | ln(Digital Patent of Enterprise 1) |
| Control Variables | |
| size | Natural logarithm of total annual assets. |
| age | The natural logarithm of (current year—listing year + 1) |
| soe | State-owned enterprises are assigned a value of 0, private enterprises are assigned a value of 1. |
| lev | Total liabilities at year end divided by total assets at year end |
| roa | Net Profit/Total Assets |
| dep | The number of independent directors divided by the total number of directors |
| borad | ln(Number of Board Members) |
| Mediating Variables | |
| Supplier | Total Purchases from Top Five Suppliers/Annual Total Purchases |
| RD | ln (3 × number of invention patent applications + 2 × number of utility model patent applications + number of design patent applications + 1) |
| Market | Enterprise’s annual main business revenue/Total main business revenue of peer enterprises in the same period |
| Variable | N | Mean | SD | Min | Median | Max |
|---|---|---|---|---|---|---|
| DCG | 34,304 | 2.979 | 1.246 | 0.000 | 2.944 | 6.122 |
| AP | 34,304 | 0.091 | 0.065 | 0.002 | 0.076 | 0.349 |
| size | 34,304 | 22.182 | 1.288 | 19.506 | 21.977 | 26.456 |
| age | 34,304 | 2.013 | 0.958 | 0.000 | 2.197 | 3.401 |
| soe | 34,304 | 0.332 | 0.471 | 0.000 | 0.000 | 1.000 |
| lev | 34,304 | 0.405 | 0.202 | 0.032 | 0.395 | 0.895 |
| dep | 34,304 | 0.377 | 0.053 | 0.300 | 0.364 | 0.600 |
| cflow | 34,304 | 0.047 | 0.068 | −0.196 | 0.047 | 0.269 |
| roa | 34,304 | 0.039 | 0.064 | −0.506 | 0.039 | 0.236 |
| borad | 34,304 | 2.118 | 0.195 | 1.609 | 2.197 | 2.708 |
| Variables | (1) | (2) | (3) |
|---|---|---|---|
| AP | AP | AP | |
| DCG | 0.001 *** | 0.002 *** | |
| (3.762) | (2.603) | ||
| L.DCG | 0.001 ** | ||
| (2.390) | |||
| size | −0.006 *** | −0.006 *** | |
| (−4.249) | (−4.115) | ||
| age | −0.003 ** | −0.004 ** | |
| (−2.515) | (−2.071) | ||
| soe | 0.006 ** | 0.006 ** | |
| (2.548) | (2.515) | ||
| lev | 0.116 *** | 0.114 *** | |
| (25.308) | (23.642) | ||
| dep | 0.007 | 0.008 | |
| (0.711) | (0.830) | ||
| cflow | 0.012 *** | 0.017 *** | |
| (2.660) | (3.498) | ||
| roa | 0.009 | 0.003 | |
| (1.550) | (0.583) | ||
| borad | 0.006 | 0.005 | |
| (1.589) | (1.467) | ||
| Constant | 0.087 *** | 0.150 *** | 0.164 *** |
| (92.056) | (5.084) | (5.070) | |
| Year FE | Yes | Yes | Yes |
| Firm FE | Yes | Yes | Yes |
| N | 33,945 | 33,945 | 28,598 |
| R2 | 0.800 | 0.825 | 0.835 |
| Variables | (1) | (2) |
|---|---|---|
| AP1 | AP | |
| DCG | 0.002 ** | |
| (2.189) | ||
| DCG1 | 0.001 * | |
| (1.869) | ||
| Constant | 0.175 *** | 0.204 *** |
| (3.550) | (5.702) | |
| Controls | Yes | Yes |
| Year FE | Yes | Yes |
| Firm FE | Yes | Yes |
| N | 26,758 | 22,641 |
| R2 | 0.834 | 0.858 |
| Variables | Year > 2015 | Year < 2020 |
|---|---|---|
| (1) | (2) | |
| AP | AP | |
| DCG | 0.002 ** | 0.001 ** |
| (2.394) | (2.046) | |
| Constant | 0.270 *** | 0.116 *** |
| (5.946) | (3.390) | |
| Controls | Yes | Yes |
| Year FE | Yes | Yes |
| Firm FE | Yes | Yes |
| N | 23,190 | 22,274 |
| R2 | 0.881 | 0.846 |
| Variables | AP |
|---|---|
| DCG | 0.002 *** |
| (2.714) | |
| Constant | 0.132 *** |
| (4.380) | |
| Controls | Yes |
| Year FE | Yes |
| Firm FE | Yes |
| N | 31,017 |
| R2 | 0.128 |
| Variables | Delete the Four Municipalities of the Four Municipalities | Eliminate High-Tech Firms |
|---|---|---|
| (1) | (2) | |
| AP | AP | |
| DCG | 0.001 ** | 0.002 *** |
| (1.966) | (2.989) | |
| Constant | 0.142 *** | 0.142 *** |
| (4.443) | (4.659) | |
| Controls | Yes | Yes |
| Year FE | Yes | Yes |
| Firm FE | Yes | Yes |
| N | 27,389 | 31,977 |
| R2 | 0.127 | 0.133 |
| Variable | (1) | (2) | |
|---|---|---|---|
| DCG | AP | ||
| IV_DCG | 0.106 *** | ||
| (17.778) | |||
| DCG | 0.002 ** | ||
| (2.502) | |||
| constant | −1.239 *** | −0.0953 *** | |
| (−3.311) | (−2.990) | ||
| Controls | Yes | Yes | |
| Year FE | Yes | Yes | |
| Firm FE | Yes | Yes | |
| N | 33,945 | 33,945 | |
| R2 | 0.890 | 0.125 | |
| Kleibergen–Paap rk LM | 531.618 *** | ||
| Kleibergen–Paap rk Wald F statistic | 316.051 *** |
| Variables | 1:1 Matching | 1:3 Matching |
|---|---|---|
| (1) | (2) | |
| AP | AP | |
| DCG | 0.002 *** | 0.003 *** |
| (3.099) | (4.351) | |
| Constant | 0.134 *** | 0.115 *** |
| (4.348) | (4.188) | |
| Controls | Yes | Yes |
| Year FE | Yes | Yes |
| Firm FE | Yes | Yes |
| N | 16,203 | 27,273 |
| R2 | 0.124 | 0.128 |
| Variables | Before PSM | After PSM | Dynamic Effect Test |
|---|---|---|---|
| (1) | (2) | (3) | |
| AP | AP | AP | |
| Treat × Post | 0.004 *** | 0.004 *** | |
| (3.082) | (3.073) | ||
| Before5 | −0.001 | ||
| (−0.163) | |||
| Before4 | 0.001 | ||
| (0.304) | |||
| Before3 | −0.000 | ||
| (−0.274) | |||
| Before2 | 0.001 | ||
| (1.238) | |||
| current | 0.003 *** | ||
| (3.178) | |||
| After1 | 0.005 *** | ||
| (3.906) | |||
| After2 | 0.003 ** | ||
| (2.145) | |||
| After3 | 0.003 * | ||
| (1.814) | |||
| Constant | 0.142 *** | 0.142 *** | 0.143 *** |
| (4.750) | (4.767) | (4.780) | |
| Controls | Yes | Yes | Yes |
| Year FE | Yes | Yes | Yes |
| Firm FE | Yes | Yes | Yes |
| N | 30,938 | 30,905 | 33,945 |
| R2 | 0.141 | 0.142 | 0.825 |
| Variables | Supplier | AP | |
|---|---|---|---|
| (1) | (2) | ||
| DCG | −0.811 *** | 0.002 ** | |
| (−3.881) | (2.343) | ||
| Supplier | −0.000 *** | ||
| (−4.108) | |||
| Constant | 108.779 *** | 0.198 *** | |
| (10.795) | (6.391) | ||
| Controls | Yes | Yes | |
| Year FE | Yes | Yes | |
| Firm FE | Yes | Yes | |
| N | 29,881 | 29,881 | |
| R2 | 0.032 | 0.151 | |
| Bootstrap | 0.000119 *** | ||
| (3.80) | |||
| 95% confidence interval | (0.000058, 0.00018) | ||
| Proportion of mediating effect | 0.073 |
| Variable | (1) | (2) | |
|---|---|---|---|
| Patent | AP | ||
| DCG | 0.073 *** | 0.001 ** | |
| (4.790) | (2.470) | ||
| Patent | 0.001 *** | ||
| (3.754) | |||
| constant | −9.853 *** | 0.148 *** | |
| (−13.383) | (5.033) | ||
| Controls | Yes | Yes | |
| Year FE | Yes | Yes | |
| Firm FE | Yes | Yes | |
| N | 33,705 | 33,705 | |
| R2 | 0.219 | 0.139 | |
| Bootstrap | 0.0001 *** | ||
| (4.01) | |||
| 95% confidence interval | (0.000039, 0.000114) | ||
| Proportion of mediating effect | 0.049 |
| Variable | (1) | (2) | |
|---|---|---|---|
| Market | AP | ||
| DCG | 0.000 *** | 0.001 ** | |
| (3.022) | (2.467) | ||
| Market | 0.195 *** | ||
| (3.855) | |||
| constant | −0.070 *** | 0.156 *** | |
| (−7.489) | (5.483) | ||
| Controls | Yes | Yes | |
| Year FE | Yes | Yes | |
| Firm FE | Yes | Yes | |
| N | 34,249 | 34,249 | |
| R2 | 0.053 | 0.139 | |
| Bootstrap | 0.0001 *** | ||
| (3.43) | |||
| 95% confidence interval | (0.000034, 0.000124) | ||
| Proportion of mediating effect | 0.052 |
| Variables | SOEs | Non-SOEs |
|---|---|---|
| (1) | (2) | |
| AP | AP | |
| DCG | 0.003 ** | 0.001 |
| (2.430) | (1.353) | |
| Constant | 0.079 | 0.186 *** |
| (1.370) | (5.833) | |
| Controls | Yes | Yes |
| Year FE | Yes | Yes |
| Firm FE | Yes | Yes |
| N | 11,390 | 22,914 |
| R2 | 0.095 | 0.152 |
| Variables | lifec1 | lifec2 | lifec3 |
|---|---|---|---|
| (1) | (2) | (3) | |
| AP | AP | AP | |
| DCG | 0.001 | 0.002 *** | 0.002 |
| (0.908) | (2.768) | (1.013) | |
| Constant | 0.174 *** | 0.115 *** | 0.208 |
| (4.820) | (2.868) | (1.282) | |
| Controls | Yes | Yes | Yes |
| Year FE | Yes | Yes | Yes |
| Firm FE | Yes | Yes | Yes |
| N | 13,355 | 16,783 | 1894 |
| R2 | 0.148 | 0.132 | 0.061 |
| Variables | TrustA_1 | TrustA_2 | TrustB_1 | TrustB_2 |
|---|---|---|---|---|
| (1) | (2) | (3) | (4) | |
| AP | AP | AP | AP | |
| DCG | 0.001 | 0.002 ** | 0.001 | 0.002 * |
| (1.603) | (2.244) | (0.908) | (1.823) | |
| Constant | 0.138 *** | 0.189 *** | 0.174 *** | 0.109 ** |
| (3.784) | (4.037) | (4.820) | (2.086) | |
| Controls | Yes | Yes | Yes | Yes |
| Year FE | Yes | Yes | Yes | Yes |
| Firm FE | Yes | Yes | Yes | Yes |
| N | 20,778 | 13,526 | 13,355 | 13,841 |
| R2 | 0.118 | 0.164 | 0.148 | 0.105 |
| Variables | (1) | (2) | (3) |
|---|---|---|---|
| AR | AP | AR | |
| DCG | 0.005 *** | 0.002 *** | 0.004 *** |
| (4.684) | (2.604) | (4.425) | |
| AP | 0.441 *** | ||
| (16.670) | |||
| Constant | 0.280 *** | 0.142 *** | 0.217 *** |
| (6.050) | (4.905) | (4.982) | |
| Controls | Yes | Yes | Yes |
| Year FE | Yes | Yes | Yes |
| Firm FE | Yes | Yes | Yes |
| N | 34,218 | 34,304 | 34,218 |
| R2 | 0.043 | 0.137 | 0.120 |
| Variables | (1) | (2) |
|---|---|---|
| AP≤ 1 Year | AP > 1 Year | |
| DCG | 0.002 *** | −0.000 |
| (2.709) | (−0.522) | |
| Constant | 0.121 *** | 0.019 ** |
| (3.715) | (1.975) | |
| Controls | Yes | Yes |
| Year FE | Yes | Yes |
| Firm FE | Yes | Yes |
| N | 34,302 | 34,303 |
| R2 | 0.105 | 0.020 |
| Variables | (1) |
|---|---|
| Bankd | |
| DCG | −0.002 |
| (−0.957) | |
| Constant | 0.047 |
| (0.385) | |
| Controls | Yes |
| Year FE | Yes |
| Firm FE | Yes |
| N | 22,774 |
| R2 | 0.129 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Xu, Y.; Che, Y.; Tian, X.; Zhang, S.; Zhang, Y. Sustainable Trade Credit Access: The Role of Digital Transformation Under the Resource Dependence Theory. Sustainability 2026, 18, 1174. https://doi.org/10.3390/su18031174
Xu Y, Che Y, Tian X, Zhang S, Zhang Y. Sustainable Trade Credit Access: The Role of Digital Transformation Under the Resource Dependence Theory. Sustainability. 2026; 18(3):1174. https://doi.org/10.3390/su18031174
Chicago/Turabian StyleXu, Yang, Yun Che, Xu Tian, Shuai Zhang, and Yu Zhang. 2026. "Sustainable Trade Credit Access: The Role of Digital Transformation Under the Resource Dependence Theory" Sustainability 18, no. 3: 1174. https://doi.org/10.3390/su18031174
APA StyleXu, Y., Che, Y., Tian, X., Zhang, S., & Zhang, Y. (2026). Sustainable Trade Credit Access: The Role of Digital Transformation Under the Resource Dependence Theory. Sustainability, 18(3), 1174. https://doi.org/10.3390/su18031174

