Identification of Six Phytotoxic Compounds as Plant Growth Inhibitors from Afzelia xylocarpa Leaves
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of A. xylocarpa Leaf Extracts
2.2. Bioassays of A. xylocarpa Leaf Aqueous MeOH Extracts
2.3. Isolation and Identification of the Active Compounds
2.3.1. Bioassay-Guided Fractionation and Identification of the Phytotoxic Substances
2.3.2. Bioassays of the Isolated Substances
2.4. Statistical Analysis
3. Results
3.1. Biological Activities of Aqueous MeOH Leaf Extracts
3.2. Identification of Bioactive Compounds Derived from the Aqueous MeOH Leaf Extract of A. xylocarpa
3.3. Biological Activities of the Six Compounds Towards L. sativum
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Damalas, C.A.; Koutroubas, S.D.; Abdollahzadeh, G. Herbicide use in conventional cereal production in northern Greece: An appraisal through the theory of planned behavior. Pest Manag. Sci. 2022, 78, 4668–4678. [Google Scholar] [CrossRef]
- Nath, C.P.; Singh, R.G.; Choudhary, V.K.; Datta, D.; Nandan, R.; Singh, S.S. Challenges and alternatives of herbicide-based weed management. Agronomy 2024, 14, 126. [Google Scholar] [CrossRef]
- Ghazi, M.I.; Zulkifli, N.S.; Alipah, N.; Ibrahim, S.; Abu Bakar, N.H.; Anuar, F.H. Health effects of herbicides and its current removal strategies. Environ. Sci. Pollut. Res. 2023, 30, 158594–158617. [Google Scholar] [CrossRef]
- He, B.; Wu, F.X.; Yu, L.K.; Wu, L.; Chen, Q.; Hao, G.F.; Yang, W.C.; Lin, H.Y.; Yang, G.F. Discovery of novel pyrazole–quinazoline-2, 4-dione hybrids as 4-hydroxyphenylpyruvate dioxygenase inhibitors. Agric. Food. Chem. 2020, 68, 5059–5067. [Google Scholar] [CrossRef] [PubMed]
- Poonpaiboonpipat, T.; Krumsri, R.; Kato-Noguchi, H. Allelopathic and herbicidal effects of crude extract from Chromolaena odorata (L.) R.M. King and H. Rob. on Echinochloa crus-galli and Amaranthus viridis. Plants 2021, 10, 1609. [Google Scholar] [CrossRef]
- Islam, A.K.M.M.; Karim, S.M.R.; Kheya, S.A.; Yeasmin, S. Unlocking the potential of bioherbicides for sustainable weed management. Heliyon 2024, 10, e36088. [Google Scholar] [CrossRef] [PubMed]
- Ammar, E.E.; Elmasry, S.A.; Ghosh, S.; Al-Farga, A.; Ghallab, Y.K.; Eldeen, A.M.F.; Aioub, A.A. Insightful review of bioherbicides derived from plants (phyto-herbicides). J. Chil. Chem. Soc. 2023, 68, 5847–5852. [Google Scholar] [CrossRef]
- Araniti, F.; Landi, M.; Laudicina, V.A.; Abenavoli, M.R. Secondary metabolites and eco-friendly techniques for agricultural weed/pest management. Plants 2021, 10, 1418. [Google Scholar] [CrossRef]
- Hasan, M.; Ahmad-Hamdani, M.S.; Rosli, A.M.; Hamdan, H. Bioherbicides: An eco-friendly tool for sustainable weed management. Plants 2021, 10, 1212. [Google Scholar] [CrossRef]
- Synowiec, A.; Drozdek, E.; Krajewska, A.; Bocianowski, J.; Kesik, T. Modern approaches for the development of new herbicides for weed management. Int. J. Mol. Sci. 2023, 24, 595. [Google Scholar] [CrossRef]
- Masi, M.; Cimmino, A.; Evidente, A. Natural compounds as active ingredients for potential new bioherbicides towards sustainable agriculture. Plants 2023, 12, 2824. [Google Scholar] [CrossRef]
- Lun, T.L.; Iwasaki, A.; Suenaga, K.; Kato-Noguchi, H. Two allelopathic substances from Plumbago rosea stem extracts and their allelopathic effects. Agronomy 2022, 12, 2020. [Google Scholar] [CrossRef]
- Soriano, G.; Siciliano, A.; Fernández-Aparicio, M.; Cala Peralta, A.; Masi, M.; Moreno-Robles, A.; Guida, M.; Cimmino, A. Iridoid glycosides isolated from Bellardia trixago identified as inhibitors of Orobanche cumana radicle growth. Toxins 2022, 14, 559. [Google Scholar] [CrossRef]
- Knudsen, C.G.; Lee, D.L.; Michaely, W.J.; Chin, H.L.; Nguyen, N.H.; Rusay, R.J.; Cromartie, T.H.; Gray, R.; Lake, B.H.; Fraser, T.E.M.; et al. Discovery of the triketone class of HPPD inhibiting herbicides and their relationship to naturally occurring β-triketones. In Allelopathy in Ecological Agriculture and Forestry; Narwal, S.S., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; pp. 101–111. [Google Scholar]
- Duke, S.O. Why have no new herbicide modes of action appeared in recent years? Pest Manag. Sci. 2012, 68, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Vyvyan, J.R. Allelochemicals as leads for new herbicides and agrochemicals. Tetrahedron 2002, 58, 1631–1646. [Google Scholar] [CrossRef]
- Boonmee, S.; Suwitchayanon, P.; Krumsri, R.; Kato-Noguchi, H. Investigation of the allelopathic potential of Nephrolepis cordifolia (L.) C. Presl against dicotyledonous and monocotyledonous plant species. Theor. Exp. Plant. Physiol. 2020, 30, 129–139. [Google Scholar] [CrossRef]
- Jiang, C.; Zhou, S.; Liu, L.; Toshmatov, Z.; Huang, L.; Shi, K.; Zhang, C.; Shao, H. Evaluation of the phytotoxic effect of the essential oil from Artemisia absinthium. Ecotoxicol. Environ. Saf. 2021, 226, 112856. [Google Scholar] [CrossRef]
- Moh, S.M.; Iwasaki, A.; Suenaga, K.; Kato-Noguchi, H. Allelopathic activity of a novel compound, 5, 6-dihydrogen-11α-O-acetyl-12β-O-tigloyl-17β-marsdenin, and a known steroidal glycoside from the leaves of Marsdenia tenacissima (Roxb.) Moon. Agronomy 2022, 12, 1536. [Google Scholar] [CrossRef]
- Cai, X.; Liu, J.X.; Song, Q.S.; Chen, K.L.; Lu, Z.Y.; Zhang, Y.M. Chemical constituents of Afzelia xylocarpa. Chem. Nat. Compd. 2018, 54, 764–765. [Google Scholar] [CrossRef]
- Akinpelu, D.A.; Aiyegoro, O.A.; Okoh, A.I. The in vitro antioxidant property of methanolic extract of Afzelia africana (Smith). J. Med. Plant. Res. 2010, 4, 2022–2027. [Google Scholar] [CrossRef]
- Oyedemi, S.O.; Adewusi, E.A.; Aiyegoro, O.A.; Akinpelu, D.A. Antidiabetic and haematological effect of aqueous extract of stem bark of Afzelia africana (Smith) on streptozotocin-induced diabetic Wistar rats. Asian Pac. J. Trop. Med. 2011, 1, 353–358. [Google Scholar]
- Akah, P.A.; Okpi, O.; Okoli, C.O. Evaluation of the anti-inflammatory, analgesic and antimicrobial activities of bark of Afzelia africana. Niger. J. Nat. Prod. Med. 2007, 11, 48–52. [Google Scholar]
- Phuong, D.L.; Thuy, N.T.; Long, P.Q.; Kuo, P.C.; Thang, T.D. Composition of fatty acids, tocopherols, sterols, total phenolics, and antioxidant activity of seed oils of Afzelia xylocarpa and Cassia fistula. Chem. Nat. Compd. 2019, 55, 242–246. [Google Scholar] [CrossRef]
- Krumsri, R.; Ozaki, K.; Teruya, T.; Kato-Noguchi, H. Isolation and identification of two potent phytotoxic substances from Afzelia xylocarpa for controlling weeds. Appl. Sci. 2021, 11, 3542. [Google Scholar] [CrossRef]
- Rob, M.M.; Hossen, K.; Iwasaki, A.; Suenaga, K.; Kato-Noguchi, H. Phytotoxic activity and identification of phytotoxic substances from Schumannianthus dichotomus. Plants 2020, 9, 102. [Google Scholar] [CrossRef]
- Seifu, A.; Lulekal, E.; Demissew, S.; Woldu, Z. Allelopathic potential of root and leaf aqueous extracts of invasive alien plant species, Cryptostegia grandiflora, on germination and seedling growth of Linum usitatissimum and Guizotia abyssinica. Front. For. Glob. Change 2023, 6, 1131815. [Google Scholar] [CrossRef]
- Bari, I.N.; Kato-Noguchi, H. Phytotoxic effects of Cerbera manghas L. leaf extracts on seedling elongation of four monocot and four dicot test species. Acta. Agrobot. 2017, 70, 1720. [Google Scholar] [CrossRef]
- Krumsri, R.; Iwasaki, A.; Suenaga, K.; Kato-Noguchi, H. Phytotoxic effects of Senna garrettiana and identification of phytotoxic substances for the development of bioherbicides. Agriculture 2022, 12, 1338. [Google Scholar] [CrossRef]
- Kai, H.; Baba, M.; Okuyama, T. Two new megastigmanes from the leaves of Cucumis sativus. Chem. Pharm. Bull. 2007, 55, 133–136. [Google Scholar] [CrossRef]
- D’Abrosca, B.; DellaGreca, M.; Fiorentino, A.; Monaco, P.; Oriano, P.; Temussi, F. Structure elucidation and phytotoxicity of C13 nor-isoprenoids from Cestrum parqui. Phytochemistry 2004, 65, 497–505. [Google Scholar] [CrossRef]
- DellaGreca, M.; Previtera, L.; Zarrelli, A.; D’Abrosca, B. Isolation and phytotoxicity of apocarotenoids from Chenopodium album. J. Nat. Prod. 2004, 67, 1492–1495. [Google Scholar] [CrossRef]
- Abrams, M.L.; Foarta, F.; Landis, C.R. Asymmetric hydroformylation of Z-enamides and enol esters with rhodium-bisdiazaphos catalysts. J. Am. Chem. Soc. 2014, 136, 14583–14588. [Google Scholar] [CrossRef]
- Junji, K.; Noritsugu, M. New loliolide derivatives from the brown alga Undaria pinnatifida. J. Nat. Prod. 2002, 65, 57–58. [Google Scholar] [CrossRef]
- Xie, L.H.; Akao, T.; Hamasaki, K.; Deyama, T.; Hattori, M. Biotransformation of pinoresinol diglucoside to mammalian lignans by human intestinal microflora, and isolation of Enterococcus faecalis strain PDG-1 responsible for the transformation of (+)-pinoresinol to (+)-lariciresinol. Chem. Pharm. Bull. 2003, 51, 508–515. [Google Scholar] [CrossRef]
- Machida, K.; Kikuchi, M. Norisoprenoids from Viburnum dilatatum. Phytochemistry 1996, 41, 1333–1336. [Google Scholar] [CrossRef]
- Zan, K.; Chen, X.Q.; Zhao, M.B.; Tu, P.F. Sesquiterpenoids from aerial parts of Artemisia myriantha. China J. Chin. Mater. Medica 2016, 41, 2833–2837. [Google Scholar] [CrossRef] [PubMed]
- Tu, P.C.; Tseng, H.C.; Liang, Y.C.; Huang, G.J.; Lu, T.L.; Kuo, T.F.; Kuo, Y.H. Phytochemical investigation of Tradescantia albiflora and anti-inflammatory butenolide derivatives. Molecules 2019, 24, 3336. [Google Scholar] [CrossRef]
- Xu, W.; Wang, J.; Ju, B.; Lan, X.; Ying, X.; Stien, D. Seven compounds from Portulaca oleracea L. and their anticholinesterase activities. Nat. Prod. Res. 2022, 36, 2547–2553. [Google Scholar] [CrossRef] [PubMed]
- Doerfler, D.L.; Bird, B.A.; Campbell, I.M. N-benzoylphenylalanine and N-benzoylphenylalaninol, and their biosynthesis in Penicillin Brevicompactum. Phytochemistry 1981, 20, 2303–2304. [Google Scholar] [CrossRef]
- Du, D.S.; Cheng, Z.H.; Chen, D.F. Anti-complement alkaloids from whole plants of Viola yedoensis. China J. Chin. Mater. Medica 2017, 42, 4794–4800. [Google Scholar] [CrossRef]
- Silva, D.P.D.; Cardoso, M.S.; Macedo, A.J. Endophytic fungi as a source of antibacterial compounds—A focus on gram-negative bacteria. Antibiotics 2022, 11, 1509. [Google Scholar] [CrossRef]
- Ma, C.Y.; Musoke, S.F.; Tan, G.T.; Sydara, K.; Bouamanivong, S.; Southavong, B.; Soejarto, D.D.; Fong, H.H.; Zhang, H.J. Study of antimalarial activity of chemical constituents from Diospyros quaesita. Chem. Biodivers. 2008, 5, 2442–2448. [Google Scholar] [CrossRef]
- Mathpal, D.; Almeleebia, T.M.; Alshahrani, K.M.; Alshahrani, M.Y.; Ahmad, I.; Asiri, M.; Kamal, M.; Jawaid, T.; Srivastava, S.P.; Saeed, M.; et al. Identification of 3-((1-(Benzyl (2-hydroxy-2-phenylethyl) amino)-1-oxo-3-phenylpropan-2-yl) carbamoyl) pyrazine-2-carboxylic Acid as a Potential Inhibitor of Non-Nucleosidase Reverse Transcriptase Inhibitors through InSilico Ligand-and Structure-Based Approaches. Molecules 2021, 26, 5262. [Google Scholar] [CrossRef]
- Consonni, R.; Ottolina, G. NMR characterization of lignans. Molecules 2022, 27, 2340. [Google Scholar] [CrossRef]
- Hwang, B.; Cho, J.; Hwang, I.S.; Jin, H.G.; Woo, E.R.; Lee, D.G. Antifungal activity of lariciresinol derived from Sambucus williamsii and their membrane-active mechanisms in Candida albicans. Biochem. Biophys. Res. Commun. 2011, 410, 489–493. [Google Scholar] [CrossRef]
- du Preez-Bruwer, I.; Mumbengegwi, D.R.; Louw, S. In vitro antimalarial properties and chemical composition of Diospyros chamaethamnus extracts. S. Afr. J. Bot. 2022, 149, 290–296. [Google Scholar] [CrossRef]
- Ma, Z.J.; Lu, L.; Yang, J.J.; Wang, X.X.; Su, G.; Wang, Z.L.; Chen, G.H.; Sun, H.M.; Wang, M.Y.; Yang, Y. Lariciresinol induces apoptosis in HepG2 cells via mitochondrial-mediated apoptosis pathway. Eur. J. Pharmacol. 2018, 821, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.; Iwasaki, A.; Suenaga, K.; Kato-Noguchi, H. Isolation and identification of two potential phytotoxic substances from the aquatic fern Marsilea crenata. J. Plant Biol. 2017, 60, 75–81. [Google Scholar] [CrossRef]
- Kyaw, E.H.; Iwasaki, A.; Suenaga, K.; Kato-Noguchi, H. Assessment of the phytotoxic potential of Dregea volubilis (L.f.) Benth. ex Hook. f. and identification of its phytotoxic substances for weed control. Agriculture 2022, 12, 1826. [Google Scholar] [CrossRef]
- Hussain, M.I.; El-Sheikh, M.A.; Reigosa, M.J. Allelopathic potential of aqueous extract from Acacia melanoxylon R. Br. on Lactuca sativa. Plants 2020, 9, 1228. [Google Scholar] [CrossRef]
- Ghimire, B.K.; Ghimire, B.; Yu, C.Y.; Chung, I.M. Allelopathic and autotoxic effects of Medicago sativa—Derived allelochemicals. Plants 2019, 8, 233. [Google Scholar] [CrossRef]
- Bashar, H.K.; Juraimi, A.S.; Ahmad-Hamdani, M.S.; Uddin, M.K.; Asib, N.; Anwar, M.P.; Karim, S.R.; Rahaman, F.; Haque, M.A.; Hossain, A. Documentation of phytotoxic compounds existing in Parthenium hysterophorus L. leaf and their phytotoxicity on Eleusine indica (L.) Gaertn. and Digitaria sanguinalis (L.) Scop. Toxins 2022, 14, 561. [Google Scholar] [CrossRef] [PubMed]
- Levizou, E.F.I.; Karageorgou, P.; Psaras, G.K.; Manetas, Y. Inhibitory effects of watersoluble leaf leachates from Dittrichia viscosa on lettuce root growth, statocyte development and graviperception. Flora Morphol. Distrib. Funct. Ecol. Plants 2002, 197, 152–157. [Google Scholar] [CrossRef]
- Aslani, F.; Juraimi, A.S.; Ahmad-Hamdani, M.S.; Alam, M.A.; Hashemi, F.G.; Omar, D.; Hakim, M.A. Phytotoxic interference of volatile organic compounds and water extracts of Tinospora tuberculata Beumee on growth of weeds in rice fields. S. Afr. J. Bot. 2015, 100, 132–140. [Google Scholar] [CrossRef]
- Fu, Q.; Cai, P.P.; Cheng, L.; Zhong, L.K.; Tan, C.X.; Shen, Z.H.; Han, L.; Xu, T.M.; Liu, X.H. Synthesis and herbicidal activity of novel pyrazole aromatic ketone analogs as HPPD inhibitor. Pest Manag. Sci. 2020, 76, 868–879. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.M.; Huang, H.; Shu, L.; Liu, J.M.; Zhang, J.Q.; Yan, Y.L.; Zhang, D.Y. Synthesis and herbicidal activities of aryloxyacetic acid derivatives as HPPD inhibitors. Beilstein J. Org. Chem. 2020, 16, 233–247. [Google Scholar] [CrossRef]
- Romagni, J.G.; Meazza, G.; Nanayakkara, N.D.; Dayan, F.E. The phytotoxic lichen metabolite, usnic acid, is a potent inhibitor of plant p-hydroxyphenylpyruvate dioxygenase. FEBS Lett. 2000, 480, 301–305. [Google Scholar] [CrossRef]
- Macías, F.A.; Lacret, R.; Varela, R.M.; Nogueiras, C.; Molinillo, J.M.G. Bioactive apocarotenoids from Tectona grandis. Phytochemistry 2008, 69, 2708–2715. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Yamamoto, M.; Tamura, K.; Teruya, T.; Suenaga, K.; Fujii, Y. Isolation and identification of potent allelopathic substances in rattail fescue. Plant Growth Regul. 2010, 60, 127–131. [Google Scholar] [CrossRef]
- Khalid, M.; Bilal, M.; Iqbal, H.M.; Huang, D. Biosynthesis and biomedical perspectives of carotenoids with special reference to human health-related applications. Biocatal. Agric. Biotechnol. 2019, 17, 399–407. [Google Scholar] [CrossRef]
- Hayat, S.; Ahmad, H.; Ali, M.; Ren, K.; Cheng, Z. Aqueous garlic extract stimulates growth and antioxidant enzymes activity of tomato (Solanum lycopersicum). Sci. Hortic. 2018, 240, 139–146. [Google Scholar] [CrossRef]
- Mecina, G.F.; Chia, M.A.; Cordeiro-Araújo, M.K.; do Carmo Bittencourt-Oliveira, M.; Varela, R.M.; Torres, A.; Molinillo, J.M.G.; Macías, F.A.; da Silva, R.M.G. Effect of flavonoids isolated from Tridax procumbens on the growth and toxin production of Microcystis aeruginos. Aquat. Toxicol. 2019, 211, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Chon, S.U.; Kim, J.D. Biological activity and quantification of suspected allelochemicals from alfalfa plant parts. J. Agron. Crop Sci. 2002, 188, 281–285. [Google Scholar] [CrossRef]
- Lima, M.L.; Romanelli, M.M.; Borborema, S.E.; Johns, D.M.; Migotto, A.E.; Lago, J.H.G.; Tempone, A.G. Antitrypanosomal activity of isololiolide isolated from the marine hydroid Macrorhynchia philippina (Cnidaria, Hydrozoa). Bioorg. Chem. 2019, 89, 103002. [Google Scholar] [CrossRef]
- Vizetto-Duarte, C.; Custodio, L.; Gangadhar, K.N.; Lago, J.H.G.; Dias, C.; Matos, A.M.; Neng, N.; Nogueira, J.M.F.; Barreira, L.; Albericio, F.; et al. Isololiolide, a carotenoid metabolite isolated from the brown alga Cystoseira tamariscifolia, is cytotoxic and able to induce apoptosis in hepatocarcinoma cells through caspase-3 activation, decreased Bcl-2 levels, increased p53 expression and PARP cleavage. Phytomedicine 2016, 23, 550–557. [Google Scholar] [CrossRef]






| Treatment | L. sativum % | L. sativa % | L. multiflorum % | |||
|---|---|---|---|---|---|---|
| Shoot Length | Root Length | Shoot Length | Root Length | Shoot Length | Root Length | |
| control | 100.0 ± 0.4 a | 100.0 ± 0.9 a | 100.0 ± 0.6 a | 100.0 ± 0.5 a | 100.0 ± 0.7 a | 100.0 ± 1.2 a |
| 1 mg/mL | 91.4 ± 1.9 ab | 91.2 ± 1.4 ab | 88.6 ± 1.4 ab | 76.9 ± 1.5 b | 103.8 ± 1.2 a | 102.8 ± 0.9 a |
| 3 mg/mL | 88.8 ± 1.5 b | 90.3 ± 1.8 ab | 76.1 ± 1.3 b | 70.6 ± 1.2 b | 85.6 ± 0.6 b | 94.6 ± 1.0 a |
| 10 mg/mL | 51.5 ± 2.1 c | 46.9 ± 1.1 c | 20.7 ± 0.4 c | 13.1 ± 1.2 c | 53.8 ± 0.7 c | 60.7 ± 0.8 b |
| 30 mg/mL | 0.0 ± 0.0 d | 10.8 ± 0.4 d | 0.0 ± 0.0 d | 0.0 ± 0.0 d | 32.4 ± 0.4 d | 21.3 ± 0.5 c |
| 100 mg/mL | 0.0 ± 0.0 d | 0.0 ± 0.0 e | 0.0 ± 0.0 d | 0.0 ± 0.0 d | 0.0 ± 0.0 e | 0.0 ± 0.0 d |
| 300 mg/mL | 0.0 ± 0.0 d | 0.0 ± 0.0 e | 0.0 ± 0.0 d | 0.0 ± 0.0 d | 0.0 ± 0.0 e | 0.0 ± 0.0 d |
| p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Krumsri, R.; Asato, Y.; Tojo, S.; Teruya, T.; Kato-Noguchi, H. Identification of Six Phytotoxic Compounds as Plant Growth Inhibitors from Afzelia xylocarpa Leaves. Sustainability 2026, 18, 995. https://doi.org/10.3390/su18020995
Krumsri R, Asato Y, Tojo S, Teruya T, Kato-Noguchi H. Identification of Six Phytotoxic Compounds as Plant Growth Inhibitors from Afzelia xylocarpa Leaves. Sustainability. 2026; 18(2):995. https://doi.org/10.3390/su18020995
Chicago/Turabian StyleKrumsri, Ramida, Yuka Asato, Shunya Tojo, Toshiaki Teruya, and Hisashi Kato-Noguchi. 2026. "Identification of Six Phytotoxic Compounds as Plant Growth Inhibitors from Afzelia xylocarpa Leaves" Sustainability 18, no. 2: 995. https://doi.org/10.3390/su18020995
APA StyleKrumsri, R., Asato, Y., Tojo, S., Teruya, T., & Kato-Noguchi, H. (2026). Identification of Six Phytotoxic Compounds as Plant Growth Inhibitors from Afzelia xylocarpa Leaves. Sustainability, 18(2), 995. https://doi.org/10.3390/su18020995

