The Impact of Green Supply Chain Pressures on Corporate Sustainability: The Role of Resource-Intensive Pathways and Financial Constraints
Abstract
1. Introduction
2. Literature Review and Hypotheses Development
2.1. Theoretical Foundations and Green Supply Chain Pressure
2.2. Transmission Mechanisms: Green Innovation, Capital Deepening and Human Capital
2.2.1. Green Technological Innovation
2.2.2. Capital Deepening and Reallocation
2.2.3. Green Human Capital and Organizational Capabilities
2.3. Financing Constraints as a Boundary Condition
2.4. Hypotheses Development
2.4.1. Green Supply Chain Pressure and Corporate Sustainability
2.4.2. The Mediating Role of Resource-Intensive Pathways
- Green Technological Innovation.
- Capital Deepening.
- Human Capital Upgrading.
2.4.3. The Moderating Role of Financing Constraints
3. Materials and Methods
3.1. Sample Construction and Data Sources
3.2. Variable Construction
3.2.1. Economic Sustainability: Total Factor Productivity
3.2.2. Green Supply Chain Pressure
3.2.3. Resource-Intensive Pathways
- Green technological innovation (tech)
- Capital deepening (cap)
- Skill structure (skill)
3.2.4. Financing Constraints
3.2.5. Control Variables
3.3. Empirical Strategy
3.3.1. Baseline Model
3.3.2. Mediation Analysis: Resource-Intensive Pathways
3.3.3. Moderation by Financing Constraints
3.3.4. Heterogeneity and Robustness Design
4. Empirical Results
4.1. Descriptive Statistics
4.2. Correlation Matrix
4.3. Baseline Results
4.4. Resource-Intensive Pathways
4.4.1. Resource-Intensive Pathways: Green Technological Innovation
4.4.2. Resource-Intensive Pathways: Capital Deepening
4.4.3. Resource-Intensive Pathways: Human Capital Upgrading
4.5. Financial Boundaries: Moderating Effect
4.6. Heterogeneity Analysis
4.7. Robustness Checks
5. Discussion
5.1. Green Supply Chain Pressure and the Porter Hypothesis
5.2. Text-Based Measurement and the Information Channel
5.3. Resource-Intensive Pathways: Innovation, Capital and Skills
5.4. Financial Boundaries and Heterogeneous Effects
6. Conclusions
6.1. Summary of Findings
6.2. Managerial and Policy Implications
6.3. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the IPCC; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2021.
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. In United Nations General Assembly Resolution A/RES/70/1; United Nations: New York, NY, USA, 2015. [Google Scholar]
- United Nations. The Sustainable Development Goals Report 2021; United Nations: New York, NY, USA, 2021. [Google Scholar]
- Lee, B.X.; Kjaerulf, F.; Turner, S.; Cohen, L.; Donnelly, P.D.; Muggah, R.; Davis, R.; Realini, A.; Kieselbach, B.; MacGregor, L.S.; et al. Transforming our world: Implementing the 2030 agenda through sustainable development goal indicators. J. Public Health Policy 2016, 37, 13–31. [Google Scholar] [CrossRef]
- International Energy Agency. Net Zero by 2050: A Roadmap for the Global Energy Sector; International Energy Agency: Paris, France, 2021.
- World Bank. World Development Report 2020: Trading for Development in the Age of Global Value Chains; World Bank: Washington, DC, USA, 2020. [Google Scholar]
- World Economic Forum. Net-Zero Challenge: The Supply Chain Opportunity; World Economic Forum: Geneva, Switzerland, 2021. [Google Scholar]
- CDP. Changing the Chain: Global Supply Chain Report 2020; CDP Worldwide: London, UK, 2020. [Google Scholar]
- Hart, S.L. A natural-resource-based view of the firm. Acad. Manag. Rev. 1995, 20, 986–1014. [Google Scholar] [CrossRef]
- Porter, M.E.; Linde, C.v.d. Toward a new conception of the environment-competitiveness relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
- Popp, D. Innovation and climate policy. Annu. Rev. Resour. Econ. 2010, 2, 275–298. [Google Scholar] [CrossRef]
- Acemoglu, D.; Aghion, P.; Bursztyn, L.; Hemous, D. The environment and directed technical change. Am. Econ. Rev. 2012, 102, 131–166. [Google Scholar] [CrossRef] [PubMed]
- Bansal, P.; Roth, K. Why companies go green: A model of ecological responsiveness. Acad. Manag. J. 2000, 43, 717–736. [Google Scholar] [CrossRef]
- Carter, C.R.; Rogers, D.S. A framework of sustainable supply chain management: Moving toward new theory. Int. J. Phys. Distrib. Logist. Manag. 2008, 38, 360–387. [Google Scholar] [CrossRef]
- Seuring, S.; Müller, M. From a literature review to a conceptual framework for sustainable supply chain management. J. Clean. Prod. 2008, 16, 1699–1710. [Google Scholar] [CrossRef]
- Zhu, Q.; Sarkis, J. Relationships between operational practices and performance among early adopters of green supply chain management practices in Chinese manufacturing enterprises. J. Oper. Manag. 2004, 22, 265–289. [Google Scholar] [CrossRef]
- Zhu, Q.; Sarkis, J.; Lai, K.h. Institutional-based antecedents and performance outcomes of internal and external green supply chain management practices. J. Purch. Supply Manag. 2013, 19, 106–117. [Google Scholar] [CrossRef]
- Sarkis, J.; Zhu, Q.; Lai, K.h. An organizational theoretic review of green supply chain management literature. Int. J. Prod. Econ. 2011, 130, 1–15. [Google Scholar] [CrossRef]
- Pagell, M.; Wu, Z. Building a more complete theory of sustainable supply chain management using case studies of 10 exemplars. J. Supply Chain Manag. 2009, 45, 37–56. [Google Scholar] [CrossRef]
- Montabon, F.; Pagell, M.; Wu, Z. Making sustainability sustainable. J. Supply Chain Manag. 2016, 52, 11–27. [Google Scholar] [CrossRef]
- Sarkis, J.; Cohen, M.J.; Dewick, P.; Schröder, P. A brave new world: Lessons from the COVID-19 pandemic for transitioning to sustainable supply and production. Resour. Conserv. Recycl. 2020, 159, 104894. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, D. Viable supply chain model: Integrating agility, resilience and sustainability perspectives—Lessons from and thinking beyond the COVID-19 pandemic. Ann. Oper. Res. 2022, 319, 1411–1431. [Google Scholar] [CrossRef]
- Geng, Y.; Sarkis, J.; Ulgiati, S.; Zhang, P. Measuring China’s circular economy. Science 2013, 339, 1526–1527. [Google Scholar] [CrossRef]
- Ma, Y.; Lin, T.; Xiao, Q. The relationship between environmental regulation, green-technology innovation and green total-factor productivity—Evidence from 279 cities in China. Int. J. Environ. Res. Public Health 2022, 19, 16290. [Google Scholar] [CrossRef]
- Lee, C.C.; Zeng, M.; Wang, C. Environmental regulation, innovation capability, and green total factor productivity: New evidence from China. Environ. Sci. Pollut. Res. 2022, 29, 39384–39399. [Google Scholar] [CrossRef]
- Barney, J. Firm resources and sustained competitive advantage. J. Manag. 1991, 17, 99–120. [Google Scholar] [CrossRef]
- Ambec, S.; Lanoie, P. Does it Pay to be Green? A Systematic Overview. Acad. Manag. Perspect. 2008, 22, 45–62. [Google Scholar]
- Klassen, R.D.; Whybark, D.C. The impact of environmental technologies on manufacturing performance. Acad. Manag. J. 1999, 42, 599–615. [Google Scholar] [CrossRef]
- Touboulic, A.; Walker, H. Theories in sustainable supply chain management: A structured literature review. Int. J. Phys. Distrib. Logist. Manag. 2015, 45, 16–42. [Google Scholar] [CrossRef]
- Cho, C.H.; Roberts, R.W.; Patten, D.M. The language of US corporate environmental disclosure. Account. Organ. Soc. 2010, 35, 431–443. [Google Scholar] [CrossRef]
- Ye, P.; Cai, W.; Zhou, Y. Can green industrial policy promote the total factor productivity of manufacturing enterprises? Environ. Sci. Pollut. Res. 2022, 29, 88041–88054. [Google Scholar] [CrossRef]
- Chen, L.; Hu, L.; He, F.; Zhang, H. Environmental regulation, foreign direct investment, and green total factor productivity: An empirical test based on Chinese city-level panel data. Sustainability 2024, 16, 5620. [Google Scholar] [CrossRef]
- Zhang, D.; Rong, Z.; Ji, Q. Green innovation and firm performance: Evidence from listed companies in China. Resour. Conserv. Recycl. 2019, 144, 48–55. [Google Scholar] [CrossRef]
- Ding, H. Constraining or Enabling? The Impact of Climate Transition Risk on Green Innovation in China. Sustainability 2025, 17, 10418. [Google Scholar] [CrossRef]
- Han, Z.; Huo, B. The impact of green supply chain integration on sustainable performance. Ind. Manag. Data Syst. 2020, 120, 657–674. [Google Scholar] [CrossRef]
- Negri, M.; Cagno, E.; Colicchia, C.; Sarkis, J. Integrating sustainability and resilience in the supply chain: A systematic literature review and a research agenda. Bus. Strategy Environ. 2021, 30, 2858–2886. [Google Scholar] [CrossRef]
- Olley, S.; Pakes, A. The dynamics of productivity in the telecommunications equipment industry. Econometrica 1996, 64, 1263–1297. [Google Scholar] [CrossRef]
- Levinsohn, J.; Petrin, A. Estimating production functions using inputs to control for unobservables. Rev. Econ. Stud. 2003, 70, 317–341. [Google Scholar] [CrossRef]
- Meng, C.; Shi, D.; Wang, B. The impact of green human capital of entrepreneur on enterprise green innovation: A study based on the theory of pro-environmental behavior. Financ. Res. Lett. 2023, 58, 104453. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, H.; Siddik, A.B.; Zheng, Y.; Sobhani, F.A. Understanding corporate green competitive advantage through green technology adoption and green dynamic capabilities: Does green product innovation matter? Systems 2023, 11, 461. [Google Scholar] [CrossRef]
- Kaplan, S.N.; Zingales, L. Do investment-cash flow sensitivities provide useful measures of financing constraints? Q. J. Econ. 1997, 112, 169–215. [Google Scholar] [CrossRef]
- Whited, T.M.; Wu, G. Financial constraints risk. Rev. Financ. Stud. 2006, 19, 531–559. [Google Scholar] [CrossRef]
- Hadlock, C.J.; Pierce, J.R. New evidence on measuring financial constraints: Moving beyond the KZ index. Rev. Financ. Stud. 2010, 23, 1909–1940. [Google Scholar] [CrossRef]
- Yu, C.H.; Wu, X.; Zhang, D.; Chen, S.; Zhao, J. Demand for green finance: Resolving financing constraints on green innovation in China. Energy Policy 2021, 153, 112255. [Google Scholar] [CrossRef]
- Li, W.; Cheng, H.; He, J.; Song, Y.; Bu, H. The impacts of green credit policy on green innovation of high-polluting enterprises in China. Financ. Res. Lett. 2024, 62, 105167. [Google Scholar] [CrossRef]
- Zhang, Q.; Mao, Z. Digital Finance, Financing Constraints, and Green Innovation in Chinese Firms: The Roles of Management Power and CSR. Sustainability 2025, 17, 7110. [Google Scholar] [CrossRef]
- Song, W.; Meng, L.; Zang, D. Exploring the impact of human capital development and environmental regulations on green innovation efficiency. Environ. Sci. Pollut. Res. 2023, 30, 67525–67538. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Ruan, W.; Shi, H.; Xiang, E.; Zhang, F. Corporate environmental information disclosure and bank financing: Moderating effect of formal and informal institutions. Bus. Strategy Environ. 2022, 31, 2931–2946. [Google Scholar] [CrossRef]
- Daddi, T.; Heras-Saizarbitoria, I.; Marrucci, L.; Rizzi, F.; Testa, F. The effects of green supply chain management capability on the internalisation of environmental management systems and organisation performance. Corp. Soc. Responsib. Environ. Manag. 2021, 28, 1241–1253. [Google Scholar] [CrossRef]
- Bu, X.; Dang, W.V.; Wang, J.; Liu, Q. Environmental orientation, green supply chain management, and firm performance: Empirical evidence from Chinese small and medium-sized enterprises. Int. J. Environ. Res. Public Health 2020, 17, 1199. [Google Scholar] [CrossRef]
- Pfeffer, J.; Salancik, G. External control of organizations—Resource dependence perspective. In Organizational Behavior 2; Routledge: Abingdon-on-Thames, UK, 2015; pp. 355–370. [Google Scholar]
- Patatoukas, P.N. Customer-base concentration: Implications for firm performance and capital markets: 2011 American accounting association competitive manuscript award winner. Account. Rev. 2012, 87, 363–392. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Zhang, J.; Li, S. Customer concentration and labor investment efficiency: Evidence from China. J. Dev. Areas 2024, 58, 215–236. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, R. Sustainability-based enterprise supply chain optimization and response under circular economy approach: Agile, adaptive and coordinated. Manag. Decis. 2024, 62, 2737–2762. [Google Scholar] [CrossRef]
- Shrestha, P.; Choi, B.; Luo, L. Carbon management system quality and corporate financial performance. Int. J. Account. 2023, 58, 2350001. [Google Scholar] [CrossRef]
- Yildiz Çankaya, S.; Sezen, B. Effects of green supply chain management practices on sustainability performance. J. Manuf. Technol. Manag. 2019, 30, 98–121. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, Z.; Liu, Z. Regional differences and threshold effect of clean technology innovation on industrial green total factor productivity. Front. Environ. Sci. 2022, 10, 985591. [Google Scholar] [CrossRef]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Angrist, J.D.; Pischke, J.S. Mostly Harmless Econometrics: An Empiricist’s Companion; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Al Mamun, A.; Reza, M.N.H.; Yang, Q.; Aziz, N.A. Dynamic capabilities in action: The synergy of big data analytics, supply chain ambidexterity, green supply chain and firm performance. J. Enterp. Inf. Manag. 2025, 38, 636–659. [Google Scholar] [CrossRef]
- Marrucci, L.; Daddi, T.; Iraldo, F. Do dynamic capabilities matter? A study on environmental performance and the circular economy in European certified organisations. Bus. Strategy Environ. 2022, 31, 2641–2657. [Google Scholar] [CrossRef]
- Rastegardehbidi, P.; Su, Z. Key drivers of green logistics: A systematic literature review and conceptual framework. Sustainability 2025, 17, 9604. [Google Scholar] [CrossRef]
- Luo, Y.; Mensah, C.N.; Lu, Z.; Wu, C. Environmental regulation and green total factor productivity in China: A perspective of Porter’s and Compliance Hypothesis. Ecol. Indic. 2022, 145, 109744. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, A.; Zhu, M. Impact of Pilot Zones for Green Finance Reform and Innovations on green technology innovations: Evidence from Chinese manufacturing corporates. Environ. Sci. Pollut. Res. 2023, 30, 43901–43913. [Google Scholar] [CrossRef]
- Mondal, S.; Singh, S.; Gupta, H. Dynamic Capabilities and Green Strategy in Green Entrepreneurship and Circular Economy: A Study. Bus. Strategy Environ. 2025, 34, 8259–8280. [Google Scholar] [CrossRef]
- Le, T.T. The effect of green supply chain management practices on sustainability performance in Vietnamese construction materials manufacturing enterprises. Uncertain Supply Chain Manag. 2020, 8, 43–54. [Google Scholar] [CrossRef]
- Benjamin, A.K. Hierarchical Impact of Green Supply Chain Initiatives on Sustainable Performance: The Food and Beverage Processing SMEs in Australia. Ph.D. Thesis, Victoria University, Melbourne, VIC, Australia, 2020. [Google Scholar]
| Category | Variable Name | Symbol | Definition and Measurement |
|---|---|---|---|
| Dependent Variables | Total factor productivity (baseline) | tfp | Firm-level TFP estimated by the Levinsohn–Petrin (LP) method. |
| Dependent Variables | Total factor productivity (robustness) | tfpo | Firm-level TFP estimated by the Olley–Pakes (OP) method (used in robustness checks). |
| Key Explanatory Variable | Green supply chain pressure | gsp | Sales-weighted log frequency of green supply-chain keywords in downstream customers’ MD&A. |
| Moderators: Financing Constraints | SA index | fc (sa) | SA index of financing constraints, SA = −0.737 × Size + 0.043 × Size2 − 0.040 × Age; higher values (closer to zero) indicate lower constraints. |
| Moderators: Financing Constraints | KZ index | fc (kz) | Kaplan–Zingales (KZ) index [41]; higher values indicate tighter constraints. |
| Moderators: Financing Constraints | WW index | fc (ww) | Whited–Wu (WW) index of financing constraints [42]; higher values indicate tighter constraints. |
| Mechanism Variables | Green technological innovation | tech | Share of green invention and utility-model patents in a firm’s total patent applications in year t. |
| Mechanism Variables | Capital deepening | cap | Ratio of digital/green fixed assets to total fixed assets; higher values indicate deeper capital deepening in green and digital assets. |
| Mechanism Variables | Skill structure | skill | Share of employees with a college degree or above. |
| Control Variables | Leverage | lev | Total liabilities divided by total assets. |
| Control Variables | Return on equity | roe | Net income divided by shareholders’ equity. |
| Control Variables | Growth | grow | Year-on-year growth rate of total assets. |
| Control Variables | Valuation | val | Price-to-sales ratio. |
| Control Variables | Wage level | wage | Logarithm of average wage per employee. |
| Other Variables | Firm size | size | Logarithm of total assets. |
| Other Variables | Green subsidy | subsidy | Green subsidy income divided by total assets (instrument for gsp in IV-2SLS). |
| Other Variables | Inverse Mills ratio | imr | Inverse Mills ratio from the first-stage Probit selection (Heckman correction). |
| Variable | Obs | Mean | Std. Dev. | Min | Max |
|---|---|---|---|---|---|
| tfp | 4017 | 8.6248 | 1.1755 | 6.3076 | 11.3109 |
| tfpo | 4017 | 6.8837 | 0.9707 | 4.9397 | 9.3719 |
| gsp | 4017 | 2.1765 | 1.3869 | 0 | 5.0304 |
| sa | 4017 | −3.5343 | 1.1428 | −4.9559 | 0 |
| tech | 4017 | 0.5113 | 0.3996 | 0 | 0.9857 |
| cap | 4017 | 0.2314 | 0.1479 | 0 | 0.8247 |
| skill | 4017 | 0.3875 | 0.3001 | 0 | 0.9939 |
| lev | 4017 | 0.4407 | 0.2097 | 0.0502 | 0.9287 |
| roe | 4017 | 0.0662 | 0.1491 | −0.9051 | 0.3855 |
| grow | 4017 | 0.2268 | 0.4258 | −0.2313 | 2.6748 |
| val | 4017 | 3.5804 | 4.7096 | 0 | 27.0741 |
| wage | 4017 | 11.6241 | 0.5663 | 10.3062 | 13.0618 |
| Variable | tfp | gsp | fc | tech | cap | skill | lev | roe | grow | val | wage |
|---|---|---|---|---|---|---|---|---|---|---|---|
| tfp | 1 | ||||||||||
| gsp | 0.1148 | 1 | |||||||||
| sa | 0.3559 | 0.1651 | 1 | ||||||||
| tech | 0.3456 | 0.0881 | −0.1231 | 1 | |||||||
| cap | 0.1445 | 0.0887 | 0.3533 | −0.0507 | 1 | ||||||
| skill | 0.2661 | −0.0038 | 0.191 | 0.1596 | 0.1684 | 1 | |||||
| lev | 0.2206 | 0.0742 | 0.0071 | 0.0329 | −0.0284 | 0.0378 | 1 | ||||
| roe | 0.0478 | 0.0218 | 0.022 | 0.0159 | 0.007 | −0.0014 | −0.0361 | 1 | |||
| grow | 0.0046 | −0.0233 | −0.022 | 0.008 | −0.0087 | −0.0243 | −0.0174 | 0.0023 | 1 | ||
| val | −0.395 | −0.069 | −0.1547 | −0.0391 | −0.0229 | −0.0525 | −0.1972 | −0.0198 | 0.0144 | 1 | |
| wage | 0.3896 | 0.1673 | 0.1385 | 0.2311 | 0.1354 | 0.3085 | −0.0305 | 0.0275 | −0.0051 | −0.0097 | 1 |
| (1) | (2) | (3) | (4) | (5) | (6) | |
|---|---|---|---|---|---|---|
| gsp | 0.0361 *** | 0.0362 *** | 0.0358 *** | 0.0357 *** | 0.0362 *** | 0.0133 ** |
| lev | (0.0092) | (0.0091) −0.0089 | (0.0092) −0.0081 | (0.0092) −0.0082 | (0.0091) −0.0405 | (0.0057) −0.0427 ** |
| roe | (0.0690) | (0.0691) 0.0032 * | (0.0691) 0.0032 * | (0.0729) 0.0036 ** | (0.0201) 0.0036 ** | |
| grow | (0.0017) | (0.0017) −0.0006 * | (0.0016) −0.0005 | (0.0017) −0.0002 | ||
| val | (0.0003) | (0.0004) −0.0297 *** | (0.0010) −0.0234 *** | |||
| wage | (0.0055) | (0.0020) 0.4890 *** (0.0190) | ||||
| Constant | 8.6105 *** | 8.6146 *** | 8.6151 *** | 8.6155 *** | 8.7343 *** | 3.0834 *** |
| (0.0200) | (0.0411) | (0.0412) | (0.0413) | (0.0472) | (0.6699) | |
| Observations | 4017 | 4017 | 4017 | 4017 | 4017 | 4017 |
| Within R2 | 0.2150 | 0.2165 | 0.2190 | 0.2202 | 0.2458 | 0.3124 |
| (1) Total Effect | (2) Mechanism (X → M) | (3) Direct Effect | |
|---|---|---|---|
| gsp | 0.0133 ** | 0.0132 *** | 0.0122 ** |
| (0.0057) | (0.0044) | (0.0057) | |
| tech | 0.1515 *** | ||
| lev | −0.0427 ** (0.0201) | 0.0143 (0.0164) | (0.0268) −0.0460 ** (0.0200) |
| roe | 0.0036 ** | −0.0007 | 0.0037 ** |
| (0.0017) | (0.0014) | (0.0017) | |
| grow | −0.0002 | 0.0007 | −0.0003 |
| val | (0.0010) | (0.0008) | (0.0010) |
| −0.0234 *** | 0.0040 *** | −0.0236 *** | |
| wage | (0.0020) | (0.0015) | (0.0020) |
| 0.4890 *** | 0.1991 *** | 0.4619 *** | |
| (0.0190) | (0.0150) | (0.0194) | |
| Observations | 4017 | 4017 | 4017 |
| Within R2 | 0.3124 | 0.2467 | 0.3389 |
| (1) Total Effect | (2) Mechanism (X → M) | (3) Direct Effect | |
|---|---|---|---|
| gsp | 0.0133 ** | 0.0378 * | 0.0128 ** |
| (0.0057) | (0.0227) | (0.0057) | |
| cap | 0.0143 *** | ||
| lev | −0.0427 ** (0.0201) | −0.0413 (0.0840) | (0.0049) −0.0424 ** (0.0201) |
| roe | 0.0036 ** | −0.0005 | 0.0036 ** |
| (0.0017) | (0.0073) | (0.0017) | |
| grow | −0.0002 | 0.0002 | −0.0002 |
| val | (0.0010) | (0.0043) | (0.0010) |
| −0.0234 *** | 0.0002 | −0.0233 *** | |
| wage | (0.0020) | (0.0076) | (0.0020) |
| 0.4890 *** | 0.1881 ** | 0.4863 *** | |
| (0.0190) | (0.0768) | (0.0190) | |
| Observations | 4017 | 4017 | 4017 |
| Within R2 | 0.3124 | 0.1984 | 0.3389 |
| (1) Total Effect | (2) Mechanism (X → M) | (3) Direct Effect | |
|---|---|---|---|
| gsp | 0.0133 ** | 0.0124 *** | 0.0127 ** |
| (0.0057) | (0.0043) | (0.0057) | |
| skill | 0.1007 ** | ||
| lev | −0.0427 ** (0.0201) | 0.2874 *** (0.1036) | (0.0406) −0.0418 ** (0.0201) |
| roe | 0.0036 ** | 0.0003 | 0.0037 ** |
| (0.0017) | (0.0016) | (0.0017) | |
| grow | −0.0002 | −0.0006 | −0.0002 |
| val | (0.0010) | (0.0007) | (0.0010) |
| −0.0234 *** | −0.0070 *** | −0.0231 *** | |
| wage | (0.0020) | (0.0016) | (0.0020) |
| 0.4890 *** | 0.0944 ** | 0.4761 *** | |
| (0.0190) | (0.0396) | (0.0197) | |
| Observations | 4017 | 4017 | 4017 |
| Within R2 | 0.3124 | 0.2241 | 0.3452 |
| SA Index | KZ Index | WW Index | ||||
|---|---|---|---|---|---|---|
| (1) Base | (2) Interaction | (3) Base | (4) Interaction | (5) Base | (6) Interaction | |
| gsp | 0.0134 ** | 0.0102 * | 0.0129 ** | 0.0091 * | 0.0131 ** | 0.0094 * |
| (0.0057) | (0.0059) | (0.0058) | (0.0057) | (0.0056) | (0.0058) | |
| fc (sa) | 0.0285 * | 0.0247 ** | ||||
| (0.0168) | (0.0119) | |||||
| gsp × fc (sa) | 0.0041 ** (0.0019) | |||||
| fc (kz) | −0.0245 * (0.0190) | −0.0208 * (0.0162) | ||||
| gsp × fc (kz) | −0.0034 * (0.0019) | |||||
| fc (ww) | −0.0278 ** (0.0148) | −0.0240 ** (0.0131) | ||||
| gsp × fc (ww) | −0.0037 ** | |||||
| Controls | Yes | Yes | Yes | Yes | Yes | (0.0018) Yes |
| Observations | 4017 | 4017 | 4017 | 4017 | 4017 | 4017 |
| Within R2 | 0.3200 | 0.3321 | 0.3183 | 0.3310 | 0.3190 | 0.3336 |
| Panel A: Green Attribute | Panel B: Ownership | Panel C: Technological Status | Panel D: Firm Size | |||||
|---|---|---|---|---|---|---|---|---|
| Green | Brown | Non-SOE | SOE | High-Tech | Non-High-Tech | Large | Small | |
| gsp | 0.0182 *** | 0.0104 * | 0.0168 *** | 0.0087 | 0.0195 *** | 0.0111 * | 0.0176 *** | 0.0092 |
| (0.0061) | (0.0060) | (0.0056) | (0.0081) | (0.0063) | (0.0060) | (0.0057) | (0.0066) | |
| lev | −0.0300 | −0.0500 * | −0.0410 * | −0.0200 | −0.0450 * | −0.0380 * | −0.0400 * | −0.0360 |
| roe | (0.0250) | (0.0270) | (0.0210) | (0.0400) | (0.0230) | (0.0220) | (0.0210) | (0.0230) |
| 0.0035 ** | 0.0033 ** | 0.0037 ** | 0.0025 | 0.0040 ** | 0.0033 ** | 0.0038 ** | 0.0030 * | |
| grow | (0.0018) | (0.0016) | (0.0016) | (0.0025) | (0.0018) | (0.0017) | (0.0016) | (0.0018) |
| −0.0003 | −0.0001 | −0.0002 | −0.0004 | −0.0001 | −0.0003 | −0.0002 | −0.0001 | |
| (0.0011) | (0.0011) | (0.0010) | (0.0015) | (0.0011) | (0.0010) | (0.0010) | (0.0011) | |
| val | −0.0210 *** | −0.0245 *** | −0.0225 *** | −0.0180 *** | −0.0240 *** | −0.0220 *** | −0.0230 *** | −0.0215 *** |
| wage | (0.0035) | (0.0038) | (0.0030) | (0.0050) | (0.0033) | (0.0034) | (0.0031) | (0.0036) |
| 0.4720 *** | 0.4560 *** | 0.4950 *** | 0.4300 *** | 0.5050 *** | 0.4700 *** | 0.5000 *** | 0.4600 *** | |
| (0.0280) | (0.0300) | (0.0250) | (0.0450) | (0.0290) | (0.0270) | (0.0260) | (0.0280) | |
| Observations | 1520 | 2497 | 2950 | 1067 | 1680 | 2337 | 2008 | 2009 |
| Within R2 | 0.3340 | 0.3050 | 0.3325 | 0.3080 | 0.3350 | 0.3075 | 0.3330 | 0.3065 |
| (1) TFP (OP) | (2) Lagged GSP | (3) IV-2SLS | (4) Winsor 95% | (5) Heckman | |
|---|---|---|---|---|---|
| gsp | 0.0115 ** | 0.0165 ** | 0.0129 *** | 0.0124 ** | |
| (0.0049) | (0.0078) | (0.0047) | (0.0058) | ||
| L.gsp | 0.0117 ** | ||||
| lev | −0.0390 * | (0.0055) −0.0415 * | −0.0380 * | −0.0410 ** | −0.0420 ** |
| roe | (0.0215) | (0.0218) | (0.0225) | (0.0208) | (0.0205) |
| 0.0031 ** | 0.0034 ** | 0.0033 ** | 0.0035 *** | 0.0036 ** | |
| grow | (0.0015) | (0.0016) | (0.0016) | (0.0015) | (0.0017) |
| −0.0001 | −0.0002 | −0.0002 | −0.0002 | −0.0002 | |
| val | (0.0010) | (0.0010) | (0.0010) | (0.0010) | (0.0010) |
| −0.0190 *** | −0.0225 *** | −0.0210 *** | −0.0230 *** | −0.0232 *** | |
| wage | (0.0022) | (0.0021) | (0.0023) | (0.0020) | (0.0020) |
| 0.4550 *** | 0.4780 *** | 0.4720 *** | 0.4860 *** | 0.4880 *** | |
| imr | (0.0215) | (0.0205) | (0.0220) | (0.0198) | (0.0192) −0.0065 (0.0118) |
| Observations | 4017 | 3683 | 4017 | 4017 | 4017 |
| Within R2 | 0.3046 | 0.3185 | 0.2900 | 0.3120 | 0.3591 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Fan, Q.; Liu, J.; Yu, W. The Impact of Green Supply Chain Pressures on Corporate Sustainability: The Role of Resource-Intensive Pathways and Financial Constraints. Sustainability 2026, 18, 694. https://doi.org/10.3390/su18020694
Fan Q, Liu J, Yu W. The Impact of Green Supply Chain Pressures on Corporate Sustainability: The Role of Resource-Intensive Pathways and Financial Constraints. Sustainability. 2026; 18(2):694. https://doi.org/10.3390/su18020694
Chicago/Turabian StyleFan, Qiyuan, Jiajun Liu, and Wenwen Yu. 2026. "The Impact of Green Supply Chain Pressures on Corporate Sustainability: The Role of Resource-Intensive Pathways and Financial Constraints" Sustainability 18, no. 2: 694. https://doi.org/10.3390/su18020694
APA StyleFan, Q., Liu, J., & Yu, W. (2026). The Impact of Green Supply Chain Pressures on Corporate Sustainability: The Role of Resource-Intensive Pathways and Financial Constraints. Sustainability, 18(2), 694. https://doi.org/10.3390/su18020694

