Price-Calibrated Network Loss–Carbon Emission Co-Optimization for Radial Active Distribution Networks via DistFlow-Based MISOCP Reconfiguration
Abstract
1. Introduction
- A price-calibrated loss–emission objective integrating electricity and carbon prices to quantify losses and associated emissions under a unified economic metric;
- A DistFlow-based MISOCP formulation that couples SOCP-relaxed branch-flow constraints with tight switch–flow linking under strict radiality/connectivity requirements;
- Coordinated multi-resource dispatch modeling (including DG P/Q outputs, flexible resources, and reactive-support devices) jointly optimized with feeder topology;
- A transparent evaluation protocol reporting SOCP relaxation tightness and mixed-integer optimality gaps for reproducible assessment of loss reduction and emission mitigation.
2. Background of Research
2.1. Policy-Driven Low-Carbon Development and the Innovation Channel
2.2. Carbon-Aware Operation of Active Distribution Networks
2.3. Flexibility Resources and Network Devices Supporting Low-Carbon Operation
2.4. Topology–Dispatch Coordination via Distribution Network Reconfiguration
2.5. Solution Methodologies: Heuristic/Learning-Based Approaches Versus Solver-Based Optimization
2.6. Research Gaps and Working Hypotheses
3. Materials and Methods
3.1. Problem Formulation and Branch-Flow (DistFlow) Equations
3.2. Objective Function: Price-Calibrated Loss–Emission Minimization
3.3. Branch-Flow (DistFlow) Equations and Operating Constraints
3.3.1. DistFlow Current Constraints
3.3.2. Node Voltage and Branch Current Constraints
3.3.3. Power Constraint
3.3.4. PV Output Constraints
3.3.5. WT Output Constraints
3.3.6. MT Output Constraints
3.3.7. CB Output Constraints
3.3.8. PHEV Aggregator Constraints
3.3.9. SVC Output Constraints
3.3.10. Radiality and Connectivity Constraints
3.4. SOC Relaxation and MISOCP Reformulation
3.5. Loss Data Calibration, Auditing, and Measurement-And-Verification (M&V) Workflow
3.5.1. Verified Data Sources for Loads and Power Factors
3.5.2. Mapping Measurements to Optimization Inputs
3.5.3. Loss Calculation and Auditing (Cross-Checks)
- A.
- Model-consistent loss accounting (DistFlow-aligned).
- B.
- Energy-balance audit layer (metering cross-check).
- C.
- Statistics-based loss auditing (loss factor).
3.5.4. Post-Implementation Measurement of Predicted Loss Reduction
4. Results
4.1. Case 1: Baseline (IEEE-33, Original Topology)
4.2. Case 2: Devices Only (DG/SVC/CB; No Reconfiguration)
4.3. Case 3: Device-Topology Co-Optimization (Reconfiguration + Device Dispatch)
4.4. Relaxation Tightness and Gap Analysis
4.5. Sensitivity and Pareto Analyses
4.5.1. Sensitivity Analysis with Respect to the Weight Coefficient
4.5.2. Pareto Frontier Construction via the -Constraint Method
4.5.3. SOC Relaxation Tightness Along the Pareto Frontier
5. Discussion
5.1. Interpretation of Coordinated Device and Topology Decisions
5.2. Validity of the MISOCP Formulation
5.3. Comparison with Existing Work
5.4. Significance and Implications
5.5. Limitations and Future Improvements
5.5.1. Single-Period Snapshot and Conceptual Multi-Period Extension
5.5.2. Deterministic Uncertainty Treatment and Robustness-Oriented Extensions
5.5.3. Switching Costs, Wear, and Reliability-Related Metrics
5.5.4. Simplified Carbon-Emission Coefficients and Environmental Realism
5.5.5. Real-Feeder Validation with In-Kind Operational Data
5.6. Summary and Outlook
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ADN | Active distribution network |
| DER | Distributed energy resource |
| DG | Distributed generation |
| DNR | Distribution network reconfiguration |
| OPF | Optimal power flow |
| DistFlow | Distribution flow model |
| SOC | Second-order cone |
| SOCP | Second-order cone programming |
| MISOCP | Mixed-integer second-order cone programming |
| MILP | Mixed-integer linear programming |
| MIP | Mixed-integer programming |
| PV | Photovoltaic (generation) |
| WT | Wind turbine (generation) |
| MT | Microturbine |
| PHEV | Plug-in hybrid electric vehicle |
| V2G | Vehicle-to-grid |
| G2V | Grid-to-vehicle |
| SVC | Static var compensator |
| CB | Switched capacitor bank |
| ESS | Energy storage system |
| SDN | Snowflake distribution network |
| LOL | Loss-of-life (transformer) |
| APC | Article processing charge |
| p.u. | Per unit |
| CO2 | Carbon dioxide |
| CPLEX | IBM ILOG CPLEX Optimizer |
| YALMIP | Yet Another LMI Parser |
| GA | Genetic Algorithm |
| DE | Differential Evolution |
| GWO | Grey Wolf Optimizer |
| ABC | Artificial Bee Colony |
| TS | Tabu Search |
| TLBO | Teaching–Learning-Based Optimization |
References
- Coster, E.J.; Myrzik, J.M.A.; Kruimer, B.; Kling, W.L. Integration issues of distributed generation in distribution grids. Proc. IEEE 2010, 99, 28–39. [Google Scholar] [CrossRef]
- Long, Y.; Kirschen, D.S. Bi-Level Volt/VAR Optimization in Distribution Networks With Smart PV Inverters. IEEE Trans. Power Syst. 2022, 37, 3604–3613. [Google Scholar] [CrossRef]
- Baran, M.E.; Wu, F.F. Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Trans. Power Deliv. 1989, 4, 1401–1407. [Google Scholar] [CrossRef]
- Huang, W.; Chen, G.; Jiang, X.; Xiao, X.; Chen, Y.; Liu, C. Research on Self-Healing Distribution Network Operation Optimization Method Considering Carbon Emission Reduction. Processes 2025, 13, 1850. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, K.; Liu, C.; Zhu, T.; Zhou, F.; Li, J.; Liu, C. Optimal Low-Carbon Economic Dispatch Strategy for Active Distribution Networks with Participation of Multi-Flexible Loads. Processes 2025, 13, 2972. [Google Scholar] [CrossRef]
- Jia, T.; Yang, G.; Yao, L. The Low-Carbon Path of Active Distribution Networks: A Two-Stage Model from Day-Ahead Reconfiguration to Real-Time Optimization. Energies 2024, 17, 4989. [Google Scholar] [CrossRef]
- Li, C.; Miao, S.; Li, Y.; Zhang, D.; Ye, C.; Liu, Z.; Li, L. Coordinating dynamic network reconfiguration with ANM in active distribution network optimisation considering system structure security evaluation. IET Gener. Transm. Distrib. 2019, 13, 4355–4363. [Google Scholar] [CrossRef]
- Zhu, J.; Zhou, Y.; Dong, X.; Zhou, L.; Zhu, Q.; Yuan, Y. Mixed-Integer Linear Programming Based Distribution Network Reconfiguration Model Considering Reliability Enhancement. CSEE J. Power Energy Syst. 2025, 11, 1336–1346. [Google Scholar] [CrossRef]
- Li, C.; Dai, Y.; Wang, P.; Xia, S. Active and reactive power coordinated optimization of active distribution networks considering dynamic reconfiguration and SOP. IET Renew. Power Gener. 2025, 19, e12814. [Google Scholar] [CrossRef]
- Vlahinić, S.; Franković, D.; Komen, V.; Antonić, A. Reactive power compensation with pv inverters for system loss reduction. Energies 2019, 12, 4062. [Google Scholar] [CrossRef]
- Cagnano, A.; De Tuglie, E.; Bronzini, M. Multiarea voltage controller for active distribution networks. Energies 2018, 11, 583. [Google Scholar] [CrossRef]
- Lou, C.; Yang, J.; Li, T.; Vega-Fuentes, E. New phase-changing soft open point and impacts on optimising unbalanced power distribution networks. IET Gener. Transm. Distrib. 2020, 14, 5685–5696. [Google Scholar] [CrossRef]
- Chen, L.; Jiang, Y.; Zheng, S.; Deng, X.; Chen, H.; Islam, R. A two-layer optimal configuration approach of energy storage systems for resilience enhancement of active distribution networks. Appl. Energy 2023, 350, 121720. [Google Scholar] [CrossRef]
- Weerakoon, A.H.S.; Assadi, M. Micro Gas Turbines in the Global Energy Landscape: Bridging the Techno-Economic Gap with Comparative and Adaptive Insights from Internal Combustion Engines and Renewable Energy Sources. Energies 2024, 17, 5457. [Google Scholar] [CrossRef]
- Banihabib, R.; Assadi, M. The Role of Micro Gas Turbines in Energy Transition. Energies 2022, 15, 8084. [Google Scholar] [CrossRef]
- Banihabib, R.; Assadi, M. A Hydrogen-Fueled Micro Gas Turbine Unit for Carbon-Free Heat and Power Generation. Sustainability 2022, 14, 13305. [Google Scholar] [CrossRef]
- Ru, J.; Gillott, M.; Shipman, R. Vehicle-to-Grid (V2G) Research: A Decade of Progress, Achievements, and Future Directions. Energies 2025, 18, 6148. [Google Scholar] [CrossRef]
- Sultana, S.; Roy, P.K. Oppositional krill herd algorithm for optimal location of distributed generator in radial distribution system. Int. J. Electr. Power Energy Syst. 2015, 73, 182–191. [Google Scholar] [CrossRef]
- Biswas, P.P.; Mallipeddi, R.; Suganthan, P.; Amaratunga, G.A. A multiobjective approach for optimal placement and sizing of distributed generators and capacitors in distribution network. Appl. Soft Comput. 2017, 60, 268–280. [Google Scholar] [CrossRef]
- Bayat, A.; Bagheri, A. Optimal active and reactive power allocation in distribution networks using a novel heuristic approach. Appl. Energy 2019, 233–234, 71–85. [Google Scholar] [CrossRef]
- Han, T.; Hill, D.J. Learning-based topology optimization of power networks. IEEE Trans. Power Syst. 2022, 38, 1366–1378. [Google Scholar] [CrossRef]
- Harsh, P.; Das, D. A simple and fast heuristic approach for the reconfiguration of radial distribution networks. IEEE Trans. Power Syst. 2023, 38, 2939–2942. [Google Scholar] [CrossRef]
- Jo, S.; Oh, J.-Y.; Lee, J.; Oh, S.; Moon, H.S.; Zhang, C.; Gadh, R.; Yoon, Y.T. Hybrid Genetic Algorithm With k-Nearest Neighbors for Radial Distribution Network Reconfiguration. IEEE Trans. Smart Grid 2023, 15, 2614–2624. [Google Scholar] [CrossRef]
- Sadeghi, S.; Jahangiri, A.; Shamim, A.G. Optimal reconfiguration of a smart distribution network in the presence of shunt capacitors. Electr. Eng. 2023, 106, 603–614. [Google Scholar] [CrossRef]
- Luo, F.; Wu, X.; Wang, Z.; Duan, J. A dynamic reconfiguration model and method for load balancing in the snow-shaped distribution network. Front. Energy Res. 2024, 12, 1361559. [Google Scholar] [CrossRef]
- Sun, G.; Chen, G.; Liu, R.; Lin, S.; Wang, X. Dynamic reconfiguration of distribution network considering typical wind −Solar-Load joint scenarios. Int. J. Electr. Power Energy Syst. 2025, 172, 111121. [Google Scholar] [CrossRef]
- Zhou, Y.; Hu, W.; Min, Y.; Zheng, L. Active splitting strategy searching approach based on MISOCP with consideration of power island stability. J. Mod. Power Syst. Clean Energy 2019, 7, 475–490. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Chen, Q. Optimal dispatch with transformer dynamic thermal rating in adns incorporating high PV penetration. IEEE Trans. Smart Grid 2021, 12, 1989–1999. [Google Scholar] [CrossRef]
- Du, M.; Antunes, J.; Wanke, P.; Chen, Z. Ecological efficiency assessment under the construction of low-carbon city: A perspective of green technology innovation. J. Environ. Plan. Manag. 2021, 65, 1727–1752. [Google Scholar] [CrossRef]
- Ren, Y.-S.; Liu, P.-Z.; Klein, T.; Sheenan, L. Does the low-carbon pilot cities policy make a difference to the carbon intensity reduction? J. Econ. Behav. Organ. 2023, 217, 227–239. [Google Scholar] [CrossRef]
- Pei, F.; Wang, P. The impact of the low-carbon city pilot policy on green innovation in firms. Front. Environ. Sci. 2022, 10, 987617. [Google Scholar] [CrossRef]
- Pan, Q.; Zhao, S. The impact of low-carbon city pilot policy on urban green technology innovation: Based on government and public perspectives. PLoS ONE 2024, 19, e0306425. [Google Scholar] [CrossRef] [PubMed]
- International Energy Agency (IEA). Emissions Factors 2024. Available online: https://www.iea.org/data-and-statistics/data-product/emissions-factors-2024 (accessed on 2 December 2025).
- Chen, F.; Lei, J.; Liu, Z.; Xiong, X. A Comparative Study on the Average CO2 Emission Factors of Electricity of China. Energies 2025, 18, 654. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (US EPA). Catalog of CHP Technologies: Section 5. Technology Characterization—Microturbines. 2015. Available online: https://www.epa.gov/sites/default/files/2015-07/documents/catalog_of_chp_technologies_section_5._characterization_-_microturbines.pdf (accessed on 2 December 2025).
- Qiu, Y.; Zhou, S.; Gu, W.; Zhang, X.-P. Analysis of China’s Electricity Price and Electricity Burden of Basic Industries under the Carbon Peak Target before 2030. CSEE J. Power Energy Syst. 2024, 10, 481–491. [Google Scholar]
- Zheng, C.; Chen, F.; Xi, Z.; Guo, G.; Yang, X.; Chen, C. A Resilience Entropy-Based Framework for V2G Charging Station Siting and Resilient Reconfiguration of Power Distribution Networks Under Disasters. World Electr. Veh. J. 2025, 16, 532. [Google Scholar] [CrossRef]
- You, S.; Hu, J.; Ziras, C. An Overview of Modeling Approaches Applied to Aggregation-Based Fleet Management and Integration of Plug-in Electric Vehicles. Energies 2016, 9, 968. [Google Scholar] [CrossRef]
- IEEE Std 1459-2010; IEEE Standard Definitions for the Measurement of Electric Power Quantities under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions. IEEE Standards Association: Piscataway, NJ, USA, 2010.
- Kisacikoglu, M.C.; Kesler, M.; Tolbert, L.M. Single-Phase On-Board Bidirectional PEV Charger for V2G Reactive Power Operation. IEEE Trans. Smart Grid 2014, 6, 767–775. [Google Scholar] [CrossRef]


















| Reference | Objective Function | Optimization Method | Constraints |
|---|---|---|---|
| [7] | Maximization of renewable penetration | MISOCP | Operational; radial |
| [8] | Minimization of power losses (ZIP load) | MILP (linearized from MISOCP) | Operational; ZIP→ZP; radial |
| [9] | Minimization of daily operating cost | MISOCP (with SOP) | Voltage/thermal; SOP; radial |
| [13] | Resilience via ESS configuration | Two-layer bilevel optimization | Operational; contingencies; fixed topology |
| [25] | Loss + load balance; ESS-coordinated (SDN) | MISOCP (SOCP relax + Big-M) | SDN; multilevel balance; reconfiguration; ESS |
| [26] | Cost (loss/switch/curtail) under uncertainty | MISOCP | Scenarios; spatiotemporal RES-load |
| [27] | Active splitting (island stability) | MISOCP | Static/transient stability; operational |
| [28] | Operating cost & transformer LOL minimization | MISOCP | DTR; operational; fixed topology |
| Node i | Node j | Branch Circuit Impedance (Ω) | The Load of Node j (kVA) |
|---|---|---|---|
| 1 | 2 | 0.0922 + j0.047 | 100 + j60 |
| 2 | 3 | 0.493 + j0.2511 | 90 + j40 |
| 3 | 4 | 0.366 + j0.1864 | 120 + j80 |
| 4 | 5 | 0.3811 + j0.1941 | 60 + j30 |
| 5 | 6 | 0.819 + j0.707 | 60 + j20 |
| 6 | 7 | 0.1872 + j0.6188 | 200 + j100 |
| 7 | 8 | 0.7114 + j0.2351 | 200 + j100 |
| 8 | 9 | 1.03 + j0.74 | 60 + j20 |
| 9 | 10 | 1.044 + j0.74 | 60 + j20 |
| 10 | 11 | 0.1966 + j0.065 | 45 + j30 |
| 11 | 12 | 0.3744 + j0.1238 | 60 + j35 |
| 12 | 13 | 1.468 + j1.155 | 60 + j35 |
| 13 | 14 | 0.5416 + j0.7129 | 120 + j80 |
| 14 | 15 | 0.591 + j0.526 | 60 + j10 |
| 15 | 16 | 0.7463 + j0.545 | 60 + j20 |
| 16 | 17 | 1.289 + j1.721 | 60 + j20 |
| 17 | 18 | 0.732 + j0.574 | 90 + j40 |
| 2 | 19 | 0.164 + j0.1565 | 90 + j40 |
| 19 | 20 | 1.5042 + j1.3554 | 90 + j40 |
| 20 | 21 | 0.4095 + j0.4784 | 90 + j40 |
| 21 | 22 | 0.7089 + j0.9373 | 90 + j40 |
| 3 | 23 | 0.4512 + j0.3083 | 90 + j50 |
| 23 | 24 | 0.898 + j0.7091 | 420 + j200 |
| 24 | 25 | 0.896 + j0.7011 | 420 + j200 |
| 6 | 26 | 0.203 + j0.1034 | 60 + j25 |
| 26 | 27 | 0.2842 + j0.1447 | 60 + j25 |
| 27 | 28 | 1.059 + j0.9337 | 60 + j20 |
| 28 | 29 | 0.8042 + j0.7006 | 120 + j70 |
| 29 | 30 | 0.5075 + j0.2585 | 200 + j600 |
| 30 | 31 | 0.9744 + j0.963 | 150 + j70 |
| 31 | 32 | 0.3105 + j0.3619 | 210 + j100 |
| 32 | 33 | 0.341 + j0.5302 | 60 + j40 |
| 8 | 21 | 2 + j2 | |
| 9 | 15 | 2 + j2 | |
| 12 | 22 | 2 + j2 | |
| 18 | 33 | 0.5 + j0.5 | |
| 25 | 29 | 0.5 + j0.5 |
| Node | Loading Device | Gear | Active Output (MW) | Reactive Output (MVar) |
|---|---|---|---|---|
| 6 | PV | None | 0.8 | 0.2629 |
| 19 | PV | None | 0.7890 | 0.2593 |
| 31 | PV | None | 0.4753 | 0.1562 |
| 18 | WT | None | 0.5566 | 0.1830 |
| 9 | SVC | None | None | 0.3000 |
| 22 | CB | 3 | None | 0.3 |
| 25 | CB | 3 | None | 0.3 |
| 30 | PHEV | None | 0.6000 | None |
| 25 | MT | None | 0.1323 | 0.0435 |
| 33 | MT | None | 0.4 | 0.1315 |
| Method | C(x) (CNY) | (x) (MW) | (x) (tCO2) | Running Time (s) |
|---|---|---|---|---|
| MISOCP | 37.4677 | 0.0205 | 0.2580 | 8.46 |
| GA | 41.0055 | 0.0226 | 0.2813 | 20.13 |
| DE | 38.9513 | 0.0228 | 0.2586 | 77.99 |
| GWO | 40.3898 | 0.0243 | 0.2639 | 24.45 |
| ABC | 38.0360 | 0.0212 | 0.2594 | 33.60 |
| TS | 39.7617 | 0.0242 | 0.2580 | 35.55 |
| TLBO | 37.9733 | 0.0213 | 0.2581 | 38.58 |
| MISOCPonly for loss | 124.8870 | 0.0103 | 1.2349 | 6.29 |
| Branch Exchange | 43.9791 | 0.0178 | 0.3433 | 10.51 |
| Case | Range | MAD | RMS | MaxAbsDev | ||
|---|---|---|---|---|---|---|
| Case 1 | 0.08400 | 1.69900 | 0.11680 | 0.053094 | 0.060415 | 0.08700 |
| Case 2 | 0.02852 | 0.18021 | 0.001614 | 0.0056316 | 0.0071027 | 0.01528 |
| Case 3 | 0.01242 | 0.15767 | 0.001082 | 0.0049272 | 0.0058146 | 0.00985 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Li, Z.; Wang, Y.; Si, Y.; Gao, X. Price-Calibrated Network Loss–Carbon Emission Co-Optimization for Radial Active Distribution Networks via DistFlow-Based MISOCP Reconfiguration. Sustainability 2026, 18, 544. https://doi.org/10.3390/su18010544
Li Z, Wang Y, Si Y, Gao X. Price-Calibrated Network Loss–Carbon Emission Co-Optimization for Radial Active Distribution Networks via DistFlow-Based MISOCP Reconfiguration. Sustainability. 2026; 18(1):544. https://doi.org/10.3390/su18010544
Chicago/Turabian StyleLi, Ziyan, Yongjie Wang, Yang Si, and Xiaobin Gao. 2026. "Price-Calibrated Network Loss–Carbon Emission Co-Optimization for Radial Active Distribution Networks via DistFlow-Based MISOCP Reconfiguration" Sustainability 18, no. 1: 544. https://doi.org/10.3390/su18010544
APA StyleLi, Z., Wang, Y., Si, Y., & Gao, X. (2026). Price-Calibrated Network Loss–Carbon Emission Co-Optimization for Radial Active Distribution Networks via DistFlow-Based MISOCP Reconfiguration. Sustainability, 18(1), 544. https://doi.org/10.3390/su18010544

