Control of Exposure Assessment Parameters to Ionising Radiation Under New Air Exchange (Ventilation) Conditions: A Case Study of the Underground Tourist Route in Książ
Abstract
1. Introduction
1.1. Object Description
1.2. Purpose of the Work
2. Methods
2.1. Radon Activity Concentration
2.2. Potential Alpha Energy Concentration
2.3. Equilibrium Equivalent Activity Concentration
2.4. Ambient Aerosol Size Distribution
2.5. Radioactive Aerosol Size Distribution
2.6. Dose Assessments from Different Countries
- (a)
- Poland
- (b)
- Czech Republic
- E: effective dose per year (mSv).
- : time integral of equilibrium equivalent activity concentration over an annual working time; it is assumed that a time integral of EEAC equalling 1.2 MBq h·m−3 causes an effective dose of 20 mSv.
3. Results and Discussion
3.1. 222Rn Activity Concentration
3.2. Potential Alpha Energy Concentration
3.3. Equivalent Equilibrium Activity Concentration
3.4. Ambient Aerosol Size Distribution
3.5. Radioactive Aerosol Size Distribution
3.6. Dose Assessments from Different Countries
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oberc, J. The Pre-Assyntian and Assyntian (Baikalian) Elements in South-Western Poland. In Geology of Poland; Książkiewicz, M., Oberc, J., Pożaryski, W., Eds.; Wydawnictwa Geologiczne: Warszawa, Poland, 1978; pp. 99–173. [Google Scholar]
- Nemec, W.; Porębski, S.J.; Steel, R.J. Texture and structure of resedimented conglomerates: Examples from the Książ Formation (Famennian-Tournaisian), south-western Poland. Sedimentology 1980, 27, 519–538. [Google Scholar] [CrossRef]
- Żelaźniewicz, A.; Aleksandrowski, P. Tectonic subdivision of Poland: Southwestern Poland. Przegl. Geol. 2008, 56, 904–911, (In Polisho in the Content). [Google Scholar]
- Kasza, D.; Kaczorowski, M.; Zdunek, R.; Wronowski, R. The damages of Ksiaz castle architecture in relation to routes of recognized tectonic faults and indications of recent tectonic activity of Swiebodzice Depression Orogen—Central Sudetes, SW Poland. Acta Geodyn. Geomater. 2014, 11, 225–234. [Google Scholar] [CrossRef]
- Kasza, D.; Kowalski, A.; Wojewoda, J.; Kaczorowski, M. Indicators of recent geodynamic activity in the Książ Castle area (Świebodzice Unit, Sudetes) in the light of structural analysis and geodetic measurements. E3S Web Conf. 2018, 29, 00021. [Google Scholar] [CrossRef]
- Teisseyre, H. The geological structure of Świebodzice Depression. Ann. Soc. Geol. Pol. 1951, 21, 380–386. (In Polish) [Google Scholar]
- Teisseyre, H.; Gawroński, O. Świebodzice Sheet—Geological Detailed Map of Sudetes on Scale 1:25,000; Państwowy Instytut Geologiczny: Warszawa, Poland, 1965. [Google Scholar]
- Štepančiíová, P.; Hók, J.; Nývlt, D.; Dohnal, J.; Sýkorová, I.; Stemberk, J. Active tectonics research using trenching technique on the south-eastern section of the Sudetic Marginal Fault (NE Bohemian Massif, central Europe). Tectonophysics 2010, 485, 269–282. [Google Scholar] [CrossRef]
- Kaczorowski, M.; Wojewoda, J. Neotectonic activity interpreted from a long water-tube tiltmeter record at the SRC Geodynamic Laboratory in Książ, Central Sudetes, SW Poland. Acta Geodyn. Geomater. 2011, 8, 249–261. [Google Scholar]
- Kaczorowski, M.; Kasza, D.; Zdunek, R.; Wronowski, R. Time Distribution of Strong Seismic Events in the Fore-Sudetic Monocline in Context of Signals Registered by Water-Tube Gauges in Książ Geodynamic Laboratory. Sensors 2021, 21, 1603. [Google Scholar] [CrossRef] [PubMed]
- Fijałkowska-Lichwa, L.; Przylibski, T.A. Assessment of occupational exposure from radon in the newly formed underground tourist route under Książ castle, Poland. Radiat. Environ. Biophys. 2021, 60, 329–345. [Google Scholar] [CrossRef] [PubMed]
- Hadler, N.J.C.; Iunes, P.J.; Osorio, A.A.M.; Paulo, S.R. Relationship between track size and energy for alpha particles in CR-39. Int. J. Radiat. Appl. Instrum. Part D Nucl. Tracks Radiat. Meas. 1991, 19, 313–318. [Google Scholar] [CrossRef]
- Skubacz, K.; Bywalec, T. Monitoring of short-lived radon progeny in mines. Radiat. Prot. Dosim. 2003, 103, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Chałupnik, S.; Skubacz, K.; Grygier, A.; Nowak, S. Application of TLD devices for radon and thoron PAEC measurements in the air is the concept of “total PAEC” useful? J. Environ. Radioact. 2021, 234, 106616. [Google Scholar] [CrossRef] [PubMed]
- Chałupnik, S.; Meisenberg, O.; Bi, L.; Wang, J.; Skubacz, K.; Tschiersch, J. Application of LSC and TLD methods for the measurement of radon and thoron decay products in air. Radiat. Prot. Dosim. 2010, 141, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.W. Modification of the Tsivoglou method for radon daughters in air. Health Phys. 1970, 19, 691. [Google Scholar] [PubMed]
- Raabe, O.G.; Patterson, F.S. A Method of Analysis of Air Sampling Data for Particulate Alpha Emitters in a Radon-Thoron Atmosphere; University of Rochester: New York, NY, USA, 1965. [Google Scholar]
- Burian, I. Metody zjištění objemových aktivit dceřiných produktů 222Rn. Rádioakt. Zivotn. Prostr. 1988, 11, 223–237. [Google Scholar]
- Dekati Ltd. ELPI+ Brochure. 2022. Available online: https://www.dekati.com/wp-content/uploads/dekati_elpi_brochure.pdf (accessed on 13 December 2025).
- Ordinance of the Council of Ministers of 11 August 2021 on Indicators Enabling the Determination of Ionizing Radiation Doses Used When Assessing Exposure to Ionizing Radiation (Polish Title: Rozporządzenie Rady Ministrów z Dnia 11 Sierpnia 2021 r. w Sprawie Wskazników Pozwalajacych na Wyznaczenie Dawek Promieniowania Jonizujacego Stosowanych Przy Ocenie Narazenia na Promieniowanie Jonizujace). Polish Journal of Acts of 2021, No. 1657; Warsaw, Poland. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20210001657 (accessed on 13 December 2025).
- International Commission on Radiological Protection [ICRP]. Occupational intakes of radionuclides, part 3. In Annals of the ICRP; ICRP publication 137; International Commission on Radiological Protection: Ottawa, ON, Canada, 2017. [Google Scholar]











| Site | I | II | III | IV | Year | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| 9 August–19 November 2206 h | 19 November–20 February 2520 h | 20 February–20 May 2111 h | 20 May–20 September 2399 h | 20 September–22 January 8833 h | ||||||
| CRn | UCRn (k = 2) | CRn | UCRn (k = 2) | CRn | UCRn (k = 2) | CRn | UCRn (k = 2) | CRn | UCRn (k = 2) | |
| [Bq/m3] | [Bq/m3] | [Bq/m3] | [Bq/m3] | [Bq/m3] | ||||||
| 1 | 171 | 34 | 102 | 28 | 199 | 46 | 257 | 59 | 169 | 27 |
| 2 | 200 | 46 | 94 | 26 | 201 | 47 | 359 | 77 | 205 | 32 |
| 3 | 229 | 51 | 87 | 25 | 204 | 40 | 395 | 83 | 206 | 32 |
| 4 | 241 | 53 | 129 | 32 | 215 | 49 | 379 | 80 | 231 | 35 |
| 5 | 97 | 28 | 74 | 19 | 136 | 35 | 191 | 48 | 117 | 19 |
| 6 | 206 | 47 | 174 | 40 | 182 | 43 | 302 | 48 | 182 | 28 |
| Average for the tourist route | 191 | 110 | 190 | 314 | 185 | |||||
| Room No. | Average 222Rn Activity Conc. CRn [Bq/m3] | Expanded Uncertainty of Average 222Rn Activity conc. UCRn (k = 2) [Bq/m3] | Average 222Rn Activity Conc. CRn [Bq/m3] | Expanded Uncertainty of Average 222Rn Activity Conc. UCRn (k = 2) [Bq/m3] |
| 15 June 2023–18 September 2023 2280 h | 29 January 2024–15 April 2024 1824 h | |||
| 1 | 63 | 16 | 138 | 52 |
| 2 | 383 | 48 | 52 | 20 |
| 3 | 125 | 22 | 88 | 33 |
| 4 | 82 | 18 | 49 | 19 |
| 5 | 107 | 20 | 31 | 12 |
| 6 | 103 | 20 | 21 | 8 |
| 7 | 139 | 23 | 54 | 21 |
| 8 | 144 | 24 | 55 | 21 |
| 9 | 122 | 21 | 96 | 36 |
| 10 | 119 | 21 | 64 | 24 |
| 11 | 119 | 21 | 76 | 29 |
| 12 | 54 | 15 | 40 | 15 |
| 13 | 67 | 16 | 66 | 25 |
| 14 | 97 | 19 | 94 | 36 |
| Place of Measurement | RGR-40 Mining Radiometer [µJ/m3] | Alpha Probes with TL Detectors [µJ/m3] | Liquid Scintillation Spectrometer (Triathler) [µJ/m3] | Radon Progeny Particle Size Spectrometer [µJ/m3] | ELPI+ Cascade Impactor [µJ/m3] |
|---|---|---|---|---|---|
| Site 8 (Geological chamber) Average | 0.09 ± 0.03 | 0.10 ± 0.03 | 0.15 ± 0.04 | 0.13 ± 0.05 | 0.10 ± 0.02 |
| 0.09 ± 0.03 | 0.05 ± 0.03 | 0.08 ± 0.03 | |||
| 0.12 ± 0.04 | 0.09 ± 0.03 | ||||
| 0.18 ± 0.05 | |||||
| 0.12 ± 0.04 | 0.08 ± 0.03 | 0.11 ± 0.03 | 0.13 ± 0.05 | 0.10 ± 0.02 | |
| Site 7 (Blind corridor) Average | 0.55 ± 0.08 | 0.51 ± 0.10 | 0.38 ± 0.06 | 0.35 ± 0.14 | 0.46 ± 0.02 |
| 0.43 ± 0.06 | 0.54 ± 0.14 | 0.38 ± 0.06 | 0.57 ± 0.09 | ||
| 0.40 ± 0.06 | |||||
| 0.47± 0.07 | 0.53 ± 0.12 | 0.38 ± 0.06 | 0.35 ± 0.14 | 0.52 ± 0.07 |
| Worker | Annual Working Time [h] | Annual Effective Dose [mSv] (Poland) | Annual Effective Dose [mSv] (Czech Republic) |
|---|---|---|---|
| A | 245 | 0.093 | 0.401 |
| B | 113 | 0.043 | 0.185 |
| C | 100 | 0.038 | 0.164 |
| D | 110 | 0.042 | 0.180 |
| E | 159 | 0.060 | 0.260 |
| F | 266 | 0.101 | 0.435 |
| G | 121 | 0.046 | 0.198 |
| H | 57 | 0.022 | 0.093 |
| I | 59 | 0.022 | 0.097 |
| J | 154 | 0.058 | 0.252 |
| K | 9 | 0.003 | 0.015 |
| L | 163 | 0.062 | 0.267 |
| M | 105 | 0.040 | 0.172 |
| N | 86 | 0.033 | 0.141 |
| O | 58 | 0.022 | 0.095 |
| P | 26 | 0.010 | 0.043 |
| Q | 30 | 0.011 | 0.049 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wołoszczuk, K.; Grygier, A.; Skubacz, K.; Fialová, E.; Otahal, P.P.S.; Pawłowska, Z.; Tchorz-Trzeciakiewicz, D.E.; Szyłak-Szydłowski, M. Control of Exposure Assessment Parameters to Ionising Radiation Under New Air Exchange (Ventilation) Conditions: A Case Study of the Underground Tourist Route in Książ. Sustainability 2026, 18, 474. https://doi.org/10.3390/su18010474
Wołoszczuk K, Grygier A, Skubacz K, Fialová E, Otahal PPS, Pawłowska Z, Tchorz-Trzeciakiewicz DE, Szyłak-Szydłowski M. Control of Exposure Assessment Parameters to Ionising Radiation Under New Air Exchange (Ventilation) Conditions: A Case Study of the Underground Tourist Route in Książ. Sustainability. 2026; 18(1):474. https://doi.org/10.3390/su18010474
Chicago/Turabian StyleWołoszczuk, Katarzyna, Agata Grygier, Krystian Skubacz, Eliška Fialová, Petr P. S. Otahal, Zuzanna Pawłowska, Dagmara Eulalia Tchorz-Trzeciakiewicz, and Mirosław Szyłak-Szydłowski. 2026. "Control of Exposure Assessment Parameters to Ionising Radiation Under New Air Exchange (Ventilation) Conditions: A Case Study of the Underground Tourist Route in Książ" Sustainability 18, no. 1: 474. https://doi.org/10.3390/su18010474
APA StyleWołoszczuk, K., Grygier, A., Skubacz, K., Fialová, E., Otahal, P. P. S., Pawłowska, Z., Tchorz-Trzeciakiewicz, D. E., & Szyłak-Szydłowski, M. (2026). Control of Exposure Assessment Parameters to Ionising Radiation Under New Air Exchange (Ventilation) Conditions: A Case Study of the Underground Tourist Route in Książ. Sustainability, 18(1), 474. https://doi.org/10.3390/su18010474

