Advancing Sustainable Mining: A Comparative Analysis of Research Trends and Knowledge Spillover in Critical Mineral Exploration
Abstract
1. Introduction
2. Literature Review
2.1. Previous Studies on Patent and Publication Analysis in the Field of Mineral Resources
2.2. Measuring R&D Efficiency
3. Methodology
3.1. Research Model
3.2. Data
4. Results
4.1. Analysis of Article/Patent Trends
4.2. Results of DEA
4.2.1. Efficiency Score and RTS
4.2.2. Benchmark Analysis
4.2.3. Super-Efficiency Score
5. Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McNulty, B.A.; Jowitt, S.M. Barriers to and uncertainties in understanding and quantifying global critical mineral and element supply. iScience 2021, 24, 102809. [Google Scholar] [CrossRef]
- Kim, R.; Lee, J.; Park, J.; Shin, S.; Park, I.-S.; Chung, K.W.; Yoo, J.H.; Kim, S.; Cho, S.-J.; Jeon, H.-S. Current status in the mining industry of critical minerals for battery (Li, Ni, Co, and C) in the energy transition era. J. Korean Soc. Miner. Energy Resour. Eng. 2022, 59, 218–232. [Google Scholar] [CrossRef]
- Galos, K.; Lewicka, E.; Burkowicz, A.; Guzik, K.; Kot-Niewiadomska, A.; Kamyk, J.; Szlugaj, J. Approach to identification and classification of the key, strategic and critical minerals important for the mineral security of Poland. Resour. Policy 2021, 70, 101900. [Google Scholar] [CrossRef]
- Khlystova, O.; Kalyuzhnova, Y. Exploring knowledge spillovers: Innovation strategies in resource-rich countries. J. Technol. Transf. 2025. [Google Scholar] [CrossRef]
- Jowitt, S.M.; McNulty, B.A. Battery and Energy Metals: Future Drivers of the Minerals Industry? SEG Discov. 2021, 11–18. [Google Scholar] [CrossRef]
- Qurbani, I.D.; Heffron, R.J.; Rifano, A.T.S. Justice and critical mineral development in Indonesia and across ASEAN. Extr. Ind. Soc. 2021, 8, 355–362. [Google Scholar] [CrossRef]
- Okada, K. A Historical Overview of the Past Three Decades of Mineral Exploration Technology. Nat. Resour. Res. 2021, 30, 2839–2860. [Google Scholar] [CrossRef]
- Ruiz-Coupeau, S.; Jürgens, B.; Keßelring, M.; Herrero-Solana, V. Sustainability in Mineral Exploration—Exploring Less Invasive Technologies via Patent Analysis. Sustainability 2020, 12, 9761. [Google Scholar] [CrossRef]
- Rojas-Sola, J.I.; Aguilera-García, Á.I. Global Bibliometric Analysis of the ‘Mining & Mineral Processing’ Subject Category From the Web of Science (1997–2012). Miner. Process. Extr. Metall. Rev. 2015, 36, 349–369. [Google Scholar] [CrossRef]
- Fernandez, V. Patenting trends in the mining industry. Resour. Policy 2021, 72, 102090. [Google Scholar] [CrossRef]
- Griliches, Z. Patent statistics as economic indicators: A survey. In R&D and Productivity: The Econometric Evidence; University of Chicago Press: Chicago, IL, USA, 1998; pp. 287–343. [Google Scholar]
- Jaffe, A.B.; Trajtenberg, M.; Henderson, R. Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations. Q. J. Econ. 1993, 108, 577–598. [Google Scholar] [CrossRef]
- Hall, B.H.; Jaffe, A.B.; Trajtenberg, M. Market Value and Patent Citations: A First Look; National Bureau of Economic Research: Cambridge, MA, USA, 2000. [Google Scholar]
- Ali, S.H.; Giurco, D.; Arndt, N.; Nickless, E.; Brown, G.; Demetriades, A.; Durrheim, R.; Enriquez, M.A.; Kinnaird, J.; Littleboy, A.; et al. Mineral supply for sustainable development requires resource governance. Nature 2017, 543, 367–372. [Google Scholar] [CrossRef]
- Guan, J.; Chen, K. Modeling the relative efficiency of national innovation systems. Res. Policy 2012, 41, 102–115. [Google Scholar] [CrossRef]
- Wright, G.; Czelusta, J. Mineral Resources and Economic Development; Stanford University: Stanford, CA, USA, 2003. [Google Scholar]
- Fernandez, V. Cross-country concentration and specialization of mining inventions. Scientometrics 2021, 126, 6715–6759. [Google Scholar] [CrossRef]
- Fernandez, V. Innovative intensity in the mining industry: Evidence from patent families. Resour. Policy 2022, 78, 102805. [Google Scholar] [CrossRef]
- Kesselring, M.; Wagner, F.; Kirsch, M.; Ajjabou, L.; Gloaguen, R. Development of Sustainable Test Sites for Mineral Exploration and Knowledge Spillover for Industry. Sustainability 2020, 12, 2016. [Google Scholar] [CrossRef]
- Aznar-Sánchez, J.A.; Velasco-Muñoz, J.F.; Belmonte-Ureña, L.J.; Manzano-Agugliaro, F. Innovation and technology for sustainable mining activity: A worldwide research assessment. J. Clean. Prod. 2019, 221, 38–54. [Google Scholar] [CrossRef]
- Marlatt, J. The role of industry-academia collaborative research in mineral exploration. Can. Mineral. 2020, 59, 803–812. [Google Scholar] [CrossRef]
- Dilling-Hansen, M.; Madsen, E.S.; Smith, V. Efficiency, R&D and ownership—Some empirical evidence. Int. J. Prod. Econ. 2003, 83, 85–94. [Google Scholar] [CrossRef]
- Werner, B.M.; Souder, W.E. Measuring R&D Performance—U.S. and German Practices. Res. Technol. Manag. 1997, 40, 28–32. [Google Scholar] [CrossRef]
- Hu, J.L.; Yang, C.H.; Chen, C.P. R&D efficiency and the national innovation system: An international comparison using the distance function approach. Bull. Econ. Res. 2014, 66, 55–71. [Google Scholar] [CrossRef]
- Wang, E.C.; Huang, W. Relative efficiency of R&D activities: A cross-country study accounting for environmental factors in the DEA approach. Res. Policy 2007, 36, 260–273. [Google Scholar] [CrossRef]
- Chen, C.-P.; Hu, J.-L.; Yang, C.-H. Produce patents or journal articles? A cross-country comparison of R&D productivity change. Scientometrics 2013, 94, 833–849. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, H.; Chiu, Y.-H.; Chang, T.-H. Innovation efficiency and the impact of the institutional quality: A cross-country analysis using the two-stage meta-frontier dynamic network DEA model. Scientometrics 2021, 126, 3091–3129. [Google Scholar] [CrossRef]
- Fu, X.; Yang, Q.G. Exploring the cross-country gap in patenting: A stochastic frontier approach. Res. Policy 2009, 38, 1203–1213. [Google Scholar] [CrossRef]
- Yoon, S.; Chung, Y.; Han, S.; Woo, C. Do external risk factors increase or decrease country-level R&D efficiency: Focused on air pollution and job insecurity? Technol. Anal. Strateg. Manag. 2024, 36, 472–485. [Google Scholar] [CrossRef]
- Lanjouw, J.O.; Schankerman, M. Patent Quality and Research Productivity: Measuring Innovation with Multiple Indicators. Econ. J. 2004, 114, 441–465. [Google Scholar] [CrossRef]
- Érdi, P.; Makovi, K.; Somogyvári, Z.; Strandburg, K.; Tobochnik, J.; Volf, P.; Zalányi, L. Prediction of emerging technologies based on analysis of the US patent citation network. Scientometrics 2013, 95, 225–242. [Google Scholar] [CrossRef]
- Sharma, P.; Tripathi, R.C. Patent citation: A technique for measuring the knowledge flow of information and innovation. World Pat. Inf. 2017, 51, 31–42. [Google Scholar] [CrossRef]
- Higham, K.; de Rassenfosse, G.; Jaffe, A.B. Patent Quality: Towards a Systematic Framework for Analysis and Measurement. Res. Policy 2021, 50, 104215. [Google Scholar] [CrossRef]
- Maurseth, P.B.; Verspagen, B. Knowledge Spillovers in Europe: A Patent Citations Analysis. Scand. J. Econ. 2002, 104, 531–545. [Google Scholar] [CrossRef]
- Noailly, J.; Shestalova, V. Knowledge spillovers from renewable energy technologies: Lessons from patent citations. Environ. Innov. Soc. Transit. 2017, 22, 1–14. [Google Scholar] [CrossRef]
- Bae, J.; Chung, Y.; Ko, H. Analysis of efficiency in public research activities in terms of knowledge spillover: Focusing on earthquake R&D accomplishments. Nat. Hazards 2021, 108, 2249–2264. [Google Scholar] [CrossRef]
- Criscuolo, P. The ‘home advantage’ effect and patent families. A comparison of OECD triadic patents, the USPTO and the EPO. Scientometrics 2006, 66, 23–41. [Google Scholar] [CrossRef]
- Messinis, G. Triadic citations, country biases and patent value: The case of pharmaceuticals. Scientometrics 2011, 89, 813–833. [Google Scholar] [CrossRef]
- Bae, J.; Chung, Y.; Lee, J.; Seo, H. Knowledge spillover efficiency of carbon capture, utilization, and storage technology: A comparison among countries. J. Clean. Prod. 2020, 246, 119003. [Google Scholar] [CrossRef]
- Farrell, M.J. The Measurement of Productive Efficiency. J. R. Stat. Soc. Ser. A (Gen.) 1957, 120, 253–281. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef]
- Chun, D.; Chung, Y.; Bang, S. Impact of firm size and industry type on R&D efficiency throughout innovation and commercialisation stages: Evidence from Korean manufacturing firms. Technol. Anal. Strateg. Manag. 2015, 27, 895–909. [Google Scholar] [CrossRef]
- Son, H.; Chung, Y.; Yoon, S. How can university technology holding companies bridge the Valley of Death? Evidence from Korea. Technovation 2022, 109, 102158. [Google Scholar] [CrossRef]
- Hollingsworth, B.; Dawson, P.J.; Maniadakis, N. Efficiency measurement of health care: A review of non-parametric methods and applications. Health Care Manag. Sci. 1999, 2, 161–172. [Google Scholar] [CrossRef]
- Jaffe, A.B.; Trajtenberg, M. Flows of knowledge from universities and federal laboratories: Modeling the flow of patent citations over time and across institutional and geographic boundaries. Proc. Natl. Acad. Sci. USA 1996, 93, 12671–12677. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, X.; Mao, J.; Li, G. Will patents with more interdisciplinary scientific knowledge have higher technological impact? Empirical evidence from USPTO patents. Scientometrics 2025, 130, 2037–2068. [Google Scholar] [CrossRef]
- Gaviria-Marin, M.; Cruz-Cázares, C. Ranking web as indicator of knowledge diffusion: An application for SMEs. Acad. Rev. Latinoam. Adm. 2020, 33, 219–240. [Google Scholar] [CrossRef]
- Audretsch, D.B.; Belitski, M.; Caiazza, R. Knowledge spillovers or R&D collaboration? Understanding the role of external knowledge for firm innovation. RD Manag. 2025, 55, 531–553. [Google Scholar] [CrossRef]
- Bacchiocchi, E.; Montobbio, F. Knowledge diffusion from university and public research. A comparison between US, Japan and Europe using patent citations. J. Technol. Transf. 2009, 34, 169–181. [Google Scholar] [CrossRef]
- Marinova, D.; McAleer, M. Modelling trends and volatility in ecological patents in the USA. Environ. Model. Softw. 2003, 18, 195–203. [Google Scholar] [CrossRef]
- Litvinenko, V.S. Digital Economy as a Factor in the Technological Development of the Mineral Sector. Nat. Resour. Res. 2020, 29, 1521–1541. [Google Scholar] [CrossRef]
- Chen, R.-H.; Lin, Y.; Tseng, M.-L. Multicriteria analysis of sustainable development indicators in the construction minerals industry in China. Resour. Policy 2015, 46, 123–133. [Google Scholar] [CrossRef]
- Zhang, D.; Ding, W.; Wang, Y.; Liu, S. Exploring the Role of International Research Collaboration in Building China’s World-Class Universities. Sustainability 2022, 14, 3487. [Google Scholar] [CrossRef]
- Lei, Y.; Cui, N.; Pan, D. Economic and social effects analysis of mineral development in China and policy implications. Resour. Policy 2013, 38, 448–457. [Google Scholar] [CrossRef]
- Fernandez, V. Innovation in the global mining sector and the case of Chile. Resour. Policy 2020, 68, 101690. [Google Scholar] [CrossRef]
- Neingo, P.; Tholana, T. Trends in productivity in the South African gold mining industry. J. South. Afr. Inst. Min. Metall. 2016, 116, 283–290. [Google Scholar] [CrossRef]
- Nebbia, G. Il prodotto interno materiale lordo dell’Italia nel 2000. Statistica 2007, 63, 397–409. [Google Scholar] [CrossRef]
- Assereto, R.; Brigo, L.; Brusca, C.; Omenetto, P.; Zuffardi, P. Italian ore/mineral deposits related to emersion surfaces a summary. Miner. Depos. 1976, 11, 170–179. [Google Scholar] [CrossRef]
- Mirelman, A.; Mentzakis, E.; Kinter, E.; Paolucci, F.; Fordham, R.; Ozawa, S.; Ferraz, M.; Baltussen, R.; Niessen, L.W. Decision-Making Criteria among National Policymakers in Five Countries: A Discrete Choice Experiment Eliciting Relative Preferences for Equity and Efficiency. Value Health 2012, 15, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, A.; Schmidt, T.S.; Huenteler, J. The role of inter-sectoral learning in knowledge development and diffusion: Case studies on three clean energy technologies. Technol. Forecast. Soc. Change 2019, 146, 464–487. [Google Scholar] [CrossRef]


| Category | Indicator | Type | Period |
|---|---|---|---|
| Input | Number of articles | Including journal articles, conference papers, and books | 2020.1~2023.7 |
| Number of patents | International patents valid for that period | 2020.1~2023.7 | |
| Output | Number of citations (articles) | Number of citations identified using Scopus | 2023.7 |
| Number of citations (patents) | Number of patent citations identified using Wintelips | 2023.7 | |
| Number of triadic patent families | Patents registered simultaneously in patent offices of the US, Europe, and Japan | 2020.1~2023.7 |
| Category | Indicator | Mean | Standard Deviation | Median | Minimum | Maximum |
|---|---|---|---|---|---|---|
| Input | Number of articles | 29.63 | 39.77 | 16 | 4 | 188 |
| Number of patents | 37.04 | 148.56 | 1 | 0 | 787 | |
| Output | Number of citations (articles) | 1362.52 | 2105.85 | 774 | 83 | 10,632 |
| Number of citations (patents) | 99.96 | 292.94 | 0 | 0 | 1233 | |
| Number of triadic patent families | 0.89 | 1.75 | 0 | 0 | 7 |
| Country | CRS | VRS | RTS | |
|---|---|---|---|---|
| USA | 1.0000 | 1.0000 | 1.0000 | CRS |
| Republic of Korea | 1.0000 | 1.0000 | 1.0000 | CRS |
| Canada | 1.0000 | 1.0000 | 1.0000 | CRS |
| Finland | 1.0000 | 1.0000 | 1.0000 | CRS |
| United Kingdom | 1.0000 | 1.0000 | 1.0000 | CRS |
| Sweden | 1.0000 | 1.0000 | 1.0000 | CRS |
| Italy | 1.0000 | 1.0000 | 1.0000 | CRS |
| Japan | 1.0000 | 1.0000 | 1.0000 | CRS |
| China | 0.8860 | 1.0000 | 0.8860 | DRS |
| Iran | 0.7961 | 1.0000 | 0.7961 | DRS |
| Switzerland | 0.7614 | 1.0000 | 0.7614 | IRS |
| Argentina | 0.7608 | 1.0000 | 0.7608 | IRS |
| Germany | 0.7510 | 0.9975 | 0.7528 | DRS |
| Greece | 0.7428 | 1.0000 | 0.7428 | IRS |
| France | 0.7131 | 0.7917 | 0.9008 | IRS |
| India | 0.6507 | 0.7392 | 0.8802 | DRS |
| New Zealand | 0.6459 | 0.8440 | 0.7653 | IRS |
| Australia | 0.6114 | 1.0000 | 0.6114 | DRS |
| Spain | 0.5587 | 0.6223 | 0.8978 | IRS |
| Russia | 0.5452 | 0.5482 | 0.9946 | IRS |
| Brazil | 0.5445 | 0.5698 | 0.9556 | DRS |
| Poland | 0.5042 | 0.5168 | 0.9756 | IRS |
| Turkey | 0.4889 | 0.5309 | 0.9208 | IRS |
| Chile | 0.4844 | 0.5329 | 0.9092 | IRS |
| South Africa | 0.4444 | 0.4610 | 0.9639 | IRS |
| Czech Republic | 0.4091 | 0.8333 | 0.4909 | IRS |
| Kazakhstan | 0.1702 | 0.7143 | 0.2383 | IRS |
| USA | Republic of Korea | Canada | Finland | United Kingdom | Sweden | Italy | Japan | |
|---|---|---|---|---|---|---|---|---|
| China | 3.132 | 7.670 | ||||||
| Iran | 1.380 | |||||||
| Switzerland | 0.006 | 0.098 | 0.068 | |||||
| Argentina | 0.254 | |||||||
| Germany | 0.500 | 0.000 | 1.236 | |||||
| Greece | 0.007 | 0.199 | 0.011 | |||||
| France | 0.340 | 0.160 | 0.104 | |||||
| India | 1.171 | |||||||
| New Zealand | 0.258 | |||||||
| Australia | 4.949 | 0.022 | ||||||
| Spain | 0.484 | |||||||
| Russia | 0.000 | 0.924 | 0.019 | |||||
| Brazil | 1.053 | |||||||
| Poland | 0.004 | 0.776 | 0.010 | |||||
| Turkey | 0.554 | |||||||
| Chile | 0.517 | |||||||
| South Africa | 0.741 | |||||||
| Czech Republic | 0.164 | |||||||
| Kazakhstan | 0.079 | |||||||
| Number of mentions | 4 | 1 | 0 | 2 | 0 | 2 | 18 | 6 |
| Rank | Country | Super Efficiency |
|---|---|---|
| 1 | USA | 2.8345 |
| 2 | Republic of Korea | 2.4144 |
| 3 | Canada | 1.5749 |
| 4 | Finland | 1.5424 |
| 5 | United Kingdom | 1.5000 |
| 6 | Sweden | 1.3752 |
| 7 | Italy | 1.2561 |
| 8 | Japan | 1.1553 |
| 9 | China | 0.8860 |
| 10 | Iran | 0.7961 |
| 11 | Switzerland | 0.7614 |
| 12 | Argentina | 0.7608 |
| 13 | Germany | 0.7510 |
| 14 | Greece | 0.7428 |
| 15 | France | 0.7131 |
| 16 | India | 0.6507 |
| 17 | New Zealand | 0.6459 |
| 18 | Australia | 0.6114 |
| 19 | Spain | 0.5587 |
| 20 | Russia | 0.5452 |
| 21 | Brazil | 0.5445 |
| 22 | Poland | 0.5042 |
| 23 | Turkey | 0.4889 |
| 24 | Chile | 0.4844 |
| 25 | South Africa | 0.4444 |
| 26 | Czech Republic | 0.4091 |
| 27 | Kazakhstan | 0.1702 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Bae, J.; Yoon, S. Advancing Sustainable Mining: A Comparative Analysis of Research Trends and Knowledge Spillover in Critical Mineral Exploration. Sustainability 2026, 18, 424. https://doi.org/10.3390/su18010424
Bae J, Yoon S. Advancing Sustainable Mining: A Comparative Analysis of Research Trends and Knowledge Spillover in Critical Mineral Exploration. Sustainability. 2026; 18(1):424. https://doi.org/10.3390/su18010424
Chicago/Turabian StyleBae, Junhee, and Sangpil Yoon. 2026. "Advancing Sustainable Mining: A Comparative Analysis of Research Trends and Knowledge Spillover in Critical Mineral Exploration" Sustainability 18, no. 1: 424. https://doi.org/10.3390/su18010424
APA StyleBae, J., & Yoon, S. (2026). Advancing Sustainable Mining: A Comparative Analysis of Research Trends and Knowledge Spillover in Critical Mineral Exploration. Sustainability, 18(1), 424. https://doi.org/10.3390/su18010424

