Application of Geo-Bag and Cement Concrete Blocks in Riverbank Erosion Control: A Study of Satkhira Koyra
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Preparing Geo-Bags and CC Blocks
2.3. Dumping Range and Total Station
2.4. Geo-Bag and Cement Concrete Block Cost Comparison
2.5. Two Different Contour Map Sections Showing Bank Protection
2.6. Bank Erosion Mechanisms and Material Suitability
3. Erosion and Accretion of the Padma River (1973–2011)
3.1. Analysis of the Reduced Water Level (RL)
3.2. General Morphology Water RL
4. Design of Revetments with Geotextile Containment System
4.1. Hydraulic Conditions
4.2. Physical Hydraulic Model Test
- v = local vertically-averaged velocity;
- = safety factor, minimum recommended value for riprap design = 1.1;
- = 0.30 for angular rock and 0.36 for rounded;
- = coefficient for vertical velocity distribution, range of 1.0 to 1.28 for straight channels to abrupt bends;
- = coefficient for riprap layer thickness, 1.0 or less with increasing thickness;
- = side slope correction factor;
- = size of stone for which 30% by weight is finer;
- = depth of flow;
- = specific weight of water;
- = specific weight of stone.
4.3. Geo-Bag Arrangement

4.4. Geogrid Use as the Base Layer for Slope Protection
4.5. Typical Geosynthetic Products
4.6. Geogrid Tensile Strain
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shahariar, S.; Sultana, N.; Zobeyer, H. Groynes in Riverbank Erosion Control: An Integrated Hydrodynamic and Morphodynamic Modelling for a Selected Reach of the Padma River. Environ. Earth Sci. 2025, 84, 486. [Google Scholar] [CrossRef]
- Nahian, M.H.; Sara, S.; Turjo, M.; Rahman, M.A.; Mashuk, F. A Case Study of Rahmatkhali Riverbank Erosion: Comparison among Riparian Management, Coir Logs and Geo Bags. In Proceedings of the International Conference on Planning, Architecture and Civil Engineering, Rajshahi, Bangladesh, 12–14 October 2023; pp. 1–6. [Google Scholar]
- Venkateswarlu, H.; Ujjawal, K.N.; Hegde, A. Laboratory and Numerical Investigation of Machine Foundations Reinforced with Geogrids and Geocells. Geotext. Geomembr. 2018, 46, 882–896. [Google Scholar] [CrossRef]
- Rajesh, S.; Viswanadham, B.V.S. Hydro-Mechanical Behavior of Geogrid Reinforced Soil Barriers of Landfill Cover Systems. Geotext. Geomembr. 2011, 29, 51–64. [Google Scholar] [CrossRef]
- Sarker, M.H.; Akter, J.; Ruknul, M. River Bank Protection Measures in the Brahmaputra-Jamuna River: Bangladesh Experience. In Proceedings of the International Seminar on River, Society and Sustainable Development, Assam, India, 26–29 May 2011; Volume 121, pp. 1–14. [Google Scholar]
- Hakimelahi, N.; Bayat, M.; Ajalloeian, R.; Nadi, B. Effect of Woven Geotextile Reinforcement on Mechanical Behavior of Calcareous Sands. Case Stud. Constr. Mater. 2023, 18, e02014. [Google Scholar] [CrossRef]
- Thanasisathit, N.; Chuenjaidee, S.; Voottipruex, P.; Jongpradist, P.; Kalayasri, P.; Jamsawang, P. Field Performance of Erosion Control on Lamtakong Dam Slopes Using Geocell and Ruzi Grass Cover: A Case Study. Geotext. Geomembr. 2025, 53, 1610–1622. [Google Scholar] [CrossRef]
- Erol, A.; Kaya, Z. Response of Isolated Footing on a Geogrid Reinforced Fill and Undisturbed Peat Subgrade Soil System. Geotext. Geomembr. 2025, 53, 1122–1144. [Google Scholar] [CrossRef]
- Cortellazzo, G.; Russo, L.E.; Busana, S.; Carbone, L.; Favaretti, M.; Hangen, H. Field Trial of a Reinforced Landfill Cover System: Performance and Failure. Geotext. Geomembr. 2022, 50, 655–667. [Google Scholar] [CrossRef]
- Tan, J.Y.; Yee, T.W. Green Revetment Solutions for Riverbank Erosion Protection. In Proceedings of the 11th International Conference on Geosynthetics, Seoul, Republic of Korea, 16–21 September 2018; pp. 16–21. [Google Scholar]
- Dip, M.; Uddin, J.; Hasan, M. Geo-Bags Effects on Meandering Section against Bank Erosion: A Case Study of Dharla River. In Proceedings of the 6th International Conference on Civil Engineering for Sustainable Development, Khulna, Bangladesh, 10–12 February 2022; KUET: Khulna, Bangladesh, 2022. ICCESD-2022-01108-1. [Google Scholar]
- Lima, A.S.; Furtado, I.A.; Fonseca, T.M.; de Oliveira Inacio, V.H.M.; de Almeida, J.R.; de Paula Martins, C. Study of the Application of Geosynthetics in Geotechnical Works. IOP Conf. Ser. Earth Environ. Sci. 2025, 1536, 012038. [Google Scholar] [CrossRef]
- Basu, G.; Roy, A.N.; Sanyal, P.; Mitra, K.; Mishra, L.; Ghosh, S.K. Bioengineering of River Earth Embankment Using Natural Fibre-Based Composite-Structured Geotextiles. Geotext. Geomembr. 2019, 47, 493–501. [Google Scholar] [CrossRef]
- Prasad, V.V.B.; Ishwarya, M.V.S.; Jayakrishnan, P.; Sathyan, D.; Muthukumar, S. Applications of Natural Geotextile in Geotechnical Engineering. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Sumi, S.; Unnikrishnan, N.; Mathew, L. Durability Studies of Surface-Modified Coir Geotextiles. Geotext. Geomembr. 2018, 46, 699–706. [Google Scholar] [CrossRef]
- Hossain, M.; Hasan, M.Z. Performance Comparison between Geo-Bag and Cement Concrete Block in River Bank Protection Works. Int. J. Eng. Technol. Manag. Appl. Sci. 2016, 4, 56–61. [Google Scholar]
- Islam, M.S. Riverbank Erosion and Sustainable Protection Strategies. J. Eng. Sci. 2011, 2, 63–72. [Google Scholar]
- ISO 13438; Geosynthetics—Screening Test Method for Determining the Resistance to Oxidation. International Organization for Standardization: Geneva, Switzerland, 2018.
- Myagmar, K.; Darkhijav, B.; Renchin, T.; Chultem, D. Cost-Benefit Analysis for Riverbank Erosion Control Approaches in the Steppe Area. Environ. Dev. Sustain. 2023, 25, 9251–9266. [Google Scholar] [CrossRef]
- Babagiray, G.; Akbas, S.O.; Anil, O. Full-Scale Field Impact Load Experiments on Buried Pipes in Geosynthetic-Reinforced Soils. Transp. Geotech. 2023, 38, 100927. [Google Scholar] [CrossRef]
- Xu, S.; Yin, Z.-Y. Bearing Capacity of Strip Footings in Unsaturated Soils Reinforced with Layered Geogrid Sheets Using Upper Bound Method. Geotext. Geomembr. 2025, 53, 405–426. [Google Scholar] [CrossRef]
- Santos, L.D.V.; Holanda, F.S.R.; Pedrotti, A.; Lino, J.B.; dos Santos Fontes, C.; de Melo, J.C.R.; Marino, R.H.; Boge, G.M. Geogrid-Type Geotextile Made from Typha domingensis Fibers with High Tensile Strength for Erosion Control. Invent. Discl. 2024, 4, 100025. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.H.; Islam, S.M.D.-U.; Azam, G. Exploring Impacts and Livelihood Vulnerability of Riverbank Erosion Hazard among Rural Households along the River Padma of Bangladesh. Environ. Syst. Res. 2017, 6, 25. [Google Scholar] [CrossRef]
- Yee, T.W. Geosynthetics for Erosion Control in Hydraulic Environment. In Proceedings of the 5th Asian Regional Conference on Geosynthetics, Bangkok, Thailand, 10–14 December 2012. [Google Scholar]
- Hataf, N.; Sayadi, M. Experimental and Numerical Study on the Bearing Capacity of Soils Reinforced Using Geobags. J. Build. Eng. 2018, 15, 290–297. [Google Scholar] [CrossRef]
- Shabani, S.; She, Y.; Lange, C.F. CFD Modeling of Movement of Geobag for Riverbank Erosion Control Structures. Int. J. Sediment Res. 2025, 40, 690–700. [Google Scholar] [CrossRef]
- Yetimoglu, T.; Wu, J.T.H.; Saglamer, A. Bearing Capacity of Rectangular Footings on Geogrid-Reinforced Sand. J. Geotech. Eng. 1994, 120, 2083–2099. [Google Scholar] [CrossRef]
- Wang, J.; Liu, F.Y.; Wang, P.; Cai, Y.Q. Particle Size Effects on Coarse Soil-Geogrid Interface Response in Cyclic and Post-Cyclic Direct Shear Tests. Geotext. Geomembr. 2016, 44, 854–861. [Google Scholar] [CrossRef]
- Yang, X. An Assessment of the Geometry Effect of Geosynthetics for Base Course Reinforcements. Int. J. Transp. Sci. Technol. 2012, 1, 247–257. [Google Scholar] [CrossRef]
- Du, C.; Jiang, X.; Yi, F.; Niu, B.; Jiang, J. Model Test Study on Electro-Osmotic Dry Tailings Dams of Conductive Grids. Process Saf. Environ. Prot. 2025, 196, 106870. [Google Scholar] [CrossRef]
- Kommanamanchi, V.; Chennarapu, H.; Balunaini, U. Mechanistic Evaluation of Biaxial and Triaxial Geogrids and Geocells Reinforcing C&D Waste Aggregate Layers for Sustainable Flexible Pavements. Constr. Build. Mater. 2025, 497, 143867. [Google Scholar] [CrossRef]
- Zou, W.; Xie, Y.; Han, Z.; Zhang, H.; Bai, B.; Lan, S. Hydromechanical Behaviors of Geogrids-Reinforced Expansive Soil Slopes: Case Study and Numerical Simulation. Comput. Geotech. 2024, 174, 106626. [Google Scholar] [CrossRef]
- Alamshahi, S.; Hataf, N. Bearing Capacity of Strip Footings on Sand Slopes Reinforced with Geogrid and Grid-Anchor. Geotext. Geomembr. 2009, 27, 217–226. [Google Scholar] [CrossRef]











| Size (cm3) | Volume (m3) | Coverage Area (m2) | Mixing Ratio |
|---|---|---|---|
| 50 × 50 × 50 | 0.125 | 0.250 | 1:3:6 |
| 45 × 45 × 45 | 0.091 | 0.202 | 1:3:6 |
| 40 × 40 × 40 | 0.064 | 0.160 | 1:3:6 |
| 35 × 35 × 35 | 0.042 | 0.160 | 1:3:6 |
| 30 × 30 × 30 | 0.027 | 0.09 | 1:3:6 |
| Manufacturing Cost | Average Dumping Cost | Total Cost |
|---|---|---|
| 1137.86 | 118.0 | 1256.0 |
| 885.61 | 89.0 | 975.0 |
| 697.6 | 61.0 | 657.0 |
| 402.2 | 40.0 | 445.0 |
| 257.8 | 26.0 | 284.0 |
| Weight (kg) | Volume m3 | Coverage Area (mm3) | Thickness (mm) |
|---|---|---|---|
| 250 | 0.166 | 1200 × 950 | 3 |
| 175 | 0.116 | 1075 × 850 | 3 |
| 125 | 0.083 | 950 × 750 | 3 |
| Manufacturing Cost | Filling Cost | Avg. Dumping Cost | Total Cost |
|---|---|---|---|
| 279.1 | 87.0 | 27.0 | 393.0 |
| 219.4 | 63.0 | 21.0 | 303.0 |
| 173.9 | 47.0 | 17.0 | 238.0 |
| Parameter | Geogrid + Geo-Bag System | Concrete Block |
|---|---|---|
| Initial Cost | 25–40% lower due to light, modular installation | High—requires formwork, transport, and curing |
| Installation Time | Faster (simple placement) | Slower (rigid, labor-intensive) |
| Maintenance after 20 years | Low—flexible and adaptive | High—cracks and displacement common |
| Hydraulic and Scour Resistance | Excellent under variable flows | Susceptible to undercutting and joint scour |
| Structural Flexibility | Adapts to settlement, maintains integrity | Fails under differential settlement |
| Environmental Impact | Supports vegetation, eco-friendly | High carbon footprint, impermeable |
| Lifespan | 20–25 years (minor rehab) | 25–30 years (major rehab) |
| Life Cycle Index (Baseline = 1) | 0.62 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Sohan, A.H.S.; Hossain, M.I.; Sayed, A.; Dey, A.S.; Ni, P. Application of Geo-Bag and Cement Concrete Blocks in Riverbank Erosion Control: A Study of Satkhira Koyra. Sustainability 2026, 18, 39. https://doi.org/10.3390/su18010039
Sohan AHS, Hossain MI, Sayed A, Dey AS, Ni P. Application of Geo-Bag and Cement Concrete Blocks in Riverbank Erosion Control: A Study of Satkhira Koyra. Sustainability. 2026; 18(1):39. https://doi.org/10.3390/su18010039
Chicago/Turabian StyleSohan, Abdullah Hil Safi, Md Imran Hossain, Abu Sayed, Arko Suryadip Dey, and Peiyong Ni. 2026. "Application of Geo-Bag and Cement Concrete Blocks in Riverbank Erosion Control: A Study of Satkhira Koyra" Sustainability 18, no. 1: 39. https://doi.org/10.3390/su18010039
APA StyleSohan, A. H. S., Hossain, M. I., Sayed, A., Dey, A. S., & Ni, P. (2026). Application of Geo-Bag and Cement Concrete Blocks in Riverbank Erosion Control: A Study of Satkhira Koyra. Sustainability, 18(1), 39. https://doi.org/10.3390/su18010039

