Synergistic Biochar–NBPT–DCD Coating Modulates Nitrogen Dynamics, Mitigates Leaching, and Enhances Yield and Quality of Choy Sum in Sustainable Vegetable Production
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Preparation of Carbon-Based Stabilized Coated Urea
2.2. Experimental Design
2.2.1. Soil Column Leaching Experiment
2.2.2. Ammonia Volatilization Inhibition Experiment
2.2.3. Field Experiment
2.3. Sampling and Chemical Analysis
2.4. Calculation Formulas and Statistical Analysis
3. Results
3.1. Influence on N Leaching
3.1.1. Urea-N
3.1.2. Ammonium-N
3.1.3. Nitrate-N
3.2. Influence on Ammonia Volatilization Loss
3.3. Influence on Soil Enzyme Activity
3.4. Choy Sum Yield, N Accumulation, and N Efficiency
3.5. Choy Sum Quality
4. Discussion
4.1. Modulation of N Leaching Dynamics
4.2. Suppression of Ammonia Volatilization
4.3. Responses of Soil Enzyme Activities and Implications for N Cycling
4.4. Agronomic Performance: Yield, NUE, and Quality Enhancement
4.5. Evidence for Interactive Effects and Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mulvaney, R.L.; Khan, S.A.; Ellsworth, T.R. Synthetic nitrogen fertilizers deplete soil nitrogen: A global dilemma for sustainable cereal production. J. Environ. Qual. 2009, 38, 2295–2314. [Google Scholar] [CrossRef] [PubMed]
- Dimkpa, C.O.; Fugice, J.; Singh, U.; Lewis, T.D. Development of fertilizers for enhanced nitrogen use efficiency—Trends and perspectives. Sci. Total Environ. 2020, 731, 139113. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Brym, Z.; Oyola, L.A.M.; Sharma, L.K. Nitrogen fertilization impact on hemp (Cannabis sativa L.) crop production: A review. Agron. J. 2023, 115, 1557–1570. [Google Scholar] [CrossRef]
- Zebarth, B.J.; Drury, C.F.; Tremblay, N.; Cambouris, A.N. Opportunities for improved fertilizer nitrogen management in production of arable crops in eastern Canada: A review. Can. J. Soil Sci. 2009, 89, 113–132. [Google Scholar] [CrossRef]
- Tufail, M.A.; Ayyub, M.; Tariq, L.; Iltaf, J.; Asbat, A.; Bashir, I.; Umar, W. Nitrogen fertilizers and the future of sustainable agriculture: A deep dive into production, pollution, and mitigation measures. Soil Sci. Plant Nutr. 2024, 70, 457–477. [Google Scholar] [CrossRef]
- Wang, Y.L.; Lin, W.F.; Chen, Y. Pollution problems of nitrogen fertilizer application in agriculture and countermeasures. Chin. J. Trop. Agric. 2003, 23, 67–73. [Google Scholar]
- Ladha, J.K.; Pathak, H.; Krupnik, T.J.; Six, J.; van Kessel, C. Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects. Adv. Agron. 2005, 87, 85–156. [Google Scholar]
- Zhang, Y.J.; Ye, C.; Su, Y.W.; Peng, W.C.; Lu, R.; Liu, Y.X.; Huang, H.C.; He, X.H.; Yang, M.; Zhu, S.S. Soil Acidification caused by excessive application of nitrogen fertilizer aggravates soil-borne diseases: Evidence from literature review and field trials. Agric. Ecosyst. Environ. 2022, 340, 108176. [Google Scholar] [CrossRef]
- Golden, B.; Slaton, N.; Norman, R.; Gbur, E.; Wilson, C. Nitrogen release from environmentally smart nitrogen fertilizer as influenced by soil series, temperature, moisture, and incubation method. Commun. Soil Sci. Plant Anal. 2011, 42, 1809–1824. [Google Scholar] [CrossRef]
- Tian, F.F.; Ji, H.F.; Wang, L.Y.; Zheng, X.L.; Xin, J.; Nai, H. Effects of various combinations of fertilizer, soil moisture, and temperature on nitrogen mineralization and soluble organic nitrogen in agricultural soil. Environ. Sci. 2018, 39, 4717–4726. [Google Scholar]
- Yang, W.Z.; Hu, Y.L.; Song, C.N.; Yu, Y.Z.; Jiao, Y. Interactive effects of soil moisture, nitrogen fertilizer, and temperature on the kinetic and thermodynamic properties of ammonia emissions from alkaline soil. Atmos. Pollut. Res. 2023, 14, 101805. [Google Scholar]
- Nash, D.; Hannah, M.; Robertson, F.; Rifkin, P. A bayesian network for comparing dissolved nitrogen exports from high rainfall cropping in southeastern Australia. J. Environ. Qual. 2010, 39, 1699–1710. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.Y.; Ju, X.T.; Wei, Y.P.; Li, B.G.; Zhao, L.L.; Hu, K.L. Simulation of bromide and nitrate leaching under heavy rainfall and high-intensity irrigation rates in North China Plain. Agric. Water Manag. 2010, 97, 1646–1654. [Google Scholar] [CrossRef]
- de Larrard, T.; Poyet, S.; Pierre, M.; Benboudjema, F.; Le Bescop, P.; Colliat, J.B.; Torrenti, J.M. Modelling the influence of temperature on accelerated leaching in ammonium nitrate. Eur. J. Environ. Civ. Eng. 2012, 16, 322–335. [Google Scholar] [CrossRef]
- He, T.H.; Yuan, J.J.; Luo, J.F.; Lindsey, S.; Xiang, J.; Lin, Y.X.; Liu, D.Y.; Chen, Z.M.; Ding, W.X. Combined application of biochar with urease and nitrification inhibitors have synergistic effects on mitigating CH4 emissions in rice field: A three-year study. Sci. Total Environ. 2020, 743, 140500. [Google Scholar] [CrossRef]
- Lan, T.; Huang, Y.X.; Song, X.; Deng, O.P.; Zhou, W.; Luo, L.; Tang, X.Y.; Zeng, J.; Chen, G.D.; Gao, X.S. Biological nitrification inhibitor co-application with urease inhibitor or biochar yield different synergistic interaction effects on NH3 volatilization, N leaching, and N use efficiency in a calcareous soil under rice cropping. Environ. Pollut. 2022, 293, 118499. [Google Scholar] [CrossRef]
- Skowronska, M.; Kusmierz, S.; Walczak, J. Selected carbon and nitrogen compounds in a maize agroecosystem under the use of nitrogen mineral fertilizer, farmyard manure, urease, and nitrification inhibitors. Agriculture 2024, 14, 274. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, Q.M.; Li, J.; Zhang, M.F.; Sun, M.; Liu, Z.X.; Chen, J.L. Effect of biochar application amount on the soil improvement and the growth of flue-cured tobacco. J. Nucl. Agric. Sci. 2016, 30, 1411–1419. [Google Scholar]
- Muñoz, C.; Quilodrán, C.; Navia, R. Evaluation of biochar-plant extracts complexes on soil nitrogen dynamics. J. Biobased Mater. Bioenergy 2014, 8, 377–385. [Google Scholar] [CrossRef]
- Abdo, A.I.; Xu, Y.H.; Shi, D.P.; Li, J.; Li, H.T.; El-Sappah, A.H.; Elrys, A.S.; Alharbi, S.A.; Zhou, C.J.; Wang, L.Q.; et al. Nitrogen transformation genes and ammonia emission from soil under biochar and urease inhibitor application. Soil Tillage Res. 2022, 223, 105491. [Google Scholar] [CrossRef]
- Gao, X.Y.; Yang, J.Q.; Liu, W.Z.; Li, X.Q.; Zhang, W.Z.; Wang, A.J. Effects of alkaline biochar on nitrogen transformation with fertilizer in agricultural soil. Environ. Res. 2023, 233, 116084. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Cobena, A.; Sánchez-Martín, L.; García-Torres, L.; Vallejo, A. Gaseous emissions of N2O and NO and NO3− leaching from urea applied with urease and nitrification inhibitors to a maize (Zea mays) crop. Agric. Ecosyst. Environ. 2012, 149, 64–73. [Google Scholar] [CrossRef]
- Chakraborty, R.; Purakayastha, T.J.; Pendall, E.; Dey, S.; Jain, N.; Kumar, S. Nitrification and urease inhibitors mitigate global warming potential and ammonia volatilization from urea in rice-wheat system in India: A field to lab experiment. Sci. Total Environ. 2023, 898, 165479. [Google Scholar] [CrossRef] [PubMed]
- Atav, V.; Gürbüz, M.A.; Kayali, E.; Yalinkiliç, E. Optimizing nitrogen management in maize (Zea mays L.) using urease and nitrification inhibitors. Commun. Soil Sci. Plant Anal. 2025, 56, 534–547. [Google Scholar] [CrossRef]
- Rosolem, C.A.; Ritz, K.; Cantarella, H.; Galdos, M.V.; Hawkesford, M.J.; Whalley, W.R.; Mooney, S.J. Enhanced plant rooting and crop system management for improved N use efficiency. Adv. Agron. 2017, 146, 205–239. [Google Scholar]
- Liu, F.B.; Ma, X.; Zhang, F.; Liang, T.; Li, L.W.; Wang, J.J.; Chen, X.P.; Wang, X.Z. Impact of nitrification inhibitors on vegetable production yield, nitrogen fertilizer use efficiency and nitrous oxide emission reduction in China: Meta-analysis. Environ. Sci. 2022, 43, 5140–5148. [Google Scholar]
- Tufail, M.A.; Irfan, M.; Umar, W.; Wakeel, A.; Schmitz, R.A. Mediation of gaseous emissions and improving plant productivity by DCD and DMPP nitrification inhibitors: Meta-analysis of last three decades. Environ. Sci. Pollut. Res. 2023, 30, 64719–64735. [Google Scholar] [CrossRef]
- Zaman, M.; Saggar, S.; Blennerhassett, J.D.; Singh, J. Effect of urease and nitrification inhibitors on N transformation, gaseous emissions of ammonia and nitrous oxide, pasture yield and N uptake in grazed pasture system. Soil Biol. Biochem. 2009, 41, 1270–1280. [Google Scholar] [CrossRef]
- Zhou, X.; Wu, L.H.; Dai, F. Inhibition effect of inhibitors on nitrogen transformation affected by interaction of soil temperature and water content. Trans. Chin. Soc. Agric. Eng. 2017, 33, 106–115. [Google Scholar]
- Zhou, X.; Wu, L.H.; Dong, C.H.; Jia, L. Effects of nitrogen fertilization combined with biochemical inhibitors on leaching characteristics of soil nitrogen in yellow clayey soil. Acta Ecol. Sin. 2019, 39, 1804–1814. [Google Scholar] [CrossRef]
- Xin, S.N.; Wang, L.; Lu, Y.L.; Bai, Y.L.; Wang, Y.H.; Jiang, H.; Wang, L.B. Study on the fate of fertilizer nitrogen during summer maize season based on high abundance of 15N under application of urease/nitrification inhibitors. J. Plant Nutr. Fertil. 2024, 30, 1092–1102. [Google Scholar]
- Gong, S.S.; Liu, X.J.; Zhang, Z.Y.; Ma, X.M.; Kong, Y.H. Effect of different nitrogen application measures on soil enzyme activities and nitrogen turnover in winter wheat cropland. Ecol. Environ. Sci. 2020, 29, 2215–2222. [Google Scholar]
- Shi, Y.Q.; Zhu, Y.Y.; Ma, X.Y.; Zhu, S.J.; Zhao, T.L. Effects of a new nitrogen fertilizer synergist N-life II application on soil nitrogen supply and related enzyme activities in cotton fields. Cotton Sci. 2025, 37, 13–24. [Google Scholar]
- Nie, Y.X.; Xu, W.H.; Chen, X.G.; Li, Y.H.; Chi, S.L.; Li, T.; Feng, D.Y.; He, Z.M. Effects of slow-release fertilizer containing urease inhibitor and nitrification inhibitor on nutrients contents and enzymes activities in soil. Chin. Agric. Sci. Bull. 2019, 35, 65–71. [Google Scholar]
- Chen, S.L.; Yang, M.; Ba, C.; Yu, S.S.; Jiang, Y.F.; Zou, H.T.; Zhang, Y.L. Preparation and characterization of slow-release fertilizer encapsulated by biochar-based waterborne copolymers. Sci. Total Environ. 2018, 615, 431–437. [Google Scholar] [CrossRef]
- Sim, D.H.H.; Tan, I.A.W.; Lim, L.L.P.; Hameed, B.H. Encapsulated biochar-based sustained release fertilizer for precision agriculture: A review. J. Clean. Prod. 2021, 303, 127018. [Google Scholar] [CrossRef]
- Wang, C.Q.; Luo, D.; Zhang, X.; Huang, R.; Cao, Y.J.; Liu, G.G.; Zhang, Y.S.; Wang, H. Biochar-based slow-release of fertilizers for sustainable agriculture: A mini review. Environ. Sci. Ecotechnol. 2022, 10, 100167. [Google Scholar] [CrossRef]
- Li, L.; Li, D.P.; Wu, Z.J.; Zhang, L.L.; Zhang, Y.L.; Nie, Y.X. Effect of urease/nitrification inhibitors on transformation of urea-N in albicsoil. Plant Nutr. Fertil. Sci. 2011, 17, 646–650. [Google Scholar]
- Gao, S.; Guo, Y.J.; Zhang, L.J.; Li, B.W.; Liu, Q.; Han, J. Effects of DCD and DMPP on the nitrous oxide emissions and ammonia violation from greenhouse soil under different water contents. J. Hebei Agric. Univ. 2019, 42, 95–101. [Google Scholar]
- Zhu, L.X.; Sun, H.C.; Liu, L.T.; Zhang, K.; Zhang, Y.J.; Li, A.C.; Bai, Z.Y.; Wang, G.Y.; Liu, X.Q.; Dong, H.Z.; et al. Optimizing crop yields while minimizing environmental impact through deep placement of nitrogen fertilizer. J. Integr. Agric. 2025, 24, 36–60. [Google Scholar] [CrossRef]
- Naz, M.Y.; Sulaiman, S.A. Slow release coating remedy for nitrogen loss from conventional urea: A review. J. Control. Release 2016, 225, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Riseh, R.S.; Vazvani, M.G.; Kennedy, J.F. The application of chitosan as a carrier for fertilizer: A review. Int. J. Biol. Macromol. 2023, 252, 126483. [Google Scholar] [CrossRef] [PubMed]
- Duan, Q.F.; Jiang, S.; Chen, F.Y.; Li, Z.X.; Ma, L.T.; Song, Y.; Yu, X.J.; Chen, Y.X.; Liu, H.S.; Yu, L. Fabrication, evaluation methodologies and models of slow-release fertilizers: A review. Ind. Crops Prod. 2023, 192, 116075. [Google Scholar] [CrossRef]
- Prasad, R.; Shivay, Y.S. Fertilizer nitrogen and global warming—A review. Indian J. Agric. Sci. 2019, 89, 33–38. [Google Scholar] [CrossRef]
- Motasim, A.M.; Samsuri, A.W.; Nabayi, A.; Akter, A.; Haque, M.A.; Sukor, A.S.A.; Adibah, A.M. Urea application in soil: Processes, losses, and alternatives—A review. Discov. Agric. 2024, 2, 42. [Google Scholar] [CrossRef]
- Cui, M.; Zeng, L.H.; Qin, W.; Feng, J. Measures for reducing nitrate leaching in orchards: A review. Environ. Pollut. 2020, 263, 114553. [Google Scholar] [CrossRef]
- Alam, S.M.K.; Li, P.Y.; Fida, M. Groundwater nitrate pollution due to excessive use of N-fertilizers in rural areas of bangladesh: Pollution status, health risk, source contribution, and future impacts. Expo. Health 2024, 16, 159–182. [Google Scholar] [CrossRef]
- Francisco, S.S.; Urrutia, O.; Martin, V.; Peristeropoulos, A.; Garcia-Mina, J.M. Efficiency of urease and nitrification inhibitors in reducing ammonia volatilization from diverse nitrogen fertilizers applied to different soil types and wheat straw mulching. J. Sci. Food Agric. 2011, 91, 1569–1575. [Google Scholar] [CrossRef]
- Sunderlage, B.; Cook, R.L. Soil property and fertilizer additive effects on ammonia volatilization from urea. Soil Sci. Soc. Am. J. 2018, 82, 253–259. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Xia, H.; Riaz, M.; Liu, B.; El-Desouki, Z.; Jiang, C.C. Various beneficial microorganisms colonizing on the surface of biochar primarily originated from the storage environment rather than soil environment. Appl. Soil Ecol. 2023, 182, 104700. [Google Scholar] [CrossRef]
- Zhao, J.; Qiu, Y.; Yi, F.; Li, J.; Wang, X.; Fu, Q.; Fu, X.; Yao, Z.; Dai, Z.; Qiu, Y.; et al. Biochar dose-dependent impacts on soil bacterial and fungal diversity across the globe. Sci. Total Environ. 2024, 930, 172509. [Google Scholar] [CrossRef]
- Incrocci, L.; Maggini, R.; Cei, T.; Carmassi, G.; Botrini, L.; Filippi, F.; Clemens, R.; Terrones, C.; Pardossi, A. Innovative Controlled-Release Polyurethane-Coated Urea Could Reduce N Leaching in Tomato Crop in Comparison to Conventional and Stabilized Fertilizers. Agronomy 2020, 10, 1827. [Google Scholar] [CrossRef]
- Skarpa, P.; Mikusová, D.; Antosovsky, J.; Kucera, M.; Ryant, P. Oil-Based Polymer Coatings on CAN Fertilizer in Oilseed Rape (Brassica napus L.) Nutrition. Plant 2021, 10, 1605. [Google Scholar] [CrossRef]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Lin, L.; Tang, Y.; Li, H.; Lv, H.; Huang, B.; Chen, H.; Du, J. Synergistic Biochar–NBPT–DCD Coating Modulates Nitrogen Dynamics, Mitigates Leaching, and Enhances Yield and Quality of Choy Sum in Sustainable Vegetable Production. Sustainability 2026, 18, 383. https://doi.org/10.3390/su18010383
Lin L, Tang Y, Li H, Lv H, Huang B, Chen H, Du J. Synergistic Biochar–NBPT–DCD Coating Modulates Nitrogen Dynamics, Mitigates Leaching, and Enhances Yield and Quality of Choy Sum in Sustainable Vegetable Production. Sustainability. 2026; 18(1):383. https://doi.org/10.3390/su18010383
Chicago/Turabian StyleLin, Lixin, Yang Tang, Huang Li, Haili Lv, Bangyu Huang, Haibin Chen, and Jianjun Du. 2026. "Synergistic Biochar–NBPT–DCD Coating Modulates Nitrogen Dynamics, Mitigates Leaching, and Enhances Yield and Quality of Choy Sum in Sustainable Vegetable Production" Sustainability 18, no. 1: 383. https://doi.org/10.3390/su18010383
APA StyleLin, L., Tang, Y., Li, H., Lv, H., Huang, B., Chen, H., & Du, J. (2026). Synergistic Biochar–NBPT–DCD Coating Modulates Nitrogen Dynamics, Mitigates Leaching, and Enhances Yield and Quality of Choy Sum in Sustainable Vegetable Production. Sustainability, 18(1), 383. https://doi.org/10.3390/su18010383
