Spatiotemporal Patterns and Driving Forces of Ecological Quality in the Yangtze River Economic Belt Using GWRR
Abstract
1. Introduction
- (1)
- to construct a long-term (2000–2024) 1 km RSEI dataset for the YREB to quantify spatiotemporal ecological dynamics;
- (2)
- to apply the GWRR model to robustly identify spatially varying ecological drivers while explicitly addressing multicollinearity;
- (3)
- to generate evidence-based and spatially differentiated ecological governance strategies for the upper, middle, and lower reaches of the YREB.
2. Study Area and Materials
2.1. Study Area
2.2. Data Source
2.3. Method
2.3.1. RSEI Construction
2.3.2. Sen’s Trend Analysis and M-K Test
2.3.3. Hurst Index and Sen’s Trend Coupling
2.3.4. Multicollinearity Diagnostics
2.3.5. GWRR Model
3. Results
3.1. Spatiotemporal Patterns of Ecological Quality
3.2. Evolution Trends and Future Projections of Ecological Quality
3.3. Multicollinearity Diagnostics
3.4. Model Performance Evaluation
3.5. Spatial Heterogeneity and Temporal Evolution of Driving Factors
3.6. Temporal and Spatial Evolution of Dominant Driving Factors
4. Discussion
4.1. Intrinsic Logic of Ecological Quality Evolution in the Yangtze River Economic Belt
4.2. Spatial Heterogeneity of Driving Mechanisms and the Added Value of GWRR
4.3. Policy Implications
4.4. Limitations and Future Outlook
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, L.; Shi, L.; Li, J.; Kong, H.; Hua, D. Analysis of spatiotemporal changes and driving forces of ecological environment quality in Northwest China mining area. Sci. Rep. 2025, 15, 21273. [Google Scholar] [CrossRef]
- Tang, D.; Zhong, H.; Zhang, J.; Dai, Y.; Boamah, V. The effect of green finance on the ecological and environmental quality of the Yangtze River Economic Belt. Int. J. Environ. Res. Public Health 2022, 19, 12492. [Google Scholar] [CrossRef]
- Chang, C.H.; Erbaugh, J.T.; Fajardo, P.; Lu, L.; Molnár, I.; Papp, D.; Robinson, B.E.; Austin, K.; Cook-Patton, S.; Kroeger, T.; et al. A global evidence map of human well-being and biodiversity co-benefits and trade-offs of natural climate solutions. arXiv 2024, arXiv:2405.00079. [Google Scholar] [CrossRef]
- Peng, L.; Wu, H.; Li, Z. Spatial–Temporal Evolutions of Ecological Environment Quality and Ecological Resilience Pattern in the Middle and Lower Reaches of the Yangtze River Economic Belt. Remote Sens. 2023, 15, 430. [Google Scholar] [CrossRef]
- Ji, G.; Liao, Z.; Li, K.; Liu, T.; Feng, Y.; Han, Z. Research on the Spatiotemporal Changes and Driving Forces of Ecological Quality in Inner Mongolia Based on Long-Term Time Series. Sustainability 2025, 17, 6213. [Google Scholar] [CrossRef]
- Zhang, G.; Kuang, H. Urban ecosystem quality assessment based on the improved remote sensing ecological index. PeerJ 2025, 13, e19297. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Dong, C.; Zhao, L.; Chen, J.; Wang, L.; Jiang, R.; Li, H. Spatiotemporal Variation and Influencing Factors of Ecological Quality in the Guangdong-Hong Kong-Macao Greater Bay Area Based on the Unified Remote Sensing Ecological Index over the Past 30 Years. Land 2025, 14, 1117. [Google Scholar] [CrossRef]
- Mondal, J.; Basu, T.; Das, A. Application of a novel remote sensing ecological index (RSEI) based on geographically weighted principal component analysis for assessing the land surface ecological quality. Environ. Sci. Pollut. Res. 2024, 31, 32350–32370. [Google Scholar] [CrossRef]
- Zhen, B.; Dang, G.; Zhu, L. Spatio-temporal changes and driving forces of ecological environment quality in northern China from 2000 to 2022. J. Geogr. Sci. 2025, 35, 763–782. [Google Scholar] [CrossRef]
- Zheng, Z.; Wu, Z.; Chen, Y.; Guo, C.; Marinello, F. Instability of remote sensing based ecological index (RSEI) and its improvement for time series analysis. Sci. Total Environ. 2022, 814, 152595. [Google Scholar] [CrossRef]
- Liu, Y.; Xiang, W.; Hu, P.; Gao, P.; Zhang, A. Evaluation of ecological environment quality using an improved remote sensing ecological index model. Remote Sens. 2024, 16, 3485. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically weighted regression: A method for exploring spatial nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically weighted regression. In The Sage Handbook of Spatial Analysis; Sage Publications: London, UK, 2009; Volume 1, pp. 243–254. [Google Scholar]
- Wheeler, D.; Tiefelsdorf, M. Multicollinearity and correlation among local regression coefficients in geographically weighted regression. J. Geogr. Syst. 2005, 7, 161–187. [Google Scholar] [CrossRef]
- Zhang, W.; Dai, L.; Yan, Y.; Han, X.; Teng, Y.; Li, M.; Zhu, Y.; Zhang, Y. Multiscale geographically weighted regression-based analysis of vegetation driving factors and mining-induced quantification in the Fengfeng District, China. Ecol. Inform. 2024, 80, 102506. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, J.; Wu, W.; Tang, D. Integrating Multi-Model Coupling to Assess Habitat Quality Dynamics: Spatiotemporal Evolution and Scenario-Based Projections in the Yangtze River Basin, China. Sustainability 2025, 17, 4699. [Google Scholar] [CrossRef]
- Kang, W.; Oshan, T.M. Scale and Correlation in Multiscale Geographically Weighted Regression (MGWR). J. Geogr. Syst. 2025, 27, 399–424. [Google Scholar] [CrossRef]
- Herawati, N.; Aulia, N.; Azis, D.; Nisa, K. Comparative study in addressing multicollinearity using locally compensated ridge geographically weighted regression (LCR-GWR) and geographically weighted lasso (GWL). Int. J. Appl. Sci. Eng. Rev. 2024, 5, 36–50. [Google Scholar] [CrossRef]
- Adrian, F.; Yundari, Y.; Aprizkiyandari, S. Geographically Weighted Ridge Regression Modeling At the Open Unemployment Rate in West Kalimantan. J. Difer. 2023, 5, 83–95. [Google Scholar] [CrossRef]
- Pourmohammadi, P.; Strager, M.P.; Dougherty, M.J.; Adjeroh, D.A. Analysis of land development drivers using geographically weighted ridge regression. Remote Sens. 2021, 13, 1307. [Google Scholar] [CrossRef]
- Xu, J.; Jing, Y.; Yan, W. Divergent Responses of Ecological Quality Under Various Periods of Urbanization in the Yangtze River Basin of China. Sustainability 2025, 17, 2756. [Google Scholar] [CrossRef]
- Le, X.; Ding, X.; Zhang, J. Has Green Finance Enhanced the Ecological Resilience Level in the Yangtze River Economic Belt? Sustainability 2024, 16, 2926. [Google Scholar] [CrossRef]
- Xiong, Y.; Xu, W.; Lu, N.; Huang, S.; Wu, C.; Wang, L.; Dai, F.; Kou, W. Assessment of spatial–temporal changes of ecological environment quality based on RSEI and GEE: A case study in Erhai Lake Basin, Yunnan province, China. Ecol. Indic. 2021, 125, 107518. [Google Scholar] [CrossRef]
- Wu, J.; He, S.; Peng, J.; Li, W.; Zhong, X. Intercalibration of DMSP-OLS night-time light data by the invariant region method. Int. J. Remote Sens. 2013, 34, 7356–7368. [Google Scholar] [CrossRef]
- Xu, Y.; Dai, Q.Y.; Lu, Y.G.; Zhao, C.; Huang, W.-T.; Xu, M.; Feng, Y.-X. Identification of ecologically sensitive zones affected by climate change and anthropogenic activities in Southwest China through a NDVI-based spatial-temporal model. Ecol. Indic. 2024, 158, 111482. [Google Scholar] [CrossRef]
- Fu, J.; Wang, W.; Hunter, P.D.; Li, W.; Sun, J. Trends in normalized difference vegetation index time series in differently regulated cascade reservoirs in Wujiang catchment, China. Ecol. Indic. 2023, 146, 109831. [Google Scholar] [CrossRef]
- Zhang, Y.; Yi, L.; Xie, B.; Li, J.; Xiao, J.; Xie, J.; Liu, Z. Analysis of ecological quality changes and influencing factors in Xiangjiang River Basin. Sci. Rep. 2023, 13, 4375. [Google Scholar] [CrossRef]
- Peng, H.; Zhang, X.; Ren, W.; He, J. Spatial pattern and driving factors of cropland ecosystem services in a major grain-producing region: A production-living-ecology perspective. Ecol. Indic. 2023, 155, 111024. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Jia, Y.; Zhang, Q.; Yuan, J.; Yuan, Q. Influence factors of ecological environment in Wanjiang River Basin based on RSEI and CASA models. Front. Ecol. Evol. 2024, 12, 1422712. [Google Scholar] [CrossRef]
- Fu, J.; Liu, J.; Qin, J.; Yang, L.; Zhang, Z.; Deng, Y.; Hu, Y.; Su, B. Monitoring long-term vegetation dynamics over the Yangtze River Basin, China using multi-temporal remote sensing data. Ecosphere 2024, 15, e4809. [Google Scholar] [CrossRef]
- Zhang, R.; Ying, J.; Zhang, R.; Zhang, Y. Urban green and blue infrastructure: Unveiling the spatiotemporal impact on carbon emissions in China’s Yangtze River Delta. Environ. Sci. Pollut. Res. 2024, 31, 18512–18526. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Yu, G.; Cao, Y. The impact of industrial structural transformation in the Yangtze River economic belt on the trade-offs and synergies between urbanization and carbon balance. Ecol. Indic. 2025, 171, 113165. [Google Scholar] [CrossRef]
- Wu, J.; Hou, Y.; Cui, Z. Coupled InVEST–MGWR modeling to analyze the impacts of changing landscape patterns on habitat quality in the Fen River basin. Sci. Rep. 2024, 14, 13084. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Huang, T.; Tang, T.; Huang, D.; Tang, C. Impact of multi-scenario land-use changes on habitat quality evolution in the Yangtze River economic belt. Front. Environ. Sci. 2025, 12, 1516703. [Google Scholar] [CrossRef]













| Z | Change Trend | |
|---|---|---|
| Extremely significantly increased | ||
| Significantly increased | ||
| Slightly significantly increased | ||
| Non-significantly increased | ||
| Z | No change | |
| Non-significantly decreased | ||
| Slightly significantly decreased | ||
| Significantly decreased | ||
| Extremely significantly decreased |
| Sen Slope | Hurst > 0.5 | Hurst ≤ 0.5 |
|---|---|---|
| Sen ≥ 0.005 | Significant Increase | Moderate Increase |
| |Sen| < 0.005 | Undetermined | Undetermined |
| Sen ≤ −0.005 | Significant Decrease | Moderate Decrease |
| Factor | VIF (2000) | 1/VIF (2000) | VIF (2010) | 1/VIF (2010) | VIF (2020) | 1/VIF (2020) |
|---|---|---|---|---|---|---|
| GDP | 5.349 | 0.187 | 6.521 | 0.153 | 8.538 | 0.117 |
| Population | 3.512 | 0.285 | 5.035 | 0.199 | 6.512 | 0.154 |
| Nighttime Light | 5.591 | 0.179 | 6.164 | 0.162 | 8.015 | 0.125 |
| Temperature | 1.583 | 0.632 | 1.511 | 0.662 | 1.552 | 0.644 |
| Precipitation | 1.622 | 0.617 | 1.549 | 0.646 | 1.733 | 0.577 |
| Solar Radiation | 2.188 | 0.457 | 2.305 | 0.434 | 2.217 | 0.451 |
| Built-up Land | 4.824 | 0.207 | 6.088 | 0.164 | 7.593 | 0.132 |
| Forest & Grassland | 10.286 | 0.097 | 11.573 | 0.086 | 10.124 | 0.099 |
| Cropland | 9.314 | 0.107 | 10.029 | 0.099 | 10.582 | 0.095 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Li, K.; Li, X.; Hu, W.; Xu, J. Spatiotemporal Patterns and Driving Forces of Ecological Quality in the Yangtze River Economic Belt Using GWRR. Sustainability 2026, 18, 256. https://doi.org/10.3390/su18010256
Li K, Li X, Hu W, Xu J. Spatiotemporal Patterns and Driving Forces of Ecological Quality in the Yangtze River Economic Belt Using GWRR. Sustainability. 2026; 18(1):256. https://doi.org/10.3390/su18010256
Chicago/Turabian StyleLi, Kang, Xiaopeng Li, Weitong Hu, and Jing Xu. 2026. "Spatiotemporal Patterns and Driving Forces of Ecological Quality in the Yangtze River Economic Belt Using GWRR" Sustainability 18, no. 1: 256. https://doi.org/10.3390/su18010256
APA StyleLi, K., Li, X., Hu, W., & Xu, J. (2026). Spatiotemporal Patterns and Driving Forces of Ecological Quality in the Yangtze River Economic Belt Using GWRR. Sustainability, 18(1), 256. https://doi.org/10.3390/su18010256
