Perception of Ecosystem Services Use Across Vegetation Types and Land Use Zones in Vhembe Biosphere Reserve, South Africa
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Methods
3. Results
3.1. Demographic Characteristics
3.2. Provisioning Ecosystem Services Received from Multiple Land Use Types Within Various Vegetation Types
3.3. Regulatory Ecosystem Services Across Multiple Land Uses and Vegetation Types
3.4. Perceived Support Ecosystem Services Across Multiple Land Uses and Vegetation Types
3.5. Perceived Cultural Ecosystem Services Across Multiple Land Uses and Vegetation Types
3.6. Comparison of Ecosystem Services Across Various Vegetation Types
3.7. Drivers for Household Use of Provisioning Ecosystem Services
4. Discussion
4.1. Socio-Demographic Characteristics and Resource Use
4.2. Provisioning Ecosystem Services (PESs)
4.3. Regulatory Ecosystem Services (RESs)
4.4. Supporting Ecosystem Services (SESs)
4.5. Cultural Ecosystem Services (CESs)
4.6. Drivers of Provisioning Service Use
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| IF | Ironwood forest |
| MW | Mopane woodland |
| CMB | Cathedral mopane bushveld |
| MWD | Mountain woodland dry |
| MWM | Mountain woodland moist |
| RES | Regulatory ecosystem services |
| PES | Provisioning ecosystem services |
| CES | Cultural ecosystem services |
| SES | Supporting ecosystem services |
| VBR | Vhembe Biosphere Reserve |
| BMEL | German Federal Ministry of Food and Agriculture |
References
- Dunkley, R.; Baker, S.; Constant, N.; Sanderson-Bellamy, A. Enabling the IPBES Conceptual Framework to Work across Knowledge Boundaries. Int. Environ. Agreem. 2018, 18, 779–799. [Google Scholar] [CrossRef]
- Mensah, S.; Veldtman, R.; Assogbadjo, A.E.; Ham, C.; Glèlè Kakaï, R.; Seifert, T. Ecosystem Service Importance and Use Vary with Socio-Environmental Factors: A Study from Household-Surveys in Local Communities of South Africa. Ecosyst. Serv. 2017, 23, 1–8. [Google Scholar] [CrossRef]
- Díaz, S.; Demissew, S.; Carabias, J.; Joly, C.; Lonsdale, M.; Ash, N.; Larigauderie, A.; Adhikari, J.R.; Arico, S.; Báldi, A.; et al. The IPBES Conceptual Framework—Connecting Nature and People. Curr. Opin. Environ. Sustain. 2015, 14, 1–16. [Google Scholar] [CrossRef]
- Xu, S.; Wang, K.; Wang, F. Monitoring Changes and Multi-Scenario Simulations of Land Use and Ecosystem Service Values in Coastal Cities: A Case Study of Qingdao, China. Environ. Monit. Assess. 2025, 197, 173. [Google Scholar] [CrossRef]
- Zhou, B.; Chen, G.; Zhao, J.; Yin, Y. Spatiotemporal Simulation of Sustainable Development Based on Ecosystem Services under Climate Change. PLoS ONE 2025, 20, e0316605. [Google Scholar] [CrossRef]
- Senganimalunje, T.C.; Chirwa, P.W.; Babalola, F.D.; Graham, M.A. Does Participatory Forest Management Program Lead to Efficient Forest Resource Use and Improved Rural Livelihoods? Experiences from Mua-Livulezi Forest Reserve, Malawi. Agrofor. Syst. 2016, 90, 691–710. [Google Scholar] [CrossRef]
- Gosling, E.; Reith, E. Capturing Farmers’ Knowledge: Testing the Analytic Hierarchy Process and a Ranking and Scoring Method. Soc. Nat. Resour. 2020, 33, 700–708. [Google Scholar] [CrossRef]
- Díaz, S.; Demissew, S.; Joly, C.; Lonsdale, W.M.; Larigauderie, A. A Rosetta Stone for Nature’s Benefits to People. PLoS Biol. 2015, 13, e1002040. [Google Scholar] [CrossRef] [PubMed]
- Ruckelshaus, M.H.; Jackson, S.T.; Mooney, H.A.; Jacobs, K.L.; Kassam, K.A.S.; Arroyo, M.T.K.; Báldi, A.; Bartuska, A.M.; Boyd, J.; Joppa, L.N.; et al. The IPBES Global Assessment: Pathways to Action. Trends Ecol. Evol. 2020, 35, 407–414. [Google Scholar] [CrossRef]
- Pool-Stanvliet, R.; Stoll-Kleemann, S.; Giliomee, J.H. Criteria for Selection and Evaluation of Biosphere Reserves in Support of the UNESCO MAB Programme in South Africa. Land Use Policy 2018, 76, 654–663. [Google Scholar] [CrossRef]
- Ntshane, B.C.; Gambiza, J. Habitat Assessment for Ecosystem Services in South Africa. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2016, 12, 242–254. [Google Scholar] [CrossRef]
- Mucina, L.; Rutherford, M.C.; Powrie, L.W.; Van Niekerk, A.; Van der Merwe, J.H. Vegetation Field Atlas of Continental South Africa, Lesotho and Swaziland; South African National Biodiversity Institute: Pretoria, South Africa, 2014; ISBN 9781919976976. [Google Scholar]
- Honold, M.A.; Hilmers, T.; Geldenhuys, C.J.; Makhubele, L.; van Tol, J.J.; Ahmed, S.; Buys, A.; Kotze, E.; Tshidzumba, R.P.; Chirwa, P.W.; et al. Drivers of Forest Structure and Biomass along a Climatic Gradient in the Soutpansberg, South Africa. Trees For. People 2025, 21, 100945. [Google Scholar] [CrossRef]
- Mtsetfwa, F.P.; Kruger, L.; McCleery, R.A. Climate Change Decouples Dominant Tree Species in African Savannas. Sci. Rep. 2023, 13, 7619. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Desmet, P.G.; Powrie, L.W. Impact of the Future Changing Climate on the Southern Africa Biomes, and the Importance of Geology. J. Geosci. Environ. Prot. 2017, 5, 1–9. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, C.; Liu, Y.; Feng, T.; Wang, E.; Yang, L.; Niu, Q.; Mao, X. Integrating Forest Ecosystem Services into Health Strategies to Improve Human Well-Being. Forests 2024, 15, 1872. [Google Scholar] [CrossRef]
- Makhubele, L.; Chirwa, P.W.; Sheppard, J.P.; Tshidzumba, R.P.; Araia, M.G.; Kahle, H.P. Conservation of Tree Species Richness in a Traditional Agroforestry Landscape in the Vhembe Biosphere Reserve, South Africa. Forests 2022, 13, 1766. [Google Scholar] [CrossRef]
- Evans, S.W. An Assessment of Land Cover Change as a Source of Information for Conservation Planning in the Vhembe Biosphere Reserve. Appl. Geogr. 2017, 82, 35–47. [Google Scholar] [CrossRef]
- Schoeman, C.S.; Foord, S.H. Buffer Zones Maximize Invertebrate Conservation in a Biosphere Reserve. J. Insect Conserv. 2021, 25, 597–609. [Google Scholar] [CrossRef]
- Jauro, T.I.; Tesfamichael, S.G.; Rampedi, I.T. Tracking Conservation Effectiveness in the Vhembe Biosphere Reserve in South Africa Using Landsat Imagery. Environ. Monit. Assess. 2020, 192, 469. [Google Scholar] [CrossRef]
- Campbell, S.; Greenwood, M.; Prior, S.; Shearer, T.; Walkem, K.; Young, S.; Bywaters, D.; Walker, K. Purposive Sampling: Complex or Simple? Research Case Examples. J. Res. Nurs. 2020, 25, 652–661. [Google Scholar] [CrossRef]
- Mulatu, K.; Hundera, K.; Senbeta, F. Analysis of Land Use/ Land Cover Changes and Landscape Fragmentation in the Baro-Akobo Basin, Southwestern Ethiopia. Heliyon 2024, 10, e28378. [Google Scholar] [CrossRef]
- Metiso, H.; Tsvakirai, C.Z. Factors Affecting Small-Scale Sugarcane Production in Nkomazi Local Municipality in Mpumalanga Province, South Africa. S. Afr. J. Agric. Ext. 2019, 47, 1–8. [Google Scholar] [CrossRef]
- Noor, S.; Tajik, O.; Golzar, J. Simple Random Sampling. Int. J. Educ. Lang. Stud. 2022, 1, 78–82. [Google Scholar]
- Gezahegn, B.; Girma, Z.; Debele, M. Local Community Attitude towards Forest-Based Ecotourism Development in Arbegona and Nensebo Woredas, Southern Ethiopia. Int. J. For. Res. 2024, 2024, 4617793. [Google Scholar] [CrossRef]
- Koo, M.; Yang, S.-W. Questionnaire Use and Development in Health Research. Encyclopedia 2025, 5, 65. [Google Scholar] [CrossRef]
- Arkkelin, D. Using SPSS to Understand Research and Data Analysis; Valparaiso University: Valparaiso, IN, USA, 2014. [Google Scholar]
- MacFarland, T.W.; Yates, J.M. Kruskal–Wallis H-Test for Oneway Analysis of Variance (ANOVA) by Ranks. In Introduction to Nonparametric Statistics for the Biological Sciences Using R; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 177–211. [Google Scholar]
- Ostertagová, E.; Ostertag, O.; Kováč, J. Methodology and Application of the Kruskal-Wallis Test. Appl. Mech. Mater. 2014, 611, 115–120. [Google Scholar] [CrossRef]
- Tee, T.; Edet, D.; Osang, H. Gender Analysis of Non-Timber Forest Products Utilization by Neighborhood Communities of Cross-River National Park. J. Agric. For. Soc. Sci. 2015, 12, 195. [Google Scholar] [CrossRef]
- Zaman, M.; Jabeen, A.; Waheed, M.; Haq, S.M.; Hashem, A.; Almutairi, K.F.; Abd_Allah, E.F.; Bussmann, R.W. Gendered Ethnobotanical Practices and Their Influence on Livelihoods: Non-Timber Forest Product Collection around Ayubia National Park. Trees For. People 2025, 19, 100752. [Google Scholar] [CrossRef]
- FAO. Gender Mainstreaming in Forestry in Africa; FAO: Rome, Italy, 2007. [Google Scholar]
- Sun, H.P.; Sun, W.F.; Geng, Y.; Yang, X.; Edziah, B.K. How Does Natural Resource Dependence Affect Public Education Spending? Environ. Sci. Pollut. Res. 2019, 26, 3666–3674. [Google Scholar] [CrossRef]
- Kalaba, F.K.; Chirwa, P.W.; Prozesky, H. The Contribution of Indigenous Fruit Trees in Sustaining Rural Livelihoods and Conservation of Natural Resources. J. Hortic. For. 2009, 1, 1–6. [Google Scholar]
- Shackleton, C.M. Ecosystem Provisioning Services in Global South Cities. In Cities and Nature; Springer Nature: Berlin/Heidelberg, Germany, 2021; pp. 203–226. [Google Scholar]
- Guerbois, C.; Fritz, H. Patterns and Perceived Sustainability of Provisioning Ecosystem Services on the Edge of a Protected Area in Times of Crisis. Ecosyst. Serv. 2017, 28, 196–206. [Google Scholar] [CrossRef]
- Makhado, R.; Potgieter, M.; Timberlake, J.; Gumbo, D. A Review of the Significance of Mopane Products to Rural People’s Livelihoods in Southern Africa. Trans. R. Soc. S. Afr. 2014, 69, 117–122. [Google Scholar] [CrossRef]
- García, D.; Martínez, D. Species Richness Matters for the Quality of Ecosystem Services: A Test Using Seed Dispersal by Frugivorous Birds. Proc. R. Soc. B Biol. Sci. 2012, 279, 3106–3113. [Google Scholar] [CrossRef] [PubMed]
- Seidl, R.; Albrich, K.; Erb, K.; Formayer, H.; Leidinger, D.; Leitinger, G.; Tappeiner, U.; Tasser, E.; Rammer, W. What Drives the Future Supply of Regulating Ecosystem Services in a Mountain Forest Landscape? For. Ecol. Manag. 2019, 445, 37–47. [Google Scholar] [CrossRef]
- De Carvalho, R.M.; Szlafsztein, C.F. Urban Vegetation Loss and Ecosystem Services: The Influence on Climate Regulation and Noise and Air Pollution. Environ. Pollut. 2019, 245, 844–852. [Google Scholar] [CrossRef]
- de la Barrera, F.; Rubio, P.; Banzhaf, E. The Value of Vegetation Cover for Ecosystem Services in the Suburban Context. Urban. For. Urban. Green. 2016, 16, 110–122. [Google Scholar] [CrossRef]
- Ali, S.; Khan, S.M.; Abdullah, A.; Rana, M.; Ahmad, Z. Dryland Agroforestry: Mitigating Role in Reducing Air Pollution and Climate Change Impacts. In Agroforestry for Carbon and Ecosystem Management; Elsevier: Amsterdam, The Netherlands, 2023; pp. 271–282. ISBN 9780323953931. [Google Scholar]
- IPCC. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Arias, P., Bustamante, M., Elgizouli, I., Flato, G., Howden, M., Méndez-Vallejo, C., Pereira, J.J., et al., Eds.; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Keprate, A.; Bhardwaj, D.R.; Sharma, P.; Verma, K.; Abbas, G.; Sharma, V.; Sharma, K.; Janju, S. Climate Resilient Agroforestry Systems for Sustainable Land Use and Livelihood. In Transforming Agricultural Management for a Sustainable Future: Climate Change and Machine Learning Perspective; Springer Nature: Berlin/Heidelberg, Germany, 2024; pp. 141–161. [Google Scholar]
- Pancholi, R.; Yadav, R.; Gupta, H.; Vasure, N.; Choudhary, S.; Singh, M.N.; Rastogi, M. The Role of Agroforestry Systems in Enhancing Climate Resilience and Sustainability—A Review. Int. J. Environ. Clim. Change 2023, 13, 4342–4353. [Google Scholar] [CrossRef]
- Singh, N.K.; Sachan, K.; Ranjitha, G.; Chandana, S.; Manoj, B.P.; Panotra, N.; Katiyar, D. Building Soil Health and Fertility through Organic Amendments and Practices: A Review. Asian J. Soil Sci. Plant Nutr. 2024, 10, 175–197. [Google Scholar] [CrossRef]
- Fahad, S.; Chavan, S.B.; Chichaghare, A.R.; Uthappa, A.R.; Kumar, M.; Kakade, V.; Pradhan, A.; Jinger, D.; Rawale, G.; Yadav, D.K.; et al. Agroforestry Systems for Soil Health Improvement and Maintenance. Sustainability 2022, 14, 14877. [Google Scholar] [CrossRef]
- Chauhan, S.; Guleria, V.; Prakash, P.; Chauhan, S.; Bhatia, A.K.; Gupta, H.; Kumar, S.; Chauhan, A. Optimizing Tree Spacing and Nutrient Management for Marigold Cultivation under Mangifera indica-Based Agroforestry System in Submontane Low Hill Zone of the North-Western Himalaya. Agrofor. Syst. 2025, 99, 197. [Google Scholar] [CrossRef]
- Daněk, J.; Blättler, L.; Leventon, J.; Vačkářová, D. Beyond Nature Conservation? Perceived Benefits and Role of the Ecosystem Services Framework in Protected Landscape Areas in the Czech Republic. Ecosyst. Serv. 2023, 59, 101504. [Google Scholar] [CrossRef]
- Xie, J.; Luo, S.; Furuya, K.; Wang, H.; Zhang, J.; Wang, Q.; Li, H.; Chen, J. The Restorative Potential of Green Cultural Heritage: Exploring Cultural Ecosystem Services’ Impact on Stress Reduction and Attention Restoration. Forests 2023, 14, 2191. [Google Scholar] [CrossRef]
- Chirwa, P.W.; Araia, M.; Avana-Tientcheu, M.L.; Muledi, J.I.; Syampungani, S.; Akinnifesi, F.K.; Assogbadjo, A.E.; Chia, E.L. Trees in Multifunctional Landscapes: Definition, Classification, Systems, Structure, Functionality, Examples in Africa. In Trees in a Sub-Saharan Multi-functional Landscape: Research, Management, and Policy; Springer Nature: Berlin/Heidelberg, Germany, 2024; pp. 9–40. ISBN 9783031698125. [Google Scholar]
- Wunder, S.; Börner, J.; Shively, G.; Wyman, M. Safety Nets, Gap Filling and Forests: A Global-Comparative Perspective. World Dev. 2014, 64, S29–S42. [Google Scholar] [CrossRef]
- Pandey, A.K.; Tripathi, Y.C.; Kumar, A. Non Timber Forest Products (NTFPs) for Sustained Livelihood: Challenges and Strategies. Res. J. For. 2016, 10, 1–7. [Google Scholar] [CrossRef]
- Awodoyin, R.O.; Olubode, O.S.; Ogbu, J.U.; Balogun, R.B.; Nwawuisi, J.U.; Orji, K.O. Indigenous Fruit Trees of Tropical Africa: Status, Opportunity for Development and Biodiversity Management. Agric. Sci. 2015, 6, 31–41. [Google Scholar] [CrossRef]
- Ribaudo, M.; Greene, C.; Hansen, L.R.; Hellerstein, D. Ecosystem Services from Agriculture: Steps for Expanding Markets. Ecol. Econ. 2010, 69, 2085–2092. [Google Scholar] [CrossRef]
- Garekae, H.; Lepetu, J.; Thakadu, O.T. Forest Resource Utilisation and Rural Livelihoods: Insights from Chobe Enclave, Botswana. S. Afr. Geogr. J. 2020, 102, 22–40. [Google Scholar] [CrossRef]
- Melendres, M.M.; Wal-An, J.M.; Lozano, E.C. Forest Fibers for Traditional and Contemporary Weaving Practices. J. Environ. Clim. Ecol. 2024, 1, 17–26. [Google Scholar] [CrossRef]
- Melaku, A.; Ebrahim, M.A. Critical Review on Wild-Edible Fruit Species in Ethiopia. Int. J. For. Res. 2021, 2021, 8538188. [Google Scholar] [CrossRef]
- Jakhwal, P.; Rawat, K.; Sahu, H.; Srivastava, A.; Mishra, A.P.; Kumar, A.; Sarkar, M.S.; Sharma, S.; Rathnayake, U. Examining Resource Dependency and Socioeconomic Disparities: A Case Study of Sustaining Rural Livelihoods in India. J. Environ. Earth Sci. 2025, 7, 23–45. [Google Scholar] [CrossRef]





| Characteristics | Responses | Vegetation Types | ||||
|---|---|---|---|---|---|---|
| Mountain Woodland Dry (MWD) | Cathedral Mopane Bushveld (CMB) | Mopane Woodland (MW) | Ironwood Forest (IF) | Mountain Woodland Moist (MWM) | ||
| Age | 18–25 | 21.9 | 21.9 | 18.8 | 18.8 | 18.8 |
| 26–35 | 28.8 | 20.0 | 18.8 | 10.0 | 22.5 | |
| 36–60 | 22.9 | 12.3 | 22.3 | 17.3 | 25.1 | |
| 61 and above | 26.2 | 4.7 | 18.7 | 18.7 | 31.8 | |
| Gender | Male | 19.6 | 16.0 | 22.1 | 16.6 | 25.8 |
| Female | 28.3 | 10.1 | 19.0 | 16.9 | 25.7 | |
| Source of Income | No income | 13.4 | 12.4 | 19.6 | 22.7 | 32.0 |
| Employed | 13.6 | 16.9 | 27.1 | 22.0 | 20.3 | |
| Self-employed | 26.2 | 31.0 | 21.4 | 7.1 | 14.3 | |
| Pensioner | 12.9 | 3.2 | 32.3 | 16.1 | 35.5 | |
| Social grant | 36.8 | 8.2 | 15.8 | 14.0 | 25.1 | |
| Educational level | No education | 21.2 | 7.7 | 28.8 | 15.4 | 26.9 |
| Primary | 27.7 | 9.2 | 13.8 | 26.2 | 23.1 | |
| Secondary | 23.8 | 15.0 | 20.4 | 11.7 | 29.1 | |
| Tertiary | 27.3 | 11.7 | 19.5 | 23.4 | 18.2 | |
| Length of stay | <10 years | 20.7 | 13.8 | 51.7 | 3.4 | 10.3 |
| 11–20 years | 24.4 | 22.2 | 24.4 | 13.3 | 15.6 | |
| >20 years | 25.2 | 11.1 | 16.6 | 18.5 | 28.6 | |
| Land Use Types | PESs | Vegetation Types | p-Value | ||||
|---|---|---|---|---|---|---|---|
| Mountain Woodland Dry (MWD) | Cathedral Mopane Bushveld (CMB) | Mopane Woodland (MW) | Ironwood Forest (IF) | Mountain Woodland Moist (MWM) | |||
| State Forest | Wild fruits | 18.0 | 9.7 | 13.4 | 28.1 | 30.9 | 0.000 |
| Wild vegetable | 17.4 | 14.1 | 16.1 | 27.5 | 24.8 | 0.000 | |
| Wild meat and insects | 20.2 | 11.8 | 14.0 | 27.5 | 26.4 | 0.000 | |
| Fuelwood | 19.0 | 8.4 | 18.4 | 34.1 | 20.1 | 0.000 | |
| Thatch grass | 14.2 | 16.8 | 22.1 | 30.1 | 16.8 | 0.000 | |
| Construction timber | 17.1 | 9.4 | 18.2 | 29.4 | 25.9 | 0.001 | |
| Crafting timber | 19.8 | 16.0 | 22.9 | 30.5 | 10.7 | 0.000 | |
| Medicinal plants | 13.4 | 17.4 | 18.8 | 30.2 | 20.1 | 0.000 | |
| Weaving materials | 3.1 | 22.9 | 31.3 | 26.0 | 16.8 | 0.000 | |
| Fodder | 9.2 | 22.1 | 25.2 | 26.0 | 17.6 | 0.000 | |
| Common Resource Use Zones | Wild fruits | 25.7 | 9.3 | 3.7 | 16.4 | 44.9 | 0.000 |
| Wild vegetable | 22.6 | 7.7 | 18.4 | 14.9 | 36.4 | 0.000 | |
| Wild meat and insects | 28.2 | 7.8 | 18.4 | 10.6 | 35.1 | 0.000 | |
| Fuelwood | 28.8 | 10.6 | 15.2 | 8.6 | 36.9 | 0.000 | |
| Thatch grass | 32.0 | 10.2 | 19.3 | 12.2 | 26.4 | 0.005 | |
| Construction timber | 24.8 | 9.8 | 17.9 | 14.1 | 33.3 | 0.000 | |
| Crafting timber | 31.1 | 11.1 | 17.8 | 13.9 | 26.1 | 0.076 | |
| Medicinal plants | 31.0 | 5.9 | 18.7 | 9.6 | 34.8 | 0.000 | |
| Weaving materials | 29.9 | 6.4 | 16.6 | 11.5 | 35.7 | 0.000 | |
| Fodder | 30.9 | 5.3 | 19.7 | 7.9 | 36.2 | 0.000 | |
| Homestead Agroforestry | Wild fruits | 19.5 | 8.7 | 21.0 | 17.4 | 33.3 | 0.002 |
| Wild vegetable | 20.1 | 10.6 | 18.4 | 19.0 | 31.8 | 0.042 | |
| Wild meat and insects | 20.5 | 7.1 | 28.3 | 11.8 | 32.3 | 0.002 | |
| Fuelwood | 20.2 | 11.7 | 10.6 | 12.8 | 44.7 | 0.000 | |
| Thatch grass | 17.6 | 10.3 | 19.1 | 14.7 | 38.2 | 0.125 | |
| Construction timber | 10.7 | 16.0 | 16.0 | 16.0 | 41.3 | 0.000 | |
| Crafting timber | 11.1 | 11.1 | 27.8 | 15.3 | 34.7 | 0.017 | |
| Medicinal plants | 10.7 | 17.3 | 14.7 | 22.7 | 34.7 | 0.004 | |
| Weaving materials | 14.5 | 8.7 | 21.7 | 15.9 | 39.1 | 0.034 | |
| Fodder | 23.1 | 23.1 | 16.7 | 11.5 | 25.6 | 0.027 | |
| Trees in Settlement Areas | Wild fruits | 5.9 | 11.9 | 2.2 | 22.2 | 57.8 | 0.000 |
| Wild vegetable | 2.5 | 8.4 | 21.0 | 15.1 | 52.9 | 0.000 | |
| Wild meat and insects | 5.2 | 6.9 | 17.2 | 12.1 | 58.6 | 0.000 | |
| Fuelwood | 1.1 | 10.1 | 19.1 | 13.5 | 56.2 | 0.000 | |
| Thatch grass | 2.5 | 11.2 | 30.0 | 16.2 | 40.0 | 0.000 | |
| Construction timber | 4.2 | 6.3 | 22.1 | 12.6 | 54.7 | 0.000 | |
| Crafting timber | 1.3 | 10.1 | 29.1 | 16.5 | 43.0 | 0.000 | |
| Medicinal plants | 0.0 | 2.3 | 27.6 | 18.4 | 51.7 | 0.000 | |
| Weaving materials | 6.7 | 9.0 | 31.5 | 14.6 | 38.2 | 0.000 | |
| Fodder | 7.4 | 2.5 | 27.2 | 16.0 | 46.9 | 0.000 | |
| Traditional Protected Areas | Wild fruits | 21.4 | 0.0 | 0.0 | 35.7 | 42.9 | 0.048 |
| Wild vegetable | 8.3 | 4.2 | 45.8 | 25.0 | 16.7 | 0.006 | |
| Wild meat and insects | 16.0 | 16.0 | 24.0 | 8.0 | 36.0 | 0.466 | |
| Fuelwood | 23.8 | 14.3 | 28.6 | 4.8 | 28.6 | 0.593 | |
| Thatch grass | 15.4 | 7.7 | 46.2 | 7.7 | 23.1 | 0.209 | |
| Construction timber | 33.3 | 16.7 | 33.3 | 5.6 | 11.1 | 0.249 | |
| Crafting timber | 17.2 | 10.3 | 34.5 | 24.1 | 13.8 | 0.152 | |
| Medicinal plants | 13.8 | 6.9 | 17.2 | 44.8 | 17.2 | 0.000 | |
| Weaving materials | 0.0 | 2.2 | 73.3 | 15.6 | 8.9 | 0.000 | |
| Fodder | 11.1 | 11.1 | 59.3 | 11.1 | 7.4 | 0.000 | |
| Land Use Types | RESs | Vegetation Types | p-Value | ||||
|---|---|---|---|---|---|---|---|
| Mountain Woodland Dry (MWD) | Cathedral Mopane Bushveld (CMB) | Mopane Woodland (MW) | Ironwood Forest (IF) | Mountain Woodland Moist (MWM) | |||
| State Forest | Water purification | 10.9 | 14.3 | 17.7 | 29.3 | 27.9 | 0.000 |
| Flood control | 9.7 | 16.1 | 21.3 | 26.5 | 26.5 | 0.000 | |
| Clean air | 11.5 | 12.8 | 18.6 | 29.5 | 27.6 | 0.000 | |
| Store carbon | 10.4 | 17.2 | 21.5 | 28.8 | 22.1 | 0.000 | |
| Common Resource Use Zones | Water purification | 26.3 | 3.7 | 21.6 | 20.5 | 27.9 | 0.000 |
| Flood control | 18.8 | 3.8 | 12.5 | 24.4 | 40.6 | 0.000 | |
| Clean air | 22.0 | 2.9 | 11.0 | 22.5 | 41.6 | 0.000 | |
| Store carbon | 20.3 | 1.9 | 15.2 | 25.3 | 37.3 | 0.000 | |
| Homestead Agroforestry | Water purification | 29.7 | 18.0 | 16.2 | 10.8 | 25.2 | 0.045 |
| Flood control | 29.7 | 12.7 | 15.8 | 8.2 | 33.5 | 0.004 | |
| Clean air | 22.8 | 8.7 | 28.2 | 22.4 | 17.8 | 0.000 | |
| Store carbon | 29.2 | 12.5 | 18.1 | 8.3 | 31.9 | 0.000 | |
| Trees in Settlement Areas | Water purification | 10.3 | 4.8 | 21.4 | 31.7 | 31.7 | 0.000 |
| Flood control | 11.3 | 2.3 | 15.8 | 29.3 | 41.4 | 0.000 | |
| Clean air | 10.5 | 3.5 | 16.1 | 28.0 | 42.0 | 0.000 | |
| Store carbon | 29.2 | 12.5 | 18.1 | 8.3 | 31.9 | 0.000 | |
| Traditional Protected Areas | Water purification | 24.1 | 8.6 | 10.3 | 43.1 | 13.8 | 0.000 |
| Flood control | 18.1 | 5.6 | 30.6 | 37.5 | 8.3 | 0.000 | |
| Clean air | 19.8 | 3.7 | 18.5 | 37.0 | 21.0 | 0.000 | |
| Store carbon | 21.7 | 1.4 | 27.5 | 40.6 | 8.7 | 0.000 | |
| Land Use Types | SESs | Vegetation Types | p-Value | ||||
|---|---|---|---|---|---|---|---|
| Mountain Woodland Dry (MWD) | Cathedral Mopane Bushveld (CMB) | Mopane Woodland (MW) | Ironwood Forest (IF) | Mountain Woodland Moist (MWM) | |||
| State Forest | Soil formation | 12.7 | 14.1 | 26.8 | 28.2 | 18.3 | 0.000 |
| Habitat | 12.2 | 15.1 | 20.9 | 26.7 | 25.0 | 0.000 | |
| Common Resource Use Zones | Soil formation | 23.3 | 2.0 | 14.7 | 24.0 | 36.0 | 0.000 |
| Habitat | 22.5 | 4.1 | 14.2 | 20.7 | 38.5 | 0.000 | |
| Homestead Agroforestry | Soil formation | 30.5 | 17.0 | 12.1 | 9.9 | 30.5 | 0.000 |
| Habitat | 26.1 | 12.0 | 26.1 | 7.7 | 28.2 | 0.005 | |
| Trees in Settlement Areas | Soil formation | 10.1 | 2.5 | 18.5 | 31.1 | 37.8 | 0.000 |
| Habitat | 9.9 | 6.3 | 23.4 | 32.4 | 27.9 | 0.000 | |
| Traditional Protected Areas | Soil formation | 22.7 | 10.6 | 18.2 | 40.9 | 7.6 | 0.000 |
| Habitat | 15.4 | 3.1 | 12.3 | 40.0 | 29.2 | 0.000 | |
| Land Use Types | CESs | Vegetation Types | p-Value | ||||
|---|---|---|---|---|---|---|---|
| Mountain Woodland Dry (MWD) | Cathedral Mopane Bushveld (CMB) | Mopane Woodland (MW) | Ironwood Forest (IF) | Mountain Woodland Moist (MWM) | |||
| State Forest | Education | 17.2 | 20.0 | 29.7 | 12.4 | 20.7 | 0.000 |
| Spiritual and religious | 23.0 | 13.5 | 30.4 | 16.2 | 16.9 | 0.001 | |
| Relaxation and Recreation | 6.6 | 24.8 | 40.5 | 4.1 | 24.0 | 0.000 | |
| Tourism | 5.1 | 21.2 | 27.7 | 8.0 | 38.0 | 0.000 | |
| Esthetic | 28.1 | 24.0 | 24.0 | 6.6 | 17.4 | 0.000 | |
| Common Resource Use Zones | Education | 31.7 | 3.8 | 11.5 | 10.6 | 42.3 | 0.000 |
| Spiritual and religious | 36.3 | 3.5 | 15.0 | 8.0 | 37.2 | 0.000 | |
| Relaxation and Recreation | 24.5 | 5.7 | 15.1 | 5.7 | 49.1 | 0.000 | |
| Tourism | 17.9 | 5.3 | 17.9 | 7.4 | 51.6 | 0.000 | |
| Esthetic | 27.8 | 7.8 | 11.1 | 2.2 | 51.1 | 0.000 | |
| Homestead Agroforestry | Education | 11.5 | 11.5 | 36.8 | 10.3 | 29.9 | 0.000 |
| Spiritual and religious | 13.6 | 9.1 | 27.3 | 15.9 | 34.1 | 0.014 | |
| Relaxation and Recreation | 28.7 | 14.9 | 14.9 | 3.2 | 38.3 | 0.000 | |
| Tourism | 21.9 | 11.0 | 27.4 | 2.7 | 37.0 | 0.008 | |
| Esthetic | 20.7 | 10.3 | 10.3 | 3.4 | 55.2 | 0.000 | |
| Trees in Settlement Areas | Education | 2.7 | 8.1 | 32.4 | 12.2 | 44.6 | 0.000 |
| Spiritual and religious | 5.4 | 10.7 | 30.4 | 17.9 | 35.7 | 0.003 | |
| Relaxation and Recreation | 2.9 | 5.9 | 26.5 | 4.4 | 60.3 | 0.000 | |
| Tourism | 4.0 | 8.0 | 34.0 | 8.0 | 46.0 | 0.000 | |
| Esthetic | 20.3 | 10.1 | 14.5 | 1.4 | 53.6 | 0.000 | |
| Traditional Protected Areas | Education | 18.2 | 21.2 | 27.3 | 3.0 | 30.3 | 0.091 |
| Spiritual and religious | 15.7 | 24.7 | 25.8 | 1.1 | 32.6 | 0.000 | |
| Relaxation and Recreation | 2.3 | 13.6 | 68.2 | 2.3 | 13.6 | 0.000 | |
| Tourism | 7.5 | 11.9 | 25.4 | 3.0 | 52.2 | 0.000 | |
| Esthetic | 5.2 | 19.0 | 75.9 | 0.0 | 0.0 | 0.000 | |
| Ecosystem Services | Vegetation Type | Mean Rank | Chi-Square | df | p-Value |
|---|---|---|---|---|---|
| Provisioning ecosystem services | MWD | 130.41 5 | 98.619 | 4 | 0.000 |
| CMB | 154.48 4 | ||||
| MW | 206.00 2 | ||||
| IF | 204.08 3 | ||||
| MWM | 283.55 1 | ||||
| Regulation ecosystem services | MWD | 151.62 5 | 43.771 | 4 | 0.000 |
| CMB | 166.36 4 | ||||
| MW | 197.20 3 | ||||
| IF | 243.64 1 | ||||
| MWM | 238.59 2 | ||||
| Supporting ecosystem services | MWD | 169.56 4 | 20.972 | 4 | 0.000 |
| CMB | 164.33 5 | ||||
| MW | 209.76 3 | ||||
| IF | 225.49 1 | ||||
| MWM | 224.27 2 | ||||
| Cultural ecosystem services | MWD | 160.08 4 | 94.428 | 4 | 0.000 |
| CMB | 228.56 3 | ||||
| MW | 260.38 1 | ||||
| IF | 106.68 5 | ||||
| MWM | 239.67 2 |
| Reason | Mean Rank | Chi-Square | df | p-Value |
|---|---|---|---|---|
| Easy accessibility of forest resources | 5.95 1 | 144.428 | 9 | 0.000 |
| Inability to spend on alternatives, e.g., gas, electricity | 5.78 2 | |||
| Abundance of forest resources | 5.68 3 | |||
| Relatively low cost of forest resources | 5.66 4 | |||
| To survive household temporary shocks during periods of failure, e.g., crop failure, fire outbreaks, theft, and loss of a job | 5.59 5 | |||
| Unemployment | 5.43 6 | |||
| Lack of job opportunities | 5.40 7 | |||
| Increase household consumption | 5.35 8 | |||
| Safety nets (temporary while searching for a job) | 5.23 9 | |||
| To augment household income | 4.93 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Chirwa, P.W.; Tshidzumba, R.P.; Makhubele, L.; Araia, M.G.; Honold, M.A.; Hilmers, T.; Pretzsch, H. Perception of Ecosystem Services Use Across Vegetation Types and Land Use Zones in Vhembe Biosphere Reserve, South Africa. Sustainability 2026, 18, 101. https://doi.org/10.3390/su18010101
Chirwa PW, Tshidzumba RP, Makhubele L, Araia MG, Honold MA, Hilmers T, Pretzsch H. Perception of Ecosystem Services Use Across Vegetation Types and Land Use Zones in Vhembe Biosphere Reserve, South Africa. Sustainability. 2026; 18(1):101. https://doi.org/10.3390/su18010101
Chicago/Turabian StyleChirwa, Paxie Wanangwa, Ratsodo Phillip Tshidzumba, Lucky Makhubele, Mulugheta Ghebreslassie Araia, Martin A. Honold, Torben Hilmers, and Hans Pretzsch. 2026. "Perception of Ecosystem Services Use Across Vegetation Types and Land Use Zones in Vhembe Biosphere Reserve, South Africa" Sustainability 18, no. 1: 101. https://doi.org/10.3390/su18010101
APA StyleChirwa, P. W., Tshidzumba, R. P., Makhubele, L., Araia, M. G., Honold, M. A., Hilmers, T., & Pretzsch, H. (2026). Perception of Ecosystem Services Use Across Vegetation Types and Land Use Zones in Vhembe Biosphere Reserve, South Africa. Sustainability, 18(1), 101. https://doi.org/10.3390/su18010101

