AI vs. ESG? Uncovering a Bidirectional Struggle in China’s Sustainable Finance
Abstract
:1. Introduction
2. Literature Review
- A.
- AI to ESG Investment
- B.
- ESG Investment to AI
3. Methodology
3.1. Full-Sample Technique
3.2. Stability Test of Parameters
3.3. Subsample Technique
3.4. Interpretation Principles of the Empirical Results
4. Data
Variables | Definition | Source | Reference |
---|---|---|---|
AI | Wind Artificial Intelligence Concept Index (Code: 884201.WI) | Wind database https://www.wind.com.cn | Qin et al. (2024) [50] Chen et al. (2024) [51] |
ESGI | ESG300 Index (Code: 399378.SZ) | The Shenzhen Stock Exchange’s CNI INDEX http://www.cnindex.com.cn/ | Dai (2022) [54] Wu et al. (2022) [55] |
5. Quantitative Analyses and Discussions
5.1. Data Test
5.2. Rolling-Window Estimation
5.2.1. The Influence of AI to ESGI
5.2.2. The Influence of ESGI to AI
6. Conclusions and Implications
7. Research Gaps and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, B.; Ioannou, I.; Serafeim, G. Corporate social responsibility and access to finance. Strateg. Manag. J. 2014, 35, 1–23. [Google Scholar] [CrossRef]
- Amel-Zadeh, A.; Serafeim, G. Why and how investors use ESG information: Evidence from a global survey. Financ. Anal. J. 2018, 74, 87–103. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Hughes, L.; Ismagilova, E.; Aarts, G.; Coombs, C.; Crick, T.; Duan, Y.; Dwivedi, R.; Edwards, J.; Eirug, A.; et al. Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int. J. Inf. Manag. 2021, 57, 101994. [Google Scholar] [CrossRef]
- Buchanan, B.; Cao, C.X.; Chen, C. Corporate social responsibility, firm value, and influential institutional ownership. J. Corp. Financ. 2018, 52, 73–95. [Google Scholar] [CrossRef]
- Ionescu, G.H.; Firoiu, D.; Pirvu, R.; Vilag, R.D. The impact of ESG factors on market value of companies from travel and tourism industry. Technol. Econ. Dev. Econ. 2019, 25, 820–849. [Google Scholar] [CrossRef]
- Cassely, L.; Ben Larbi, S.; Revelli, C.; Lacroux, A. Corporate social performance (CSP) in time of economic crisis. Sustain. Account. Manag. Policy J. 2021, 12, 913–942. [Google Scholar] [CrossRef]
- Burnaev, E.; Mironov, E.; Shpilman, A.; Mironenko, M.; Katalevsky, D. Practical AI cases for solving ESG challenges. Sustainability 2023, 15, 12731. [Google Scholar] [CrossRef]
- Stanford Institute for Human-Centered Artificial Intelligence. Artificial Intelligence Index Report. 2024. Available online: https://aiindex.stanford.edu/report/ (accessed on 5 November 2024).
- Hasan, Z.; Vaz, D.; Athota, V.S.; Désiré, S.S.M.; Pereira, V. Can artificial intelligence (AI) manage behavioural biases among financial planners? J. Glob. Inf. Manag. 2022, 31, 1–18. [Google Scholar] [CrossRef]
- Disclai Boschetti, F.; Price, J.; Walker, I. Myths of the future and scenario archetypes. Technol. Forecast. Soc. Change 2016, 111, 76–85. [Google Scholar] [CrossRef]
- Hammett, D. Introduction: Technology and development: Optimism, pessimism or potential? Int. Dev. Plan. Rev. 2018, 40, 227–237. [Google Scholar] [CrossRef]
- Gonella, F.; Almeida, C.M.V.B.; Fiorentino, G.; Handayani, K.; Spanò, F.; Testoni, R.; Zucaro, A. Is technology optimism justified? A discussion towards a comprehensive narrative. J. Clean. Prod. 2019, 223, 456–465. [Google Scholar] [CrossRef]
- Makridis, C.A.; Mishra, S. Artificial intelligence as a service, economic growth, and well-being. J. Serv. Res. 2022, 25, 505–520. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, T.; Li, R. Does Artificial Intelligence (AI) enhance green economy efficiency? The role of green finance, trade openness, and R&D investment. Humanit. Soc. Sci. Commun. 2025, 12, 12. [Google Scholar] [CrossRef]
- Yao, X.; Li, X.; Mangla, S.K.; Song, M. Roles of AI: Financing selection for regretful SMEs in e-commerce supply chains. Transp. Res. Part E Logist. Transp. Rev. 2024, 189, 103649. [Google Scholar] [CrossRef]
- Chen, Z.; Sugiyama, K.; Tasaka, K.; Kito, T.; Yasuda, Y. Impact of environmental, social and governance initiatives on firm value: Analysis using AI-based ESG scores for Japanese listed firms. Res. Int. Bus. Financ. 2024, 70, 102303. [Google Scholar] [CrossRef]
- Li, T.T.; Wang, K.; Sueyoshi, T.; Wang, D.D. ESG: Research progress and future prospects. Sustainability 2021, 13, 11663. [Google Scholar] [CrossRef]
- Sandberg, J. Socially responsible investment and fiduciary duty: Putting the Freshfields report into perspective. J. Bus. Ethics 2011, 101, 143–162. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, S. Research progress and prospect of environmental, social, and governance: A systematic literature review and bibliometric analysis. J. Clean. Prod. 2024, 447, 141489. [Google Scholar] [CrossRef]
- Keddie, S.L.; Magnan, M. Are ESG performance-based incentives a panacea or a smokescreen for excess compensation? Sustain. Account. Manag. Policy J. 2023, 14, 591–634. [Google Scholar] [CrossRef]
- Bulchand-Gidumal, J.; William Secin, E.; O’Connor, P.; Buhalis, D. Artificial intelligence’s impact on hospitality and tourism marketing: Exploring key themes and addressing challenges. Curr. Issues Tour. 2024, 27, 2345–2362. [Google Scholar] [CrossRef]
- Khoruzhy, L.I.; Semenov, A.V.; Averin, A.V.; Mustafin, T.A. ESG investing in the AI era: Features of developed and developing countries. Front. Environ. Sci. 2022, 10, 951646. [Google Scholar] [CrossRef]
- Saxena, A.; Santhanavijayan, A.; Shakya, H.K.; Kumar, G.; Balusamy, B.; Benedetto, F. Nested sentiment analysis for ESG impact: Leveraging FinBERT to predict market dynamics based on eco-friendly and non-eco-friendly product perceptions with explainable AI. Mathematics 2024, 12, 3332. [Google Scholar] [CrossRef]
- Viriato, J.C. AI and machine learning in real estate investment. J. Portf. Manag. 2019, 45, 43–54. [Google Scholar] [CrossRef]
- Aydoğmuş, M.; Gülay, G.; Ergun, K. Impact of ESG performance on firm value and profitability. Borsa Istanb. Rev. 2022, 22, 119–127. [Google Scholar] [CrossRef]
- Koo, J. AI is not careful: Approach to the stock market and preference for AI advisor. Int. J. Bank Mark. 2024, 42, 2117–2142. [Google Scholar] [CrossRef]
- Lim, T. Environmental, social, and governance (ESG) and artificial intelligence in finance: State-of-the-art and research takeaways. Artif. Intell. Rev. 2024, 57, 76. [Google Scholar] [CrossRef]
- Hughes, A.; Urban, M.A.; Wójcik, D. Alternative ESG ratings: How technological innovation is reshaping sustainable investment. Sustainability 2021, 13, 3551. [Google Scholar] [CrossRef]
- Hao, P.; Alharbi, S.S.; Hunjra, A.I.; Zhao, S. How do ESG ratings promote digital technology innovation? Int. Rev. Financ. Anal. 2025, 97, 103886. [Google Scholar] [CrossRef]
- Ren, H. ESG Rating Disagreement and Corporate Digital Transformation. Financ. Res. Lett. 2025, 75, 106903. [Google Scholar] [CrossRef]
- Chen, J.; Meng, W.; Chen, Y.; Zhou, W. To be an eco-and tech-friendly society: Impact research of green finance on AI innovation. J. Clean. Prod. 2024, 466, 142900. [Google Scholar] [CrossRef]
- Zeng, M.; Zhang, W. Green finance: The catalyst for artificial intelligence and energy efficiency in Chinese urban sustainable development. Energy Econ. 2024, 139, 107883. [Google Scholar] [CrossRef]
- Omri, A.; Hamza, F.; Slimani, S. The Role of Green Finance in Driving Artificial Intelligence and Renewable Energy for Sustainable Development. Sustain. Dev. 2025. online ahead of print. [Google Scholar] [CrossRef]
- Veale, M.; Matus, K.; Gorwa, R. AI and global governance: Modalities, rationales, tensions. Annu. Rev. Law Soc. Sci. 2023, 19, 255–275. [Google Scholar] [CrossRef]
- Senyapar, H.N.D.; Bayindir, R. The Energy Hunger Paradox of Artificial Intelligence: End of Clean Energy or Magic Wand for Sustainability? Sustainability 2025, 17, 2887. [Google Scholar] [CrossRef]
- Leuthe, D.; Meyer-Hollatz, T.; Plank, T.; Senkmüller, A. Towards sustainability of AI–identifying design patterns for sustainable machine Learning Development. Inf. Syst. Front. 2024, 26, 2103–2145. [Google Scholar] [CrossRef]
- Sætra, H.S. A framework for evaluating and disclosing the ESG related impacts of AI with the SDGs. Sustainability 2021, 13, 8503. [Google Scholar] [CrossRef]
- Diks, C.; Panchenko, V. A new statistic and practical guidelines for nonparametric Granger causality testing. J. Econ. Dyn. Control 2006, 30, 1647–1669. [Google Scholar] [CrossRef]
- Shukur, G.; Mantalos, P. Size and power of the RESET test as applied to systems of equations: A bootstrap approach. J. Mod. Appl. Stat. Methods 2004, 3, 370–385. [Google Scholar] [CrossRef]
- Shukur, G.; Mantalos, P. A simple investigation of the Granger-causality test in integrated-cointegrated VAR systems. J. Appl. Stat. 2000, 27, 1021–1031. [Google Scholar] [CrossRef]
- Su, C.W.; Qin, M.; Tao, R.; Shao, X.F.; Albu, L.L.; Umar, M. Can Bitcoin hedge the risks of geopolitical events? Technol. Forecast. Soc. Change 2020, 159, 120182. [Google Scholar] [CrossRef]
- Andrews, D.W. Tests for parameter instability and structural change with unknown change point. Econometrica 1993, 71, 821–856. [Google Scholar] [CrossRef]
- Nyblom, J. Testing for the constancy of parameters over time. J. Am. Stat. Assoc. 1989, 84, 223–230. [Google Scholar] [CrossRef]
- Balcilar, M.; Ozdemir, Z.A.; Arslanturk, Y. Economic growth and energy consumption causal nexus viewed through a bootstrap rolling window. Energy Econ. 2010, 32, 1398–1410. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Timmermann, A. Small sample properties of forecasts from autoregressive models under structural breaks. J. Econom. 2005, 129, 183–217. [Google Scholar] [CrossRef]
- Zhao, Q.; Su, C.W.; Guo, J.M. Does technological innovation promote renewable energy investment? SAGE Open 2024, 14, 21582440241227760. [Google Scholar] [CrossRef]
- Su, C.W.; Khan, K.; Umar, M.; Zhang, W. Does renewable energy redefine geopolitical risks? Energy Policy 2021, 158, 112566. [Google Scholar] [CrossRef]
- Modares, H.; Lewis, F.L.; Naghibi-Sistani, M.B. Integral reinforcement learning and experience replay for adaptive optimal control of partially-unknown constrained-input continuous-time systems. Automatica 2014, 50, 193–202. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, Y. Study on artificial intelligence: The state of the art and future prospects. J. Ind. Inf. Integr. 2021, 23, 100224. [Google Scholar] [CrossRef]
- Qin, M.; Chang, H.L.; Su, C.W.; Răcătăian, R.I.; Crăciun, A.F. Substitution or creation? Identifying the role of artificial intelligence in employment. Technol. Econ. Dev. Econ. 2024, 1–22. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, R.; Lyu, J.; Hou, Y. AI and Nuclear: A perfect intersection of danger and potential? Energy Econ. 2024, 133, 107506. [Google Scholar] [CrossRef]
- Majoch, A.A.; Hoepner, A.G.; Hebb, T. Sources of stakeholder salience in the responsible investment movement: Why do investors sign the principles for responsible investment? J. Bus. Ethics 2017, 140, 723–741. [Google Scholar] [CrossRef]
- Christensen, H.B.; Hail, L.; Leuz, C. Mandatory CSR and sustainability reporting: Economic analysis and literature review. Rev. Account. Stud. 2021, 26, 1176–1248. [Google Scholar] [CrossRef]
- Dai, Y. Is ESG investing an ‘equity vaccine’ in times of crisis? Evidence from the 2020 Wuhan Lockdown and the 2022 Shanghai Lockdown. Borsa Istanb. Rev. 2022, 22, 992–1004. [Google Scholar] [CrossRef]
- Wu, C.; Xiong, X.; Gao, Y. Does ESG certification improve price efficiency in the Chinese stock market? Asia-Pac. Financ. Mark. 2022, 29, 97–122. [Google Scholar] [CrossRef]
- Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489. [Google Scholar] [CrossRef]
- Hák, T.; Janoušková, S.; Moldan, B. Sustainable Development Goals: A need for relevant indicators. Ecol. Indic. 2016, 60, 565–573. [Google Scholar] [CrossRef]
- Devlin, J. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Liang, H.; Renneboog, L. The global sustainability footprint of sovereign wealth funds. Oxf. Rev. Econ. Policy 2020, 36, 380–426. [Google Scholar] [CrossRef]
- Brogi, M.; Lagasio, V. Environmental, social, and governance and company profitability: Are financial intermediaries different? Corp. Soc. Responsib. Environ. Manag. 2019, 26, 576–587. [Google Scholar] [CrossRef]
- Jin, C.; Chen, W.; Cao, Y.; Xu, Z.; Tan, Z.; Zhang, X.; Deng, L.; Zheng, C.; Zhou, J.; Shi, H.; et al. Development and evaluation of an artificial intelligence system for COVID-19 diagnosis. Nat. Commun. 2020, 11, 5088. [Google Scholar] [CrossRef]
- Nguyen-Mau, T.; Le, A.C.; Pham, D.H.; Huynh, V.N. An information fusion-based approach to context-based fine-tuning of GPT models. Inf. Fusion 2024, 104, 102202. [Google Scholar] [CrossRef]
- Sivák, R.; Hocman, F.; Horvátová, E.; Dziura, B. Credit cycle fluctuations measurement in the context of pandemic shock. J. Compet. 2024, 16, 117. Available online: https://www.cjournal.cz/index.php?hid=clanek&cid=533 (accessed on 5 November 2024).
- Andrews, D.W.; Ploberger, W. Optimal tests when a nuisance parameter is present only under the alternative. Econom. J. Econom. Soc. 1994, 62, 1383–1414. [Google Scholar] [CrossRef]
- Hansen, B.E. Testing for parameter instability in linear models. J. Policy Model. 1992, 14, 517–533. [Google Scholar] [CrossRef]
- Sprinz, D.F.; Sælen, H.; Underdal, A.; Hovi, J. The effectiveness of climate clubs under Donald Trump. Clim. Policy 2018, 18, 828–838. [Google Scholar] [CrossRef]
- Diaz-Rainey, I.; Gehricke, S.A.; Roberts, H.; Zhang, R. Trump vs. Paris: The impact of climate policy on US listed oil and gas firm returns and volatility. Int. Rev. Financ. Anal. 2021, 76, 101746. [Google Scholar] [CrossRef]
- Liu, L.; Shong, Y. Study on innovation performance of big data and artificial intelligence listed companies. In Proceedings of the International Symposium on Big Data and Artificial Intelligence, Hong Kong, 29–30 December 2018; pp. 57–62. [Google Scholar] [CrossRef]
- Yu, Z.; Farooq, U.; Alam, M.M.; Dai, J. How does environmental, social, and governance (ESG) performance determine investment mix? New empirical evidence from BRICS. Borsa Istanb. Rev. 2024, 24, 520–529. [Google Scholar] [CrossRef]
- Yang, Y.H.; Gao, P.; Zhou, H. Understanding the evolution of China’s standardization policy system. Telecommun. Policy 2023, 47, 102478. [Google Scholar] [CrossRef]
- Vinuesa, R.; Azizpour, H.; Leite, I.; Balaam, M.; Dignum, V.; Domisch, S.; Felländer, A.; Langhans, S.D.; Tegmark, M.; Nerini, F.F. The role of artificial intelligence in achieving the Sustainable Development Goals. Nat. Commun. 2020, 11, 233. [Google Scholar] [CrossRef]
- Zhang, W.; Zeng, M. Is artificial intelligence a curse or a blessing for enterprise energy intensity? Evidence from China. Energy Econ. 2024, 134, 107561. [Google Scholar] [CrossRef]
- Nicola, M.; Alsafi, Z.; Sohrabi, C.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, M.; Agha, R. The socio-economic implications of the coronavirus pandemic (COVID-19): A review. Int. J. Surg. 2020, 78, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Kim, D.J.; Lang, K.R.; Kauffman, R.J.; Naldi, M. How should we understand the digital economy in Asia? Critical assessment and research agenda. Electron. Commer. Res. Appl. 2020, 44, 101004. [Google Scholar] [CrossRef] [PubMed]
- Omura, A.; Roca, E.; Nakai, M. Does responsible investing pay during economic downturns: Evidence from the COVID-19 pandemic. Financ. Res. Lett. 2021, 42, 101914. [Google Scholar] [CrossRef]
- Singh, P.K.; Nandi, S.; Ghafoor, K.Z.; Ghosh, U.; Rawat, D.B. Preventing COVID-19 spread using information and communication technology. IEEE Consum. Electron. Mag. 2020, 10, 18–27. [Google Scholar] [CrossRef]
- Liu, Q.; Ren, J. Local fiscal pressure and enterprise environmental protection investment under COVID-19: Evidence from China. Sustainability 2023, 15, 5456. [Google Scholar] [CrossRef]
- Bang, G. The United States: Conditions for accelerating decarbonisation in a politically divided country. Int. Environ. Agreem. Politics Law Econ. 2021, 21, 43–58. [Google Scholar] [CrossRef]
- Wang, D.; Mei, J. An advanced review of climate change mitigation policies in the United States. Resour. Conserv. Recycl. 2024, 208, 107718. [Google Scholar] [CrossRef]
- Peng, H.; Liu, Y. How government subsidies promote the growth of entrepreneurial companies in the clean energy industry: An empirical study in China. J. Clean. Prod. 2018, 188, 508–520. [Google Scholar] [CrossRef]
- Zhao, K.; Wu, C.; Liu, J. Can artificial intelligence effectively improve China’s environmental quality? A study based on the perspective of energy conservation, carbon reduction, and emission reduction. Sustainability 2024, 16, 7574. [Google Scholar] [CrossRef]
- Tambo, E.; Duo-Quan, W.; Zhou, X.N. Tackling air pollution and extreme climate changes in China: Implementing the Paris climate change agreement. Environ. Int. 2016, 95, 152–156. [Google Scholar] [CrossRef]
- McCollum, D.L.; Zhou, W.; Bertram, C.; de Boer, H.-S.; Bosetti, V.; Busch, S.; Després, J.; Drouet, L.; Emmerling, J.; Fay, M.; et al. Energy investment needs for fulfilling the Paris Agreement and achieving the Sustainable Development Goals. Nat. Energy 2018, 3, 589–599. [Google Scholar] [CrossRef]
- Wu, F.; Lu, C.; Zhu, M.; Chen, H.; Zhu, J.; Yu, K.; Li, L.; Li, M.; Chen, Q.; Li, X.; et al. Towards a new generation of artificial intelligence in China. Nat. Mach. Intell. 2020, 2, 312–316. [Google Scholar] [CrossRef]
- Di Vaio, A.; Palladino, R.; Hassan, R.; Escobar, O. Artificial intelligence and business models in the sustainable development goals perspective: A systematic literature review. J. Bus. Res. 2020, 121, 283–314. [Google Scholar] [CrossRef]
- Wamba-Taguimdje, S.L.; Wamba, S.F.; Kamdjoug, J.R.K.; Wanko, C.E.T. Influence of artificial intelligence (AI) on firm performance: The business value of AI-based transformation projects. Bus. Process Manag. J. 2020, 26, 1893–1924. [Google Scholar] [CrossRef]
- Huynh, T.L.D.; Hille, E.; Nasir, M.A. Diversification in the age of the 4th industrial revolution: The role of artificial intelligence, green bonds and cryptocurrencies. Technol. Forecast. Soc. Change 2020, 159, 120188. [Google Scholar] [CrossRef]
- Kwan, C.H. The China–US trade war: Deep-rooted causes, shifting focus and uncertain prospects. Asian Econ. Policy Rev. 2020, 15, 55–72. [Google Scholar] [CrossRef]
- Zhao, X. Technological hedging and differentiated responses of Southeast Asian countries to US–China technological competition: A case study on artificial intelligence (AI). Pac. Rev. 2024, 38, 502–533. [Google Scholar] [CrossRef]
- Aho, B.; Duffield, R. Beyond surveillance capitalism: Privacy, regulation and big data in Europe and China. Econ. Soc. 2020, 49, 187–212. [Google Scholar] [CrossRef]
- Jiang, X.; Li, G.; Fu, W. Government environmental governance, structural adjustment and air quality: A quasi-natural experiment based on the Three-year Action Plan to Win the Blue Sky Defense War. J. Environ. Manag. 2021, 277, 111470. [Google Scholar] [CrossRef]
- Yang, X.; Lin, H.; Yang, X.; Cai, Z.; Jiang, P. Analyzing synergies and efficiency of reducing CO2 and air pollutants in the case of China’s three-year action plan to fight air pollution. Environ. Res. Lett. 2023, 18, 114028. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, N.; Zhao, X. Understanding the determinants in the different government AI adoption stages: Evidence of local government chatbots in China. Soc. Sci. Comput. Rev. 2022, 40, 534–554. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, F. What does China’s economic recovery after COVID-19 pandemic mean for the economic growth and energy consumption of other countries? J. Clean. Prod. 2021, 295, 126265. [Google Scholar] [CrossRef] [PubMed]
- Singh, A. COVID-19 and safer investment bets. Financ. Res. Lett. 2020, 36, 101729. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Mehran, M.T.; Haq, Z.U.; Ullah, Z.; Naqvi, S.R.; Ihsan, M.; Abbass, H. Applications of artificial intelligence in COVID-19 pandemic: A comprehensive review. Expert Syst. Appl. 2021, 185, 115695. [Google Scholar] [CrossRef]
- Chen, L.; Li, K.; Chen, S.; Wang, X.; Tang, L. Industrial activity, energy structure, and environmental pollution in China. Energy Econ. 2021, 104, 105633. [Google Scholar] [CrossRef]
- Manes-Rossi, F.; Nicolo’, G. Exploring sustainable development goals reporting practices: From symbolic to substantive approaches—Evidence from the energy sector. Corp. Soc. Responsib. Environ. Manag. 2022, 29, 1799–1815. [Google Scholar] [CrossRef]
- Fu, T.; Li, Z.; Qiu, Z.; Tong, X. The policy gap between finance and economy: Evidence from China’s green finance policy. Energy Econ. 2024, 134, 107550. [Google Scholar] [CrossRef]
- Li, Z.; He, L.; Zhong, Z.; Xia, Y. Financial–industrial integration, green technology innovation, and enterprise’s green development performance: An empirical analysis of 625 listed industrial enterprises of China. Environ. Dev. Sustain. 2024, 26, 4029–4054. [Google Scholar] [CrossRef]
- Cai, C.; Geng, Y.; Yang, F. Senior executive characteristics: Impact on ESG practices and corporate valuation relationship. PLoS ONE 2024, 19, e0303081. [Google Scholar] [CrossRef]
- Dahlke, J.; Beck, M.; Kinne, J.; Lenz, D.; Dehghan, R.; Wörter, M.; Ebersberger, B. Epidemic effects in the diffusion of emerging digital technologies: Evidence from artificial intelligence adoption. Res. Policy 2024, 53, 104917. [Google Scholar] [CrossRef]
- Anh, D.L.T.; Quang, N.T.T.; Anh, N.T. Investment decision and efficiency: Global insights on manufacturing firms amidst energy uncertainties. Energy Econ. 2024, 137, 107793. [Google Scholar] [CrossRef]
- Zhu, Y.; Hu, Y.; Zhu, Y. Can China’s energy policies achieve the “dual carbon” goal? A multi-dimensional analysis based on policy text tools. Environ. Dev. Sustain. 2024, 1–40. [Google Scholar] [CrossRef]
- Usman, M.; Khan, N.; Omri, A. Environmental policy stringency, ICT, and technological innovation for achieving sustainable development: Assessing the importance of governance and infrastructure. J. Environ. Manag. 2024, 365, 121581. [Google Scholar] [CrossRef] [PubMed]
- Jiao, A.; Lu, J.; Ren, H.; Wei, J. The role of AI capabilities in environmental management: Evidence from USA firms. Energy Econ. 2024, 134, 107653. [Google Scholar] [CrossRef]
- Qu, X.; Xu, Z.; Yu, J.; Zhu, J. Understanding local government debt in China: A regional competition perspective. Reg. Sci. Urban Econ. 2023, 98, 103859. [Google Scholar] [CrossRef]
- Sætra, H.S. The AI ESG protocol: Evaluating and disclosing the environment, social, and governance implications of artificial intelligence capabilities, assets, and activities. Sustain. Dev. 2023, 31, 1027–1037. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Shen, Y. Technology-driven carbon reduction: Analyzing the impact of digital technology on China’s carbon emission and its mechanism. Technol. Forecast. Soc. Change 2024, 200, 123124. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, Y.; Li, X. Artificial intelligence, green technological progress, energy conservation, and carbon emission reduction in China: An examination based on dynamic spatial Durbin modeling. J. Clean. Prod. 2024, 446, 141142. [Google Scholar] [CrossRef]
- Li, C.; Tang, W.; Liang, F.; Wang, Z. The impact of climate change on corporate ESG performance: The role of resource misallocation in enterprises. J. Clean. Prod. 2024, 445, 141263. [Google Scholar] [CrossRef]
- Bolón-Canedo, V.; Morán-Fernández, L.; Cancela, B.; Alonso-Betanzos, A. A review of green artificial intelligence: Towards a more sustainable future. Neurocomputing 2024, 599, 128096. [Google Scholar] [CrossRef]
- Lin, J.; Zeng, Y.; Wu, S.; Luo, X.R. How does artificial intelligence affect the environmental performance of organizations? The role of green innovation and green culture. Inf. Manag. 2024, 61, 103924. [Google Scholar] [CrossRef]
AI | ESGI | |
---|---|---|
Observations | 141 | 141 |
Mean | 5020.445 | 2154.663 |
Median | 5420.312 | 2248.782 |
Maximum | 8244.060 | 3425.190 |
Minimum | 1048.480 | 1031.500 |
Standard Deviation | 1672.712 | 578.759 |
Skewness | −0.881 | −0.294 |
Kurtosis | 3.168 | 2.595 |
Jarque–Bera | 18.405 *** | 2.998 |
Probability | 0.000 | 0.223 |
Variables | ADF | PP | KPSS |
---|---|---|---|
AI | −9.787 (0) *** | −9.674 (8) *** | 0.461 (6) |
NUC | −9.188 (0) *** | −9.213 (2) *** | 0.282 (1) |
H0: AI Is Not the Granger Cause of ESG | H0: ESG Is Not the Granger Cause of AI | ||
---|---|---|---|
Statistic | p-Value | Statistic | p-Value |
5.2768 | 0.321 | 14.160 | 0.016 ** |
Tests | AI | ESGI | VAR (s) Process | |||
---|---|---|---|---|---|---|
Statistics | p-Values | Statistics | p-Values | Statistics | p-Values | |
Sup-F | 51.589 *** | 0.000 | 30.090 *** | 0.003 | 49.562 *** | 0.000 |
Ave-F | 15.366 *** | 0.006 | 13.456 ** | 0.018 | 15.147 | 0.331 |
Exp-F | 21.822 *** | 0.000 | 10.824 *** | 0.004 | 20.288 *** | 0.000 |
Lc | 3.493 ** | 0.035 |
Sup-F | Mean-F | Exp-F | Lc | |
---|---|---|---|---|
AI = α + β × ESG | 18.640 *** | 9.639 *** | 6.985 *** | 1.050 ** |
Bootstrap p-value | 0.002 | 0.002 | 0.001 | 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Z.; Chen, C. AI vs. ESG? Uncovering a Bidirectional Struggle in China’s Sustainable Finance. Sustainability 2025, 17, 4238. https://doi.org/10.3390/su17094238
Du Z, Chen C. AI vs. ESG? Uncovering a Bidirectional Struggle in China’s Sustainable Finance. Sustainability. 2025; 17(9):4238. https://doi.org/10.3390/su17094238
Chicago/Turabian StyleDu, Zizhe, and Chao Chen. 2025. "AI vs. ESG? Uncovering a Bidirectional Struggle in China’s Sustainable Finance" Sustainability 17, no. 9: 4238. https://doi.org/10.3390/su17094238
APA StyleDu, Z., & Chen, C. (2025). AI vs. ESG? Uncovering a Bidirectional Struggle in China’s Sustainable Finance. Sustainability, 17(9), 4238. https://doi.org/10.3390/su17094238