Adoption of Innovative Technologies for Sustainable Agriculture: A Scoping Review of the System Domain
Abstract
:1. Introduction
- To what extent and in what variety are systemic factors addressed in the existing research literature in developed countries? And how have they been defined and treated?
- What are the interactions between systemic characteristics and the process of technology adoption in developed countries?
- What are the key systemic determinants of innovative technology adoption in developed countries?
- What are the gaps in the literature on the systems dimension?
2. Methodology
2.1. Data Sources and Research Strategy
2.2. Study Selection
- Study on the process of technology adoption
- Study on the agricultural sector
- Study that considers, among other aspects, the systemic dimension of the adoption process
- Study focusing on developed countries
- Study without reference
2.3. Data Extraction
3. Results
3.1. Bibliometric Analysis
3.1.1. Overview of Studies
3.1.2. Network Analysis
3.2. Thematic Analysis
3.3. Content Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Finger, R.; Swinton, S.M.; El Benni, N.; Walter, A. Precision Farming at the Nexus of Agricultural Production and the Environment. Annu. Rev. Resour. Econ. 2019, 11, 313–335. [Google Scholar] [CrossRef]
- Navarro, E.; Costa, N.; Pereira, A. A Systematic Review of IoT Solutions for Smart Farming. Sensors 2020, 20, 4231. [Google Scholar] [CrossRef] [PubMed]
- World Economic Forum. Transforming Food Systems with Farmers: A Pathway for the EU. Available online: https://www.weforum.org/publications/transforming-food-systems-with-farmers-a-pathway-for-the-eu/ (accessed on 3 July 2024).
- Bauer, P.; Stevens, B.; Hazeleger, W. A Digital Twin of Earth for the Green Transition. Nat. Clim. Change 2021, 11, 80–83. [Google Scholar] [CrossRef]
- Reidsma, P.; Accatino, F.; Appel, F.; Gavrilescu, C.; Krupin, V.; Manevska Tasevska, G.; Meuwissen, M.P.M.; Peneva, M.; Severini, S.; Soriano, B. Alternative Systems and Strategies to Improve Future Sustainability and Resilience of Farming Systems across Europe: From Adaptation to Transformation. Land Use Policy 2023, 134, 106881. [Google Scholar] [CrossRef]
- Kroupová, Z.Ž.; Aulová, R.; Rumánková, L.; Bajan, B.; Čechura, L.; Šimek, P.; Jarolímek, J. Drivers and Barriers to Precision Agriculture Technology and Digitalisation Adoption: Meta-Analysis of Decision Choice Models. Precis. Agric. 2024, 26, 17. [Google Scholar] [CrossRef]
- European Commission. A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System; European Commission: Brussels, Belgium, 2020.
- Lytos, A.; Lagkas, T.; Sarigiannidis, P.; Zervakis, M.; Livanos, G. Towards Smart Farming: Systems, Frameworks and Exploitation of Multiple Sources. Comput. Netw. 2020, 172, 107147. [Google Scholar] [CrossRef]
- Medici, M.; Pedersen, S.M.; Canavari, M.; Anken, T.; Stamatelopoulos, P.; Tsiropoulos, Z.; Zotos, A.; Tohidloo, G. A Web-Tool for Calculating the Economic Performance of Precision Agriculture Technology. Comput. Electron. Agric. 2021, 181, 105930. [Google Scholar] [CrossRef]
- Sponchioni, G.; Vezzoni, M.; Bacchetti, A.; Pavesi, M.; Renga, F. The 4.0 Revolution in Agriculture: A Multi-Perspective Definition. In Proceedings of the Summer School Francesco Turco, Brescia, Italy, 11–13 September 2019; Volume 1, pp. 143–149. [Google Scholar]
- Finger, R. Digital Innovations for Sustainable and Resilient Agricultural Systems. Eur. Rev. Agric. Econ. 2023, 50, 1277–1309. [Google Scholar] [CrossRef]
- Barbosa Júnior, M.R.; De Almeida Moreira, B.R.; Dos Santos Carreira, V.; De Brito Filho, A.L.; Trentin, C.; de Souza, F.L.P.; Tedesco, D.; Setiyono, T.; Flores, J.P.; Ampatzidis, Y. Precision Agriculture in the United States: A Comprehensive Meta-Review Inspiring Further Research, Innovation, and Adoption. Comput. Electron. Agric. 2024, 221, 108993. [Google Scholar] [CrossRef]
- Shang, L.; Heckelei, T.; Gerullis, M.K.; Börner, J.; Rasch, S. Adoption and Diffusion of Digital Farming Technologies—Integrating Farm-Level Evidence and System Interaction. Agric. Syst. 2021, 190, 103074. [Google Scholar] [CrossRef]
- Montes De Oca Munguia, O.; Pannell, D.J.; Llewellyn, R. Understanding the Adoption of Innovations in Agriculture: A Review of Selected Conceptual Models. Agronomy 2021, 11, 139. [Google Scholar] [CrossRef]
- Dibbern, T.; Romani, L.A.S.; Massruhá, S.M.F.S. Main Drivers and Barriers to the Adoption of Digital Agriculture Technologies. Smart Agric. Technol. 2024, 8, 100459. [Google Scholar] [CrossRef]
- Drewry, J.L.; Shutske, J.M.; Trechter, D.; Luck, B.D.; Pitman, L. Assessment of Digital Technology Adoption and Access Barriers among Crop, Dairy and Livestock Producers in Wisconsin. Comput. Electron. Agric. 2019, 165, 104960. [Google Scholar] [CrossRef]
- Fragomeli, R.; Annunziata, A.; Punzo, G. Promoting the Transition towards Agriculture 4.0: A Systematic Literature Review on Drivers and Barriers. Sustainability 2024, 16, 2425. [Google Scholar] [CrossRef]
- Gemtou, M.; Kakkavou, K.; Anastasiou, E.; Fountas, S.; Pedersen, S.M.; Isakhanyan, G.; Erekalo, K.T.; Pazos-Vidal, S. Farmers’ Transition to Climate-Smart Agriculture: A Systematic Review of the Decision-Making Factors Affecting Adoption. Sustainability 2024, 16, 2828. [Google Scholar] [CrossRef]
- Osrof, H.Y.; Tan, C.L.; Angappa, G.; Yeo, S.F.; Tan, K.H. Adoption of Smart Farming Technologies in Field Operations: A Systematic Review and Future Research Agenda. Technol. Soc. 2023, 75, 102400. [Google Scholar] [CrossRef]
- Verbeke, W.; Diallo, M.A.; van Dooremalen, C.; Schoonman, M.; Williams, J.H.; Van Espen, M.; D’Haese, M.; de Graaf, D.C. European Beekeepers’ Interest in Digital Monitoring Technology Adoption for Improved Beehive Management. Comput. Electron. Agric. 2024, 227, 109556. [Google Scholar] [CrossRef]
- Lee, C.-L.; Strong, R.; Dooley, K.E. Analyzing Precision Agriculture Adoption across the Globe: A Systematic Review of Scholarship from 1999–2020. Sustainability 2021, 13, 10295. [Google Scholar] [CrossRef]
- McGrath, K.; Brown, C.; Regan, Á.; Russell, T. Investigating Narratives and Trends in Digital Agriculture: A Scoping Study of Social and Behavioural Science Studies. Agric. Syst. 2023, 207, 103616. [Google Scholar] [CrossRef]
- Benyam, A.; Soma, T.; Fraser, E. Digital Agricultural Technologies for Food Loss and Waste Prevention and Reduction: Global Trends, Adoption Opportunities and Barriers. J. Clean. Prod. 2021, 323, 129099. [Google Scholar] [CrossRef]
- Sadjadi, E.N.; Fernández, R. Challenges and Opportunities of Agriculture Digitalization in Spain. Agronomy 2023, 13, 259. [Google Scholar] [CrossRef]
- Maffezzoli, F.; Ardolino, M.; Bacchetti, A.; Perona, M.; Renga, F. Agriculture 4.0: A Systematic Literature Review on the Paradigm, Technologies and Benefits. Futures 2022, 142, 102998. [Google Scholar] [CrossRef]
- Barrett, H.; Rose, D.C. Perceptions of the Fourth Agricultural Revolution: What’s In, What’s Out, and What Consequences Are Anticipated? Sociol. Rural. 2022, 62, 162–189. [Google Scholar] [CrossRef]
- Djekic, I.; Batlle-Bayer, L.; Bala, A.; Fullana-i-Palmer, P.; Jambrak, A.R. Role of the Food Supply Chain Stakeholders in Achieving UN SDGs. Sustainability 2021, 13, 9095. [Google Scholar] [CrossRef]
- Pedersen, S.M.; Erekalo, K.T.; Christensen, T.; Denver, S.; Gemtou, M.; Fountas, S.; Isakhanyan, G.; Rosemarin, A.; Ekane, N.; Puggaard, L.; et al. Drivers and Barriers to Climate-Smart Agricultural Practices and Technologies Adoption: Insights from Stakeholders of Five European Food Supply Chains. Smart Agric. Technol. 2024, 8, 100478. [Google Scholar] [CrossRef]
- Vinod Chandra, S.S.; Anand Hareendran, S.; Ghassan Faisal, A. Precision Farming for Sustainability: An Agricultural Intelligence Model. Comput. Electron. Agric. 2024, 226, 109386. [Google Scholar] [CrossRef]
- Zaharia, A.; Diaconeasa, M.-C.; Maehle, N.; Szolnoki, G.; Capitello, R. Developing Sustainable Food Systems in Europe: National Policies and Stakeholder Perspectives in a Four-Country Analysis. Int. J. Environ. Res. Public Health 2021, 18, 7701. [Google Scholar] [CrossRef]
- Guerrieri, V.; Borchardt, S.; Listorti, G.; Marelli, L.; Vittuari, M. Time to Transform? Sustainability Narratives for European Food Systems. Glob. Food Secur. 2025, 44, 100831. [Google Scholar] [CrossRef]
- Jakku, E.; Taylor, B.; Fleming, A.; Mason, C.; Fielke, S.; Sounness, C.; Thorburn, P. “If They Don’t Tell Us What They Do with It, Why Would We Trust Them?” Trust, Transparency and Benefit-Sharing in Smart Farming. NJAS Wagening. J. Life Sci. 2019, 90–91, 1–13. [Google Scholar] [CrossRef]
- Amiri-Zarandi, M.; Dara, R.A.; Duncan, E.; Fraser, E.D.G. Big Data Privacy in Smart Farming: A Review. Sustainability 2022, 14, 9120. [Google Scholar] [CrossRef]
- Ramirez, A. The Influence of Social Networks on Agricultural Technology Adoption. Procedia—Soc. Behav. Sci. 2013, 79, 101–116. [Google Scholar] [CrossRef]
- EU SCAR. Agricultural Knowledge and Innovation Systems in Transition—A Reflection Paper; SCAR: Cambridge, UK, 2012. [Google Scholar]
- Kolady, D.E.; Van der Sluis, E.; Uddin, M.M.; Deutz, A.P. Determinants of Adoption and Adoption Intensity of Precision Agriculture Technologies: Evidence from South Dakota. Precis. Agric. 2021, 22, 689–710. [Google Scholar] [CrossRef]
- Levac, D.; Colquhoun, H.; O’Brien, K.K. Scoping Studies: Advancing the Methodology. Implement. Sci. 2010, 5, 69. [Google Scholar] [CrossRef] [PubMed]
- Davis, K.; Drey, N.; Gould, D. What Are Scoping Studies? A Review of the Nursing Literature. Int. J. Nurs. Stud. 2009, 46, 1386–1400. [Google Scholar] [CrossRef]
- Knierim, A.; Kernecker, M.; Erdle, K.; Kraus, T.; Borges, F.; Wurbs, A. Smart Farming Technology Innovations—Insights and Reflections from the German Smart-AKIS Hub. NJAS—Wagening. J. Life Sci. 2019, 90–91, 100314. [Google Scholar] [CrossRef]
- Reimer, A.; Doll, J.E.; Boring, T.J.; Zimnicki, T. Scaling up Conservation Agriculture: An Exploration of Challenges and Opportunities through a Stakeholder Engagement Process. J. Environ. Qual. 2023, 52, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Miao, Y.; Xie, Z.; Wu, R. Drivers and Barriers to Digital Transformation in Agriculture: An Evolutionary Game Analysis Based on the Experience of China. Agric. Syst. 2024, 221, 104136. [Google Scholar] [CrossRef]
- Vecchio, Y.; Di Pasquale, J.; Del Giudice, T.; Pauselli, G.; Masi, M.; Adinolfi, F. Precision Farming: What Do Italian Farmers Really Think? An Application of the Q Methodology. Agric. Syst. 2022, 201, 103466. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Siminiuc, R.; Țurcanu, D.; Siminiuc, S.; Vîrlan, A. Integration of Nutritional and Sustainability Metrics in Food Security Assessment: A Scoping Review. Sustainability 2025, 17, 2804. [Google Scholar] [CrossRef]
- Peters, M.D.; Godfrey, C.; McInerney, P.; Munn, Z.; Tricco, A.C.; Khalil, H. Scoping Reviews. In JBI Manual for Evidence Synthesis; Aromataris, E., Lockwood, C., Porritt, K., Pilla, B., Jordan, Z., Eds.; JBI: Adelaide, SA, Australia, 2024; ISBN 978-0-648-84882-0. [Google Scholar]
- Waltman, L.; van Eck, N.J.; Noyons, E.C.M. A Unified Approach to Mapping and Clustering of Bibliometric Networks. J. Informetr. 2010, 4, 629–635. [Google Scholar] [CrossRef]
- Maesano, G.; Milani, M.; Nicolosi, E.; D’Amico, M.; Chinnici, G. A Network Analysis for Environmental Assessment in Wine Supply Chain. Agronomy 2022, 12, 211. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Manual for VOSviewer Version 1.6.8; CWTS Meaningful Metrics; Universiteit Leiden: Leiden, The Netherlands, 2018. [Google Scholar]
- Rauniyar, K.; Wu, X.; Gupta, S.; Modgil, S.; Kumar, A. Digitizing Global Supply Chains through Blockchain. Prod. Plan. Control 2024, 35, 2327–2348. [Google Scholar] [CrossRef]
- Ofori, M.; El-Gayar, O. Drivers and challenges of precision agriculture: A social media perspective. Precis. Agric. 2020, 22, 1019–1044. [Google Scholar] [CrossRef]
- Marshall, A.; Turner, K.; Richards, C.; Foth, M.; Dezuanni, M. Critical factors of digital AgTech adoption on Australian farms: From digital to data divide. Inf. Commun. Soc. 2022, 25, 868–886. [Google Scholar] [CrossRef]
- Tran, D.; Schouteten, J.J.; Degieter, M.; Krupanek, J.; Jarosz, W.; Areta, A.; Emmi, L.; De Steur, H.; Gellynck, X. European stakeholders’ perspectives on implementation potential of precision weed control: The case of autonomous vehicles with laser treatment. Precis. Agric. 2023, 24, 2200–2222. [Google Scholar] [CrossRef]
- Czibere, I.; Kovách, I.; Loncsák, N. Hungarian farmers and the adoption of precision farming. Eur. Countrys. 2023, 15, 366–380. [Google Scholar] [CrossRef]
- Makinde, A.; Islam, M.M.; Wood, K.M.; Conlin, E.; Williams, M.; Scott, S.D. Investigating perceptions, adoption, and use of digital technologies in the Canadian beef industry. Comput. Electron. Agric. 2022, 198, 107095. [Google Scholar] [CrossRef]
- Busse, M.; Doernberg, A.; Siebert, R.; Kuntosch, A.; Schwerdtner, W.; König, B.; Bokelmann, W. Innovation mechanisms in German precision farming. Precis. Agric. 2013, 15, 403–426. [Google Scholar] [CrossRef]
- Giagnocavo, C.; Duque-Acevedo, M.; Terán-Yépez, E.; Herforth-Rahmé, J.; Defossez, E.; Carlesi, S.; Delalieux, S.; Gkisakis, V.; Márton, A.; Molina-Delgado, D.; et al. A multi-stakeholder perspective on the use of digital technologies in European organic and agroecological farming systems. Technol. Soc. 2024, 81, 102763. [Google Scholar] [CrossRef]
- Parra-López, C.; Reina-Usuga, L.; Garcia-Garcia, G.; Carmona-Torres, C. Designing policies to promote the adoption of digital phytosanitation towards sustainability: The case of the olive sector in Andalusia. Agric. Syst. 2024, 221, 104147. [Google Scholar] [CrossRef]
- Lee, C.-L.; Strong, R.; Briers, G.; Murphrey, T.; Rajan, N.; Rampold, S. Factors predicting innovation-decisions: The effects of performance expectancy, social influence, and facilitating conditions on U.S. Extension’s promotion of precision agriculture technologies. NJAS Impact Agric. Life Sci. 2024, 96, 2420111. [Google Scholar] [CrossRef]
- Kutter, T.; Tiemann, S.; Siebert, R.; Fountas, S. The role of communication and co-operation in the adoption of precision farming. Precis. Agric. 2009, 12, 2–17. [Google Scholar] [CrossRef]
- Mignani, C.; Ferrara, A.; Tomasi, S.; Moretti, M.; Cavicchi, A. The role of EIP-AGRI Operational Groups as a driver for innovation in viticulture. Econ. Agro-Aliment./Food Econ.-Open Access 2025, 26, 215–243. [Google Scholar] [CrossRef]
- Bryant, M.; Higgins, V. Securitising uncertainty: Ontological security and cultural scripts in smart farming technology implementation. J. Rural Stud. 2020, 81, 315–323. [Google Scholar] [CrossRef]
- Eastwood, C.; Ayre, M.; Nettle, R.; Rue, B.D. Making sense in the cloud: Farm advisory services in a smart farming future. NJAS-Wagening. J. Life Sci. 2019, 90–91, 1–10. [Google Scholar] [CrossRef]
- Padyab, A.; Habibipour, A.; Rizk, A.; Ståhlbröst, A. Adoption barriers of IoT in large scale pilots. Information 2019, 11, 23. [Google Scholar] [CrossRef]
- Benegiamo, M.; Corrado, A.; Fama, M. Agricultural Digitalisation and Just Transition: A Framework for the Analysis. Ital. Rev. Agric. Econ. (REA) 2023, 78, 5–17. [Google Scholar] [CrossRef]
- Castellini, G.; Romanò, S.; Merlino, V.M.; Barbera, F.; Costamagna, C.; Brun, F.; Graffigna, G. Determinants of consumer and farmer acceptance of new production technologies: A systematic review. Front. Sustain. Food Syst. 2025, 9, 1557974. [Google Scholar] [CrossRef]
- McGrath, K.; Regan, Á.; Russell, T. A user-centred future for agricultural digital innovation: Demonstrating the value of design thinking in an animal health context. J. Agric. Educ. Ext. 2024, 1–19. [Google Scholar] [CrossRef]
- Yeo, M.L.; Keske, C.M. From profitability to trust: Factors shaping digital agriculture adoption. Front. Sustain. Food Syst. 2024, 8, 1456991. [Google Scholar] [CrossRef]
- Kalfas, D.; Kalogiannidis, S.; Papaevangelou, O.; Melfou, K.; Chatzitheodoridis, F. Integration of Technology in Agricultural Practices towards Agricultural Sustainability: A Case Study of Greece. Sustainability 2024, 16, 2664. [Google Scholar] [CrossRef]
- Anastasiou, E.; Fountas, S.; Koutsiaras, M.; Voulgaraki, M.; Vatsanidou, A.; Barreiro-Hurle, J.; Di Bartolo, F.; Gómez-Barbero, M. Precision farming technologies on crop protection: A stakeholders survey. Smart Agric. Technol. 2023, 5, 100293. [Google Scholar] [CrossRef]
- Troiano, S.; Carzedda, M.; Marangon, F. Better richer than environmentally friendly? Describing preferences toward and factors affecting precision agriculture adoption in Italy. Agric. Food Econ. 2023, 11, 16. [Google Scholar] [CrossRef] [PubMed]
- Ammann, J.; Umstätter, C.; Benni, N.E. The adoption of precision agriculture enabling technologies in Swiss outdoor vegetable production: A Delphi study. Precis. Agric. 2022, 23, 1354–1374. [Google Scholar] [CrossRef]
- Reichardt, M.; Jürgens, C. Adoption and future perspective of precision farming in Germany: Results of several surveys among different agricultural target groups. Precis. Agric. 2008, 10, 73–94. [Google Scholar] [CrossRef]
- Del Puente, F.; Buonomo, S.; Sapio, A. Promoting agricultural innovation through EIP-AGRI Operational Groups: Insights from the Southern Italian projects. Econ. Marche-J. Appl. Econ. 2024, 43, 16–35. [Google Scholar] [CrossRef]
- Bonetti, E.; Bartoli, C.; Mattiacci, A. Applying blockchain to quality food products: A marketing perspective. Br. Food J. 2023, 126, 2004–2026. [Google Scholar] [CrossRef]
- Lombardo, S.; Sarri, D.; Perna, C.; Pagliai, A.; De Pascale, V.; Cencini, G.; Lisci, R.; Rimediotti, M.; Vieri, M. 90. Reliability of new technologies: Local ecosystem readiness level, a composite index. In Precision Agriculture’21; Wageningen Academic: Wageningen, The Netherlands, 2021; pp. 753–759. [Google Scholar] [CrossRef]
- Higgins, V.; Bryant, M. Framing Agri-Digital Governance: Industry stakeholders, technological frames and smart farming implementation. Sociol. Rural. 2020, 60, 438–457. [Google Scholar] [CrossRef]
Technological Context | Precision Agriculture OR Precision Farm* OR Digital Agriculture OR Smart Farm* OR Agriculture 4.0 OR Smart Agriculture |
---|---|
AND | |
System domain | training OR education OR infrastructure OR competitive pressure OR market OR financial support OR labor OR technology usability OR attractiveness OR appeal OR farming system OR cropping system OR stakeholders engagement OR stakeholders involvement OR events OR cooperation OR information sources OR institutions OR workshops OR regulations OR policy OR governance OR subsidies OR data privacy OR data security OR subjective norms OR technical support OR consultants OR advisors OR advisory service OR service sources OR extension services |
AND | |
Process | tech* adoption* OR tech* diffusion* OR tech* uptake OR tech* implementation |
Eligibility Criteria | Peer reviewed Literature | Grey Literature |
---|---|---|
Language | English | English |
Documents Types | All | Journal articles, conference papers |
Mandatory information | Authors, title, abstract | Authors, title, abstract |
Study context | Developed countries Not smallholders | Developed countries Not smallholders |
Documents | Authors Number | Proportions |
---|---|---|
1 | 581 | 93.4% |
2 | 33 | 5.3% |
3 | 4 | 0.6% |
4 | 2 | 0.3% |
5 | 1 | 0.2% |
6 | 1 | 0.2% |
Total | 622 | 100.0% |
TLS | Authors | Proportions (%) |
---|---|---|
0 | 6 | 1.0% |
1 | 38 | 6.1% |
2 | 109 | 17.5% |
3 | 94 | 15.1% |
4 | 60 | 9.6% |
5 | 54 | 8.7% |
6 | 82 | 13.2% |
7 | 42 | 6.8% |
8 | 56 | 9.0% |
9 | 5 | 0.8% |
10 | 32 | 5.1% |
12 | 2 | 0.3% |
13 | 12 | 1.9% |
15 | 1 | 0.2% |
16 | 16 | 2.6% |
18 | 8 | 1.3% |
25 | 2 | 0.3% |
17 | 2 | 0.3% |
44 | 1 | 0.2% |
Total | 622 | 100.0% |
Categories of Factors | Factors Proportion (%) |
---|---|
Access to funding or economic incentives | 21% |
Governance and coordination structures | 17% |
Institutional factors | 15% |
Social interactions | 29% |
Technical support and advisory services | 17% |
Total | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Addorisio, R.; Spadoni, R.; Maesano, G. Adoption of Innovative Technologies for Sustainable Agriculture: A Scoping Review of the System Domain. Sustainability 2025, 17, 4224. https://doi.org/10.3390/su17094224
Addorisio R, Spadoni R, Maesano G. Adoption of Innovative Technologies for Sustainable Agriculture: A Scoping Review of the System Domain. Sustainability. 2025; 17(9):4224. https://doi.org/10.3390/su17094224
Chicago/Turabian StyleAddorisio, Rocco, Roberta Spadoni, and Giulia Maesano. 2025. "Adoption of Innovative Technologies for Sustainable Agriculture: A Scoping Review of the System Domain" Sustainability 17, no. 9: 4224. https://doi.org/10.3390/su17094224
APA StyleAddorisio, R., Spadoni, R., & Maesano, G. (2025). Adoption of Innovative Technologies for Sustainable Agriculture: A Scoping Review of the System Domain. Sustainability, 17(9), 4224. https://doi.org/10.3390/su17094224