Biomass Modeling in European Beech and Norway Spruce Plantations: An Opportunity to Enhance the Carbon Market and Climate Sustainability
Abstract
:1. Introduction
- -
- To model tree biomass components (foliage, branches, stems, and roots) at the individual tree level using tree height and/or stem diameter as predictors;
- -
- To model stand biomass stock, including all above- and belowground tree components, using the mean stand height, stem diameter, and age as predictive variables;
- -
- To estimate the amount of carbon fixed in young stands and discuss the price of carbon (potentially calculated via carbon dioxide), which could theoretically be implemented within the carbon credit market;
- -
- To make interspecific comparisons of all the above-mentioned dependent variables.
2. Materials and Methods
2.1. Stand Selection and Tree Measurements
- (a)
- The contribution of beech or spruce had to be nearly 100%, with minimal admixture of other tree species.
- (b)
- All trees had to be planted, with none originating from natural regeneration.
- (c)
- The stands had to exhibit regular spacing among trees and be between 2 and 10 years old (excluding the time before planting, as seedlings were typically 2–3 years old when taken from the forest nursery).
- (d)
- The seedlings had to show no or minimal damage from harmful agents (e.g., browsing by game).
2.2. Tree Sampling and Biomass Quantification
3. Results
3.1. Tree-Level Models
3.2. Stand-Level Models
3.3. Carbon Dioxide Amount and Cost
4. Discussion
4.1. Tree and Stand Biomasses
4.2. Carbon in Foliage Litter
4.3. Stand Origin and Carbon Sequestration
4.4. Carbon Stock and Market Value
4.5. Carbon Sequestration Potential Versus Ecological Aspects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
European Beech | ||||||||
Predictor (Unit) | Tree Component | b0 (S. E.) p | b1 (S. E.) p | b2 (S. E.) p | R2 | MSE | λ | S. D. |
Stem diameter d0 (mm) | stem | −3.940 (0.078) < 0.001 | 2.782 (0.024) < 0.001 | 0.991 | 0.056 | 1.028 | 0.245 | |
branches | −7.461 (0.149) < 0.001 | 3.584 (0.047) < 0.001 | 0.980 | 0.204 | 1.100 | 0.516 | ||
leaves | −5.264 (0.117) < 0.001 | 2.780 (0.037) < 0.001 | 0.980 | 0.126 | 1.061 | 0.362 | ||
roots | −3.110 (0.109) < 0.001 | 2.428 (0.034) < 0.001 | 0.977 | 0.109 | 1.021 | 0.354 | ||
whole tree | −2.862 (0.079) < 0.001 | 2.735 (0.025) < 0.001 | 0.990 | 0.057 | 1.020 | 0.258 | ||
Tree height (m) | stem | 3.704 (0.043) < 0.001 | 2.939 (0.048) < 0.001 | 0.969 | 0.192 | 1.101 | 0.514 | |
branches | 2.400 (0.079) < 0.001 | 3.742 (0.090) < 0.001 | 0.936 | 0.663 | 1.355 | 1.186 | ||
leaves | 2.374 (0.048) < 0.001 | 2.942 (0.054) < 0.001 | 0.961 | 0.243 | 1.130 | 0.621 | ||
roots | 3.568 (0.052) < 0.001 | 2.543 (0.060) < 0.001 | 0.939 | 0.290 | 1.113 | 0.614 | ||
whole tree | 4.656 (0.047) < 0.001 | 2.877 (0.054) < 0.001 | 0.960 | 0.239 | 1.115 | 0.577 | ||
Stem diameter d0 (mm) and tree height (m) | stem | −1.874 (0.234) < 0.001 | 2.026 (0.085) < 0.001 | 0.828 (0.091) < 0.001 | 0.994 | 0.033 | 1.016 | 0.179 |
branches | −7.057 (0.583) < 0.001 | 3.436 (0.211) < 0.001 | 0.162 (0.226) 0.475 | 0.980 | 0.205 | 1.099 | 0.503 | |
leaves | −2.951 (0.403) < 0.001 | 1.935 (0.146) < 0.001 | 0.926 (0.156) < 0.001 | 0.984 | 0.098 | 1.047 | 0.319 | |
roots | −2.398 (0.423) < 0.001 | 2.157 (0.153) < 0.001 | 0.284 (0.164) 0.086 | 0.977 | 0.108 | 1.054 | 0.351 | |
whole tree | −1.459 (0.275) < 0.001 | 2.219 (0.100) < 0.001 | 0.561 (0.106) < a | 0.992 | 0.046 | 1.023 | 0.225 | |
Norway Spruce | ||||||||
Predictor (Unit) | Tree Component | b0 (S. E.) p | b1 (S. E.) p | b2 (S. E.) p | R2 | MSE | λ | S. D. |
Stem diameter d0 (mm) | stem | −3.320 (0.113) < 0.001 | 2.486 (0.030) < 0.001 | 0.986 | 0.058 | 1.029 | 0.252 | |
branches | −4.025 (0.139) < 0.001 | 2.607 (0.037) < 0.001 | 0.980 | 0.088 | 1.042 | 0.295 | ||
needles | −3.164 (0.149) < 0.001 | 2.494 (0.040) < 0.001 | 0.975 | 0.101 | 1.048 | 0.312 | ||
roots | −2.856 (0.149) < 0.001 | 2.289 (0.040) < 0.001 | 0.971 | 0.102 | 1.051 | 0.348 | ||
whole tree | −1.903 (0.102) < 0.001 | 2.466 (0.027) < 0.001 | 0.988 | 0.048 | 1.023 | 0.215 | ||
Tree height (m) | stem | 4.115 (0.035) < 0.001 | 2.661 (0.036) < 0.001 | 0.982 | 0.072 | 1.035 | 0.276 | |
branches | 3.796 (0.061) < 0.001 | 2.753 (0.063) < 0.001 | 0.951 | 0.221 | 1.119 | 0.592 | ||
needles | 4.311 (0.058) < 0.001 | 2.642 (0.059) < 0.001 | 0.952 | 0.197 | 1.107 | 0.580 | ||
roots | 4.005 (0.055) < 0.001 | 2.426 (0.057) < 0.001 | 0.948 | 0.181 | 1.096 | 0.519 | ||
whole tree | 5.485 (0.046) < 0.001 | 2.618 (0.047) < 0.001 | 0.969 | 0.126 | 1.067 | 0.430 | ||
Stem diameter d0 (mm) and tree height (m) | stem | 0.0057 (0.321) 0.986 | 1.369 (0.107) < 0.001 | 1.221 (0.114) < 0.001 | 0.993 | 0.027 | 1.013 | 0.164 |
branches | −3.276 (0.576) < 0.001 | 2.356 (0.191) < 0.001 | 0.275 (0.205) 0.184 | 0.981 | 0.088 | 1.041 | 0.298 | |
needles | −1.820 (0.607) 0.003 | 2.042 (0.202) < 0.001 | 0.493 (0.216) 0.025 | 0.977 | 0.097 | 1.045 | 0.308 | |
roots | −1.572 (0.610) 0.012 | 1.858 (0.203) < 0.001 | 0.471 (0.217) 0.033 | 0.972 | 0.098 | 1.049 | 0.339 | |
whole tree | −0.187 (0.387) 0.631 | 1.889 (0.129) < 0.001 | 0.630 (0.138) < 0.001 | 0.990 | 0.040 | 1.019 | 0.198 |
European Beech | ||||||||
Predictor (Unit) | Stand Segment | b0 (S. E.) p | b1 (S. E.) p | b2 (S. E.) p | R2 | MSE | λ | S. D. |
Mean diameter d0 (mm) | woody parts | −9.247 (0.044) < 0.001 | 2.841 (0.013) < 0.001 | 0.996 | 0.013 | 1.006 | 0.113 | |
leaves | −11.335 (0.071) < 0.001 | 2.827 (0.021) < 0.001 | 0.990 | 0.035 | 1.017 | 0.183 | ||
whole tree | −8.881 (0.044) < 0.001 | 2.758 (0.013) < 0.001 | 0.996 | 0.013 | 1.006 | 0.114 | ||
Mean height (m) | woody parts | −1.119 (0.042) < 0.001 | 2.698 (0.050) < 0.001 | 0.942 | 0.207 | 1.107 | 0.511 | |
leaves | −3.264 (0.034) < 0.001 | 2.719 (0.041) < 0.001 | 0.961 | 0.139 | 1.071 | 0.403 | ||
whole tree | −0.996 (0.039) < 0.001 | 2.624 (0.047) < 0.001 | 0.946 | 0.182 | 1.093 | 0.476 | ||
Mean diameter d0 (mm) and mean height (m) | woody parts | −7.846 (0.064) < 0.001 | 2.346 (0.022) < 0.001 | 0.505 (0.022) < 0.001 | 0.999 | 0.003 | 1.002 | 0.058 |
leaves | −8.787 (0.047) < 0.001 | 1.926 (0.016) < 0.001 | 0.919 (0.016) < 0.001 | 0.999 | 0.002 | 1.001 | 0.043 | |
whole tree | −7.331 (0.037) < 0.001 | 2.210 (0.013) < 0.001 | 0.559 (0.013) < 0.001 | 0.999 | 0.001 | 1.001 | 0.034 | |
Stand age (years) | woody parts | −7.867 (0.193) < 0.001 | 4.250 (0.097) < 0.001 | 0.921 | 0.211 | 1.104 | 0.488 | |
leaves | −9.887 (0.183) < 0.001 | 4.194 (0.092) < 0.001 | 0.927 | 0.190 | 1.094 | 0.462 | ||
whole tree | −7.480 (0.180) < 0.001 | 4.095 (0.091) < 0.001 | 0.926 | 0.184 | 1.090 | 0.449 | ||
Norway Spruce | ||||||||
Predictor (Unit) | Stand Segment (Mg ha−1) | b0 (S. E.) p | b1 (S. E.) p | b2 (S. E.) p | R2 | MSE | λ | S. D. |
Mean diameter d0 (mm) | woody parts | −8.322 (0.045) < 0.001 | 2.481 (0.012) < 0.001 | 0.996 | 0.016 | 1.008 | 0.126 | |
needles | −9.157 (0.032) < 0.001 | 2.507 (0.008) < 0.001 | 0.998 | 0.008 | 1.004 | 0.089 | ||
whole tree | −7.950 (0.041) < 0.001 | 2.485 (0.011) < 0.001 | 0.997 | 0.013 | 1.006 | 0.113 | ||
Mean height (m) | woody parts | −0.659 (0.034) < 0.001 | 2.507 (0.033) < 0.001 | 0.970 | 0.120 | 1.062 | 0.382 | |
needles | −1.406 (0.038) < 0.001 | 2.522 (0.037) < 0.001 | 0.963 | 0.150 | 1.077 | 0.433 | ||
whole tree | −0.272 (0.035) < 0.001 | 2.507 (0.034) < 0.001 | 0.968 | 0.129 | 1.066 | 0.396 | ||
Mean diameter d0 (mm) and mean height (m) | woody parts | −6.362 (0.026) < 0.001 | 1.840 (0.008) < 0.001 | 0.675 (0.009) < 0.001 | 0.999 | 0.001 | 1.000 | 0.021 |
needles | −7.780 (0.027) < 0.001 | 2.057 (0.009) < 0.001 | 0.474 (0.009) < 0.001 | 0.999 | 0.001 | 1.000 | 0.021 | |
whole tree | −6.184 (0.027) < 0.001 | 1.908 (0.009) < 0.001 | 0.608 (0.009) < 0.001 | 0.999 | 0.001 | 1.000 | 0.021 | |
Stand age (years) | woody parts | −4.666 (0.138) < 0.001 | 3.314 (0.074) < 0.001 | 0.924 | 0.213 | 1.112 | 0.553 | |
needles | −5.414 (0.144) < 0.001 | 3.324 (0.077) < 0.001 | 0.918 | 0.231 | 1.120 | 0.564 | ||
whole tree | −4.268 (0.139) < 0.001 | 3.310 (0.074) < 0.001 | 0.923 | 0.216 | 1.112 | 0.549 |
References
- Buotte, P.C.; Law, B.E.; Ripple, W.J.; Berner, L.T. Carbon sequestration and biodiversity co-benefits of preserving forests in the western United States. Ecol. Appl. 2020, 30, e02039. [Google Scholar] [CrossRef] [PubMed]
- Kozlowski, T.T.; Pallardy, S.G. Physiology of Wood Plants; Academic Press: San Diego, CA, USA, 1996; 411p. [Google Scholar]
- Fawzy, S.; Osman, A.I.; Doran, J.; Rooney, D.W. Strategies for mitigation of climate change: A review. Environ. Chem. Lett. 2020, 18, 2069–2094. [Google Scholar] [CrossRef]
- Phillips, O.L.; Brienen, R.J.W. Carbon uptake by mature Amazon forests has mitigated Amazon nations’ carbon emissions. Carbon Balance Manag. 2017, 12, 1. [Google Scholar] [CrossRef] [PubMed]
- Dalmonech, D.; Marano, G.; Amthor, J.S.; Cescatti, A.; Lindner, M.; Trotta, C.; Collalti, A. Feasibility of enhancing carbon sequestration and stock capacity in temperate and boreal European forests via changes to management regimes. Agric. For. Meteorol. 2022, 327, 109203. [Google Scholar] [CrossRef]
- Jandl, R.; Vesterdal, L.; Olsson, M.; Bens, O.; Badeck, F.; Rock, J. Carbon sequestration and forest management. CAB Rev. 2007, 17, 2–16. [Google Scholar] [CrossRef]
- Ghale, B.; Mitra, E.; Sodhi, H.S.; Verma, A.K.; Kumar, S. Carbon Sequestration Potential of Agroforestry Systems and Its Potential in Climate Change Mitigation. Water Air Soil Pollut. 2022, 233, 228. [Google Scholar] [CrossRef]
- Yosef, G.; Walko, R.; Avisar, R.; Tatarinov, F.; Rotenberg, E.; Yakir, D. Large-scale semi-arid afforestation can enhance precipitation and carbon sequestration potential. Sci. Rep. 2018, 8, 996. [Google Scholar] [CrossRef]
- Ma, F.; Zhang, W.; Yan, J.; Zhang, T.; Lu, N.; Yao, M.; Zhang, T.; Zheng, J.; Yin, S. Early advantage for carbon sequestration of monocultures and greater long-term carbon sink potential of broadleaf mixed forests: 20-Year evidence from the Shanghai Green Belt. Ecol. Indic. 2024, 159, 111655. [Google Scholar] [CrossRef]
- Shen, G. Three decades of urban forestry in China. Urban For. Urban Green. 2023, 82, 127877. [Google Scholar] [CrossRef]
- Holl, K.D.; Ashton, M.S.; Bukoski, J.J.; Culberston, K.A.; Curran, S.R.; Harris, T.B.; Potts, M.D.; Valverde, L.Y.; Vincent, J.R. Redefining “abandoned” agricultural land in the context of reforestation. Front. Glob. Chang. 2022, 5, 933887. [Google Scholar] [CrossRef]
- Repáč, I.; Parobeková, Z.; Sendecký, M. Reforestation in Slovakia: History, current practice and perspectives. Reforesta 2017, 12, 53–88. [Google Scholar] [CrossRef]
- Šebeň, V.; Bošeľa, M.; Konôpka, B.; Pajtík, J. Indices of tree competition in dense spruces stand originated from natural regeneration. Lesn. Čas.—For. J. 2013, 59, 172–179. [Google Scholar] [CrossRef]
- Holgén, P.; Hånell, B. Performance of planted and naturally regenerated seedlings in Picea abies-dominated shelterwood stands and clearcuts in Sweden. For. Ecol. Manag. 2000, 127, 129–138. [Google Scholar] [CrossRef]
- Soubeyrand, M.; Marchand, P.; Duchesne, L.; Bergeron, Y.; Gennaretti, F. Interactions between climate, soil and competition drive tree growth in Quebec forests. For. Ecol. Manag. 2024, 555, 121731. [Google Scholar] [CrossRef]
- Luo, M.; Daigneault, A.; Zhao, X.; Hao, D.; Chen, M. Impacts of Forest Management-Induced Productivity Changes on Future Land Use and Land Cover Change. Earth’s Future 2024, 12, e2024EF004878. [Google Scholar] [CrossRef]
- Poorter, H.; Niklas, K.J.; Reich, P.B.; Oleksyn, J.; Poot, P.; Mommer, L. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytol. 2011, 193, 30–50. [Google Scholar] [CrossRef]
- Poorter, H.; Jagodzinski, A.M.; Ruiz-Peinado, R.; Kuyah, S.; Luo, Y.; Oleksyn, J.; Usoltsev, V.A.; Buckley, T.N.; Reich, P.B.; Sack, L. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytol. 2015, 208, 736–7849. [Google Scholar] [CrossRef]
- Kantola, A.; Mäkelä, A. Development of biomass proportions in Norway spruce (Picea abies [L.] Karst.). Trees 2006, 20, 111–121. [Google Scholar] [CrossRef]
- Zhang, H.; Song, T.; Wang, T.; Wang, K.; Liao, J.; Xu, G.; Zeng, F. Biogeographical patterns of forest biomass allocation vary by climate, soil and forest characteristics in China. Environ. Res. Lett. 2015, 10, 044014. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, Y.; Ji, Y.; Yu, M.; Li, X.; Duan, J.; Wang, Y.; Gao, J.; Guo, X. Climate Factors Affect Above–Belowground Biomass Allocation in Broad-Leaved and Coniferous Forests by Regulating Soil Nutrients. Plants 2023, 12, 3926. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; de Rigo, D.; Caudullo, G.; Durrant, T.H.; Mauri, A.; Tinner, W.; Ballian, D.; Beck, P.S.A.; Birks, H.J.B.; Eaton, E.; et al. European Atlas of Forest Tree Species; Publications Office of the European Union: Luxembourg, 2016; 200p. [Google Scholar]
- Motte, F.; Rötzer, T.; Bibier, P.; Uhl, E.; Pritsch, K.; Pretzsch, H. Growth of European beech recovered faster than that of Norway spruce after a five-year experimental drought in a mixed forest stand. Trees 2023, 37, 1695–1715. [Google Scholar] [CrossRef]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Kunca, A.; Zúbrik, M.; Vakula, J.; Leontovyč, R.; Konôpka, B.; Nikolov, C.; Gubka, A.; Longauerová, V.; Mal’ová, M.; Kaštier, P. Salvage felling in the Slovak forests in the period 2004–2013. Lesn. Čas.—For. J. 2015, 61, 188–195. [Google Scholar] [CrossRef]
- Kunca, A.; Zúbrik, M.; Vakula, J.; Leontovyč, R.; Konôpka, B.; Nikolov, C.; Gubka, A.; Longauerová, V.; Maľová, M.; Rell, S. Salvage felling in the Slovak Republic’s forests during the last twenty years (1998–2017). Cent. Eur. For. J. 2019, 65, 3–11. [Google Scholar] [CrossRef]
- Vacek, Z.; Vacek, S.; Slanař, J.; Bílek, L.; Bulušek, D.; Šteafnčík, I.; Králíček, I.; Vančura, K. Adaption of Norway spruce and European beech forests under climate change: From resistance to close-to-nature silviculture. Cent. Eur. For. J. 2019, 65, 129–144. [Google Scholar] [CrossRef]
- Lie, M.H.; Asplund, J.; Göhl, M.; Ohlson, M.; Nybakken, L. Similar growth responses to climatic variations in Norway spruce (Picea abies) and European beech (Fagus sylvatica) at the northern range limit of beech. Eur. J. For. Res. 2013, 142, 1059–1068. [Google Scholar] [CrossRef]
- Konôpka, B.; Pajtík, J.; Šebeň, V.; Surový, P.; Merganičová, K. Young Silver Birch Grows Faster and Allocates Higher Portion of Biomass into Stem than Norway Spruce, a Case Study from a Post-Disturbance Forest. Forests 2021, 12, 433. [Google Scholar] [CrossRef]
- Bown, S. Measuring carbon in forests: Current status and future challenges. Environ. Pollut. 2002, 116, 363–372. [Google Scholar]
- Sharma, R.P.; Vacek, Z.; Vacek, S. Modeling individual tree height to diameter ratio for Norway spruce and European beech in Czech Republic. Trees 2016, 30, 1969–1982. [Google Scholar] [CrossRef]
- Vangi, E.; Dalmonech, D.; Morichetti, M.; Grieco, E.; Giannetti, F.; D’Amico, G.; Nakhavali, M.; Chirici, G.; Collalti, A. Stand Age and Climate Change Effects on Carbon Increments and Stock Dynamics. Forests 2024, 15, 1120. [Google Scholar] [CrossRef]
- Marchand, W.; Buechling, A.; Rydval, M.; Čada, V.; Stegegis, A.I.; Frulex, A.; Poláček, M.; Hofmeister, J.; Pavlin, J.; Ralhan, D.; et al. Accelerated growth rates of Norway spruce and European beech saplings from Europe’s temperate primary forests are related to warmer conditions. Agric. For. Meteorol. 2023, 329, 109280. [Google Scholar] [CrossRef]
- Jagodzinski, A.M.; Dyderski, M.K.; Horodecki, P. Differences in biomass production and carbon sequestration between highland and lowland stands of Picea abies (L.) H. Karst. and Fagus sylvatica L. For. Ecol. Manag. 2020, 474, 118329. [Google Scholar] [CrossRef]
- Konôpka, B.; Pajtík, J.; Noguchi, K.; Lukac, M. Replacing Norway spruce with European beech: A comparison of biomass and net primary production patterns in young stands. For. Ecol. Manag. 2013, 302, 185–192. [Google Scholar] [CrossRef]
- Kirova, L. Soils after forestry management activities in spruce plantations. Silva Balc. 2024, 25, 37–60. [Google Scholar] [CrossRef]
- Springer, K.; Manning, P.; Boesing, A.L.; Ammer, C.; Fiore-Donno, A.M.; Fischer, M.; Goldmann, K.; Le Provost, G.; Overmann, J.; Ruess, L.; et al. Identifying the stand properties that support both high biodiversity and carbon storage in German forests. For. Ecol. Manag. 2024, 572, 122328. [Google Scholar] [CrossRef]
- Długosiewicz, J.; Zajac, S.; Wysocka-Fijorek, E.; Sułkowska, M. Comparative analysis of natural and artificial regeneration in Nowa Deba Forest District. Folia For. Pol. Ser. A—For. 2019, 61, 230–241. [Google Scholar] [CrossRef]
- Li, B.; Gao, G.; Niklas, K.J.; Luo, Y.; Xu, M.; Liu, G.; Fu, B. Biomass carbon stock and allocation of planted and natural forests in the Loess Plateau of China. Agric. For. Meteorol. 2024, 355, 110154. [Google Scholar] [CrossRef]
- Pretzsch, H.; Grams, T.; Häberle, K.H.; Pritsch, K.; Bauerle, T.; Rötzer, T. Growth and mortality of Norway spruce and European beech in monospecific and mixed-species stands under natural episodic and experimentally extended drought. Results of the KROOF throughfall exclusion experiment. Trees 2020, 34, 957–970. [Google Scholar] [CrossRef]
- Bourke, R.; Yousefpour, R.; Hanewinkel, M. Under storm risk, economic productivity of Norway spruce (Picea abies (L.) H. Karst) in monoculture shows sharper decline than in mixture with European beech (Fagus sylvatica L.). Ann. For. Sci. 2023, 80, 19. [Google Scholar] [CrossRef]
- Kobler, J.; Hochbichler, E.; Pröll, G.; Dirnböck, T. How to Optimize Carbon Sinks and Biodiversity in the Conversion of Norway Spruce to Beech Forests in Austria? Forests 2024, 15, 359. [Google Scholar] [CrossRef]
- Liepiš, K.; Bleive, A. The Potential of European Beech (Fagus sylvatica L.) in the Hemiboreal Baltic Region: A Review. Forests 2025, 16, 109. [Google Scholar] [CrossRef]
- Paul, C.; Brandl, S.; Friedrich, S.; Falk, W.; Härtl, F.; Knoke, T. Climate change and mixed forests: How do altered survival probabilities impact economically desirable species proportions of Norway spruce and European beech? Ann. For. Sci. 2019, 76, 14. [Google Scholar] [CrossRef]
- Vacek, Z.; Prokupkova, A.; Vacek, S.; Bulušek, D.; Šimunek, V.; Hájek, V.; Králíček, I. Mixed vs. monospecific mountain forests in response to climate change: Structural and growth perspectives of Norway spruce and European beech. For. Ecol. Manag. 2021, 488, 119019. [Google Scholar] [CrossRef]
- Ivanova, N.; Fomin, V.; Kusbach, A. Experience of Forest Ecological Classification in Assessment of Vegetation Dynamics. Sustainability 2022, 14, 3384. [Google Scholar] [CrossRef]
Species, Sampling Year/Variable | N | Mean | Min | Max | Lower Quartile | Upper Quartile | St. Dev. | Skewness | Kurtosis | |
---|---|---|---|---|---|---|---|---|---|---|
Beech, 2020 | d0 (mm) | 1366 | 23.4 | 2.1 | 70.8 | 11.70 | 34.45 | 14.56 | 0.540 | −0.572 |
h (m) | 1366 | 1.45 | 0.09 | 5.50 | 0.72 | 2.08 | 0.92 | 0.729 | 0.015 | |
Beech, 2023 | d0 (mm) | 1317 | 38.9 | 4.0 | 113.5 | 22.35 | 53.85 | 21.00 | 0.646 | −0.262 |
h (m) | 1317 | 2.37 | 0.20 | 7.50 | 1.28 | 3.30 | 1.30 | 0.559 | −0.501 | |
Spruce, 2020 | d0 (mm) | 1376 | 39.9 | 3.0 | 143.7 | 16.25 | 63.50 | 28.49 | 0.630 | −0.579 |
h (m) | 1376 | 1.80 | 0.17 | 6.00 | 0.81 | 2.70 | 1.31 | 0.886 | −0.250 | |
Spruce, 2023 | d0 (mm) | 1311 | 67.5 | 5.7 | 192.0 | 37.05 | 96.30 | 37.60 | 0.372 | −0.641 |
h (m) | 1311 | 3.20 | 0.17 | 8.90 | 1.70 | 4.60 | 1.93 | 0.552 | −0.510 |
Species/ Variable | N | Mean | Min. | Max. | Lower Quartile | Upper Quartile | St. Dev. | Skewness | Kurtosis | |
---|---|---|---|---|---|---|---|---|---|---|
Beech | d0 (mm) | 120 | 29.1 | 2.4 | 73.2 | 12.55 | 42.78 | 19.06 | 0.442 | −0.713 |
h (m) | 120 | 1.77 | 0.12 | 5.09 | 0.89 | 2.58 | 1.14 | 0.639 | −0.140 | |
Spruce | d0 (mm) | 110 | 49.6 | 4.7 | 135.3 | 25.75 | 67.90 | 29.24 | 0.420 | −0.132 |
h (m) | 110 | 2.32 | 0.27 | 5.56 | 1.23 | 3.20 | 1.27 | 0.206 | −0.478 |
Stand Age (Years) | European Beech | Norway Spruce | ||||||
---|---|---|---|---|---|---|---|---|
CO2 (Mg ha−1) | EUR (per ha) | CO2 (Mg ha−1) | EUR (per ha) | |||||
2.0 × 2.0 (m) | 1.6 × 1.6 (m) | 2.0 × 2.0 (m) | 1.6 × 1.6 (m) | 2.0 × 2.0 (m) | 1.8 × 1.8 (m) | 2.0 × 2.0 (m) | 1.8 × 1.8 (m) | |
5 | 0.82 | 1.28 | 57 | 89 | 5.88 | 7.26 | 412 | 509 |
6 | 1.73 | 2.70 | 121 | 189 | 10.75 | 13.27 | 753 | 930 |
7 | 3.26 | 5.09 | 228 | 356 | 17.91 | 22.11 | 1254 | 1548 |
8 | 5.63 | 8.80 | 394 | 616 | 27.86 | 34.39 | 1950 | 2407 |
9 | 9.12 | 14.25 | 638 | 997 | 41.14 | 50.78 | 2880 | 3555 |
10 | 14.3 | 22.34 | 982 | 1534 | 58.31 | 71.98 | 4082 | 5039 |
11 | 20.73 | 32.39 | 1451 | 2267 | 79.94 | 98.68 | 5596 | 6908 |
12 | 29.61 | 46.26 | 2072 | 3237 | 106.63 | 131.62 | 7464 | 9214 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konôpka, B.; Pajtík, J.; Šebeň, V. Biomass Modeling in European Beech and Norway Spruce Plantations: An Opportunity to Enhance the Carbon Market and Climate Sustainability. Sustainability 2025, 17, 4198. https://doi.org/10.3390/su17094198
Konôpka B, Pajtík J, Šebeň V. Biomass Modeling in European Beech and Norway Spruce Plantations: An Opportunity to Enhance the Carbon Market and Climate Sustainability. Sustainability. 2025; 17(9):4198. https://doi.org/10.3390/su17094198
Chicago/Turabian StyleKonôpka, Bohdan, Jozef Pajtík, and Vladimír Šebeň. 2025. "Biomass Modeling in European Beech and Norway Spruce Plantations: An Opportunity to Enhance the Carbon Market and Climate Sustainability" Sustainability 17, no. 9: 4198. https://doi.org/10.3390/su17094198
APA StyleKonôpka, B., Pajtík, J., & Šebeň, V. (2025). Biomass Modeling in European Beech and Norway Spruce Plantations: An Opportunity to Enhance the Carbon Market and Climate Sustainability. Sustainability, 17(9), 4198. https://doi.org/10.3390/su17094198