Analyzing the Influence of Risk Perception on Commuters’ Travel Mode Choice in Heavy Rainfall: Evidence from Qingdao, China, Using the RGWRR Model
Abstract
:1. Introduction
2. Data Description
3. Model Specifications
4. Results
4.1. Estimation Results
4.2. Elasticity Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrey, J. Long-term trends in weather-related crash risks. J. Transp. Geogr. 2010, 18, 247–258. [Google Scholar] [CrossRef]
- Markolf, S.A.; Hoehne, C.; Fraser, A.; Chester, M.V.; Underwood, B.S. Transportation resilience to climate change and extreme weather events—Beyond risk and robustness. Transp. Policy 2019, 74, 174–186. [Google Scholar] [CrossRef]
- Liu, C.; Susilo, Y.O.; Karlström, A. Weather variability and travel behaviour—What we know and what we do not know. Transp. Rev. 2017, 37, 715–741. [Google Scholar] [CrossRef]
- Wu, J.; Liao, H. Weather, travel mode choice, and impacts on subway ridership in Beijing. Transp. Res. Part A Policy Pract. 2020, 135, 264–279. [Google Scholar] [CrossRef]
- Goetzke, F.; Rave, T. Bicycle use in Germany: Explaining differences between municipalities with social network effects. Urban Stud. 2011, 48, 427–437. [Google Scholar] [CrossRef]
- Bergström, A.; Magnusson, R. Potential of transferring car trips to bicycle during winter. Transp. Res. Part A Policy Pract. 2003, 37, 649–666. [Google Scholar] [CrossRef]
- Sabir, M.; Koetse, M.J.; Rietveld, P. The Impact of Weather Conditions on Mode Choice: Empirical Evidence for the Netherlands. Ph.D. Thesis, VU University, Amsterdam, The Netherlands, 2008; pp. 1–24. [Google Scholar]
- Blocken, B.; Carmeliet, J. Pedestrian wind environment around buildings: Literature review and practical examples. J. Therm. Envel. Build. Sci. 2004, 28, 107–159. [Google Scholar] [CrossRef]
- Anta, J.; Pérez-López, J.B.; Martínez-Pardo, A.; Novales, M.; Orro, A. Influence of the weather on mode choice in corridors with time-varying congestion: A mixed data study. Transportation 2016, 43, 337–355. [Google Scholar] [CrossRef]
- Brodeur, A.; Nield, K. An empirical analysis of taxi, Lyft and Uber rides: Evidence from weather shocks in NYC. J. Econ. Behav. Organ. 2018, 152, 1–16. [Google Scholar] [CrossRef]
- Khattak, A.J.; De Palma, A. The impact of adverse weather conditions on the propensity to change travel decisions: A survey of Brussels commuters. Transp. Res. Part A Policy Pract. 1997, 31, 181–203. [Google Scholar] [CrossRef]
- Koetse, M.J.; Rietveld, P. The impact of climate change and weather on transport: An overview of empirical findings. Transp. Res. Part D Transp. Environ. 2009, 14, 205–221. [Google Scholar] [CrossRef]
- Andrey, J.; Mills, B.; Leahy, M.; Suggett, J. Weather as a chronic hazard for road transportation in Canadian cities. Nat. Hazards 2003, 28, 319–343. [Google Scholar] [CrossRef]
- Shankar, V.N.; Chayanan, S.; Sittikariya, S.; Shyu, M.-B.; Juvva, N.K.; Milton, J.C. Marginal impacts of design, traffic, weather, and related interactions on roadside crashes. Transp. Res. Rec. 2004, 1897, 156–163. [Google Scholar] [CrossRef]
- Maze, T.H.; Agarwal, M.; Burchett, G. Whether weather matters to traffic demand, traffic safety, and traffic operations and flow. Transp. Res. Rec. 2006, 1948, 170–176. [Google Scholar] [CrossRef]
- Hranac, R.; Sterzin, E.; Krechmer, D.; Rakha, H.A.; Farzaneh, M. Empirical Studies on Traffic Flow in Inclement Weather. 2006. Available online: https://vtechworks.lib.vt.edu/items/614b1260-a8e1-4392-bbb8-0fea226d7d34 (accessed on 1 March 2025).
- Arentze, T.; Timmermans, H. Parametric action decision trees: Incorporating continuous attribute variables into rule-based models of discrete choice. Transp. Res. Part B-Methodol. 2007, 41, 772–783. [Google Scholar] [CrossRef]
- Hess, S.; Rose, J.M.; Hensher, D.A. Asymmetric preference formation in willingness to pay estimates in discrete choice models. Transp. Res. E-Logist. Transp. Rev. 2008, 44, 847–863. [Google Scholar] [CrossRef]
- Zhu, W.; Timmermans, H. Cognitive process model of individual choice behaviour incorporating principles of bounded rationality and heterogeneous decision heuristics. Environ. Plan. B-Plan. Des. 2010, 37, 59–74. [Google Scholar] [CrossRef]
- Kaplan, S.; Prato, C.G. The application of the random regret minimization model to drivers’ choice of crash avoidance maneuvers. Transp. Res. Part F-Traffic Psychol. Behav. 2012, 15, 699–709. [Google Scholar] [CrossRef]
- Hess, S.; Beck, M.J.; Chorus, C.G. Contrasts between utility maximisation and regret minimisation in the presence of opt out alternatives. Transp. Res. Part A-Policy Pract. 2014, 66, 1–12. [Google Scholar] [CrossRef]
- Rasouli, S.; Timmermans, H. Specification of regret-based models of choice behaviour: Formal analyses and experimental design based evidence. Transportation 2017, 44, 1555–1576. [Google Scholar] [CrossRef]
- Bell, D.E. Regret in Decision Making under Uncertainty. Oper. Res. 1982, 30, 961–981. [Google Scholar] [CrossRef]
- Loomes, G.; Sugden, R. Regret theory—An alternative theory of rational choice under uncertainty. Econ. J. 1982, 92, 805–824. [Google Scholar] [CrossRef]
- Chorus, C.G.; Arentze, T.A.; Timmermans, H.J.P. A random regret-minimization model of travel choice. Transp. Res. Part B-Methodol. 2008, 42, 1–18. [Google Scholar] [CrossRef]
- Chorus, C.G. A new model of random regret minimization. Eur. J. Transp. Infrastruct. Res. 2010, 10, 181–196. [Google Scholar] [CrossRef]
- Chorus, C.; van Cranenburgh, S.; Dekker, T. Random regret minimization for consumer choice modeling: Assessment of empirical evidence. J. Bus. Research. 2014, 67, 2428–2436. [Google Scholar] [CrossRef]
- van Cranenburgh, S.; Guevara, C.A.; Chorus, C.G. New insights on random regret minimization models. Transp. Res. Part A Policy Pract. 2015, 74, 91–109. [Google Scholar] [CrossRef]
- Rasouli, S.; Timmermans, H. Models of bounded rationality under certainty. In Bounded Rational Choice Behaviour: Applications in Transport; Emerald Group Publishing Limited: Leeds, UK, 2015; pp. 1–30. [Google Scholar]
- Rasouli, S.; Timmermans, H.J.P. Covariates-dependent random parameters regret–rejoice models of choice behavior: Specification and performance assessment using experimental design data. Transp. A Transp. Sci. 2019, 15, 485–525. [Google Scholar] [CrossRef]
- Jang, S.; Rasouli, S.; Timmermans, H. Tolerance and Indifference Bands in Regret–Rejoice Choice Models: Extension to Market Segmentation in the Context of Mode Choice Behavior. Transp. Res. Rec. 2018, 2672, 23–34. [Google Scholar] [CrossRef]
- Yan, Q.; Feng, T.; Timmermans, H. Private owners’ propensity to engage in shared parking schemes under uncertainty: Comparison of alternate hybrid expected utility-regret-rejoice choice models. Transp. Lett. 2023, 15, 754–764. [Google Scholar] [CrossRef]
- Jang, S. Regret-Based Travel Behavior Modeling: An Extended Framework. Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2018. [Google Scholar]
- Luan, S.; Yang, Q.; Jiang, Z.; Wang, W. Exploring the impact of COVID-19 on individual’s travel mode choice in China. Transp. Policy 2021, 106, 271–280. [Google Scholar] [CrossRef]
- Luan, S.; Yang, Q.; Jiang, Z.; Zhou, H.; Meng, F. Analyzing commute mode choice using the LCNL model in the post-COVID-19 era: Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 5076. [Google Scholar] [CrossRef] [PubMed]
- An, S.; Wang, Z.; Cui, J.X. Integrating Regret Psychology to Travel Mode Choice for a Transit-Oriented Evacuation Strategy. Sustainability 2015, 7, 8116–8131. [Google Scholar] [CrossRef]
- Wang, Z.; An, S.; Wang, J.; Ding, C. Evacuation travel behavior in regret minimization or utility maximization rules? Evidence from emergency context. KSCE J. Civ. Eng. 2017, 21, 440–446. [Google Scholar] [CrossRef]
- Wong, S.D.; Chorus, C.G.; Shaheen, S.A.; Walker, J.L. A revealed preference methodology to evaluate regret minimization with challenging choice sets: A wildfire evacuation case study. Travel Behav. Soc. 2020, 20, 331–347. [Google Scholar] [CrossRef]
- Chorus, C.G. A generalized random regret minimization model. Transp. Res. Part B-Methodol. 2014, 68, 224–238. [Google Scholar] [CrossRef]
- Jang, S.; Rasouli, S.; Timmermans, H.J.P. Accounting for perception in random regret choice models: Weberian and generalized Weberian specifications. In Proceedings of the 95th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 10–14 January 2016. [Google Scholar]
- Jang, S.; Rasouli, S.; Timmermans, H. Incorporating psycho-physical mapping into random regret choice models: Model specifications and empirical performance assessments. Transportation 2017, 44, 999–1019. [Google Scholar] [CrossRef]
- Jing, P.; Zhao, M.X.; He, M.L.; Chen, L. Travel Mode and Travel Route Choice Behavior Based on Random Regret Minimization: A Systematic Review. Sustainability 2018, 10, 1185. [Google Scholar] [CrossRef]
- Li, M.; Huang, H.J. A regret theory-based route choice model. Transp. A 2017, 13, 250–272. [Google Scholar] [CrossRef]
- Dekker, T.; Chorus, C.G. Consumer surplus for random regret minimisation models. J. Environ. Econ. Policy 2018, 7, 269–286. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, H.; Song, Y.; Huang, D.; Li, D.; Wang, H. Analysis of Perception Variance in Regret Choice Modeling Based on GPS Data Considering Building Environment Effects. J. Adv. Transp. 2022, 2022, 6001033. [Google Scholar] [CrossRef]
- Weber, E.H. De Pulsu, Resorptione, Auditu et Tactu: Annotationes Anatomicae et Physiologicae; C.F. Koehler: Leipzig, Germany, 1834. [Google Scholar]
- Powell, C. The perception of risk and risk taking behavior: Implications for incident prevention Strategies. Wilderness Environ. Med. 2007, 18, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Bangun, F.; Tamin, O.; Eng, B.; PM, G.D. Analysis of Transport Mode Preferences for Work Travel in Medan. Proc. Proc. East. Asia Soc. Transp. Stud. 2008, 4, 832–843. [Google Scholar]
- Alhassan, I.B.; Matthews, B.; Toner, J.P.; Susilo, Y.O. Examining the effect of integrated ticketing on mode choice for interregional commuting: Studies among car commuters. Int. J. Sustain. Transp. 2023, 17, 245–257. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, P.; Zheng, S.; Zhao, M.; Lam, W.H.K.; Chen, A.; Sze, N.N.; Chen, Y. Modeling dynamic travel mode choices using cumulative prospect theory. Transp. Res. Part A Policy Pract. 2024, 179, 103938. [Google Scholar] [CrossRef]
- Luan, S.; Jiang, Z.; Qu, D.; Yang, X.; Meng, F. Investigating risk factors associated with injury severity in highway crashes: A hybrid approach integrating two-step cluster analysis and latent class ordered regression model with covariates. Accid. Anal. Prev. 2024, 208, 107805. [Google Scholar] [CrossRef]
- Chorus, C.G.; Koetse, M.J.; Hoen, A. Consumer preferences for alternative fuel vehicles: Comparing a utility maximization and a regret minimization model. Energ Policy 2013, 61, 901–908. [Google Scholar] [CrossRef]
- Chorus, C.G. Benefit of adding an alternative to one’s choice set: A regret minimization perspective. J. Choice Model. 2014, 13, 49–59. [Google Scholar] [CrossRef]
- Rasouli, S.; Timmermans, H. Issues in the specification of regret-only choice models: A rejoinder to Chorus and Van Cranenburgh. Transportation 2018, 45, 257–263. [Google Scholar] [CrossRef]
Characteristics | Description | Percentage |
---|---|---|
Gender | Male | 50.68% |
Female | 49.32% | |
Age | 18 or below | 4.05% |
19–30 | 36.49% | |
31–55 | 42.57% | |
56 or above | 16.89% | |
Education | Below Middle School | 22.30% |
High school/Technical | 24.32% | |
Bachelor’s Degree | 46.62% | |
Postgraduate or above | 6.76% | |
Occupation | Student | 26.35% |
Corporate employee | 28.38% | |
Civil servant | 8.11% | |
Self-employed | 24.32% | |
Retired | 2.7% | |
Others | 10.14% | |
Income (CNY/mo) | ≤3000 | 16.49% |
3001–6000 | 43.73% | |
6001–9000 | 31.00% | |
9000 or above | 8.78% | |
Car ownership | Yes | 39.86% |
No | 60.14% |
Variables | RUM | RRM | RGJ | RGWRGJ |
---|---|---|---|---|
Travel time (t value) | −0.401 (−6.33) | −0.226 (−8.43) | −0.203 (−4.47) | −0.182 (−4.82) |
Travel cost (t value) | 0.120 (4.08) | 0.003 (−2.26) | 0.008 (6.25) | 0.041 (4.81) |
Possible delays (t value) | −0.128 (−2.97) | −0.069 (−2.79) | −0.141 (−3.26) | −0.118 (−4.01) |
Incident probability (t value) | −0.414 (−2.04) | −0.289 (−1.99) | −0.236 (−2.57) | −0.271 (−6.65) |
Gamma_travel time (t value) | 0.246 (5.21) | |||
Delta_travel time (t value) | 3.510 (2.55) | |||
Gamma_travel cost (t value) | 0.196 (2.30) | |||
Delta_travel cost (t value) | 0.959 (3.95) | |||
Gamma_possible delays (t value) | 0.267 (3.05) | |||
Delta_possible delays (t value) | 2.752 (5.95) | |||
Model fit | ||||
Rho-squared | 0.312 | 0.317 | 0.328 | 0.382 |
BIC | 4261.326 | 4233.533 | 4208.469 | 4224.098 |
Final log-likelihood | −2116.274 | −2102.378 | −2075.457 | −2083.271 |
Variables | RUM | RRM | RGJ | RGWRGJ |
---|---|---|---|---|
Travel time (t value) | −0.394 (−10.10) | −0.193 (−11.7) | −2.550 (−2.95) | −0.994 (−3.14) |
Travel cost (t value) | 0.164 (9.72) | 0.013 (2.10) | 0.026 (9.57) | 0.233 (7.96) |
Possible delays (t value) | −0.161 (−3.98) | −0.125 (−8.26) | −3.121 (−9.54) | −1.161 (−8.37) |
Incident probability (t value) | −0.923 (−2.46) | −0.571 (−3.82) | −1.48 (−3.63) | −2.952 (−3.01) |
Gamma_travel time (t value) | 0.145 (4.27) | |||
Delta_travel time (t value) | 4.227 (3.82) | |||
Gamma_possible delays (t value) | 0.138 (5.11) | |||
Delta_possible delays (t value) | 1.664 (2.25) | |||
Model fit | ||||
Rho-squared | 0.342 | 0.346 | 0.388 | 0.389 |
BIC | 4125.886 | 4110.424 | 3951.359 | 3946.827 |
Final log-likelihood | −2048.554 | −2040.732 | −1946.902 | −1944.636 |
Variables | RUM | RRM | RGJ/RGWRGJ |
---|---|---|---|
Travel time (t value) | −0.378 (−14.7) | −0.160 (−14.6) | −2.840 (−3.03) |
Travel cost (t value) | 0.157 (11.7) | 0.006 (1.99) | 0.323 (9.33) |
Possible delays (t value) | 0.090 (3.88) | −0.023 (−2.67) | −1.670 (−5.9) |
Incident probability (t value) | −0.185 (2.485) | −0.394 (−2.51) | −0.807 (−1.96) |
Model fit | |||
Rho-squared | 0.354 | 0.352 | 0.391 |
BIC | 4073.149 | 4083.054 | 3935.806 |
Final log-likelihood | −2022.186 | −2027.138 | −1939.135 |
RUM | Alt. 1 | Alt. 2 | Alt. 3 | Alt. 4 | Alt. 5 |
---|---|---|---|---|---|
Attribute | Non-motorized vehicles | Buses | Metro | Taxis/ride-hailing services | Private cars |
Travel time | −0.492 | −0.661 | −0.443 | −0.374 | −0.673 |
Possible delays | −0.105 | −0.053 | −0.102 | −0.092 | −0.162 |
Travel costs | 0.000 | 0.010 | 0.019 | 0.206 | 0.040 |
Incident probability | −0.102 | −0.034 | −0.033 | −0.030 | −0.035 |
RRM | |||||
Travel time | −0.272 | −0.364 | −0.248 | −0.230 | −0.370 |
Possible delays | −0.056 | −0.028 | −0.055 | −0.054 | −0.086 |
Travel costs | 0.000 | 0.000 | −0.001 | −0.006 | −0.001 |
Incident probability | −0.070 | −0.023 | −0.023 | −0.023 | −0.024 |
RGJ | |||||
Travel time | −0.211 | −0.325 | −0.210 | −0.201 | −0.362 |
Possible delays | −0.048 | −0.021 | −0.049 | −0.049 | −0.078 |
Travel costs | 0.000 | 0.000 | −0.001 | −0.005 | −0.001 |
Incident probability | −0.059 | −0.017 | −0.017 | −0.017 | −0.017 |
RGWRGJ | |||||
Travel time | −0.192 | −0.261 | −0.179 | −0.196 | −0.300 |
Possible delays | −0.039 | −0.017 | −0.035 | −0.036 | −0.067 |
Travel costs | 0.000 | 0.000 | −0.000 | −0.002 | −0.001 |
Incident probability | −0.047 | −0.012 | −0.012 | −0.013 | −0.013 |
RUM | Alt. 1 | Alt. 2 | Alt. 3 | Alt. 4 | Alt. 5 |
---|---|---|---|---|---|
Attribute | Non-motorized vehicles | Buses | Metro | Taxis/ride-hailing services | Private cars |
Travel time | −1.072 | −1.347 | −1.148 | −0.632 | −1.144 |
Possible delays | −0.137 | −0.069 | −0.134 | −0.105 | −0.370 |
Travel costs | 0.001 | 0.014 | 0.041 | 0.390 | 0.119 |
Incident probability | −0.236 | −0.079 | −0.077 | −0.055 | −0.079 |
RRM | |||||
Travel time | −0.624 | −0.798 | −0.492 | −0.489 | −0.652 |
Possible delays | −0.019 | −0.019 | −0.018 | −0.021 | −0.076 |
Travel costs | 0.000 | 0.000 | 0.002 | 0.025 | 0.006 |
Incident probability | −0.096 | −0.033 | −0.030 | −0.030 | −0.032 |
RGJ | |||||
Travel time | −0.433 | −0.589 | −0.298 | −0.277 | −0.215 |
Possible delays | −0.075 | −0.019 | −0.018 | −0.018 | −0.019 |
Travel costs | 0.000 | 0.000 | 0.000 | 0.014 | 0.001 |
Incident probability | −0.073 | −0.014 | −0.011 | −0.012 | −0.014 |
RGWRGJ | |||||
Travel time | −0.319 | −0.418 | −0.175 | −0.166 | −0.141 |
Possible delays | −0.061 | −0.007 | −0.007 | −0.007 | −0.008 |
Travel costs | 0.000 | 0.000 | 0.000 | 0.012 | 0.001 |
Incident probability | −0.058 | −0.009 | −0.008 | −0.009 | −0.009 |
RUM | Alt. 1 | Alt. 2 | Alt. 3 | Alt. 4 | Alt. 5 |
---|---|---|---|---|---|
Attribute | Non-motorized vehicles | Buses | Metro | Taxis/ride-hailing services | Private cars |
Travel time | −1.578 | −2.059 | −1.226 | −0.877 | −1.519 |
Possible delays | 0.079 | 0.082 | 0.073 | 0.063 | 0.291 |
Travel costs | 0.002 | 0.014 | 0.051 | 0.503 | 0.165 |
Incident probability | −0.049 | −0.017 | −0.015 | −0.011 | −0.015 |
RRM | |||||
Travel time | −0.624 | −0.798 | −0.492 | −0.489 | −0.652 |
Possible delays | −0.019 | −0.019 | −0.018 | −0.021 | −0.076 |
Travel costs | 0.000 | 0.000 | 0.002 | 0.025 | 0.006 |
Incident probability | −0.096 | −0.033 | −0.030 | −0.030 | −0.032 |
RGJ/RGWRGJ | |||||
Travel time | −0.533 | −0.681 | −0.387 | −0.365 | −0.501 |
Possible delays | −0.009 | −0.009 | −0.009 | −0.012 | −0.059 |
Travel costs | 0.000 | 0.000 | 0.001 | 0.018 | 0.004 |
Incident probability | −0.081 | −0.024 | −0.021 | −0.021 | −0.023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luan, S.; Yang, X.; Shu, W.; Jia, S.; Zheng, X.; Meng, F. Analyzing the Influence of Risk Perception on Commuters’ Travel Mode Choice in Heavy Rainfall: Evidence from Qingdao, China, Using the RGWRR Model. Sustainability 2025, 17, 4188. https://doi.org/10.3390/su17094188
Luan S, Yang X, Shu W, Jia S, Zheng X, Meng F. Analyzing the Influence of Risk Perception on Commuters’ Travel Mode Choice in Heavy Rainfall: Evidence from Qingdao, China, Using the RGWRR Model. Sustainability. 2025; 17(9):4188. https://doi.org/10.3390/su17094188
Chicago/Turabian StyleLuan, Siliang, Xiaoxia Yang, Wenqi Shu, Shuting Jia, Xianting Zheng, and Fanyun Meng. 2025. "Analyzing the Influence of Risk Perception on Commuters’ Travel Mode Choice in Heavy Rainfall: Evidence from Qingdao, China, Using the RGWRR Model" Sustainability 17, no. 9: 4188. https://doi.org/10.3390/su17094188
APA StyleLuan, S., Yang, X., Shu, W., Jia, S., Zheng, X., & Meng, F. (2025). Analyzing the Influence of Risk Perception on Commuters’ Travel Mode Choice in Heavy Rainfall: Evidence from Qingdao, China, Using the RGWRR Model. Sustainability, 17(9), 4188. https://doi.org/10.3390/su17094188