Enablers and Policy Framework for Construction Waste Minimization Under Circular Economy: Stakeholder Perspectives
Abstract
:1. Introduction
- (a)
- Most developed countries have conducted numerous studies to formulate WM policy guidelines for the construction sector, focusing on reduction, reuse, and recycling. However, a comparative analysis of key industry stakeholders’ perceptions during the policy formulation process is absent in the global context. This comparison is crucial as it highlights the level of consensus among key stakeholders in drafting these policy guidelines.
- (b)
- Secondly, WM practices are very limited in developing countries. As a result, one-third of the total solid waste is generated at construction sites in these countries. Although a few studies have been conducted in this context, the unique cultural values and construction practices in each country necessitate further investigation into the specific factors influencing WM in these developing regions.
- (c)
- Thirdly, in the context of Pakistan, the situation regarding waste generation is more severe than in other developing countries. The Asian Development Bank has reported that construction waste poses a major threat to the environment in Pakistan, highlighting the urgent need for the formulation of policy guidelines to address this environmental challenge [40]. This is because there are no formal policy guidelines currently available in Pakistan.
2. Literature Review
2.1. Waste Generation Rates in Construction Sector and Their Causes
2.2. Waste Minimization and Circular Economy Strategies
Sr. No. | WM Strategies | References |
---|---|---|
1 | Models for Business Development | [55] |
2 | Support from Government | [55] |
3 | Benefits of Recycled Materials | [56] |
4 | Awareness Programs | [57,58] |
5 | Advanced Research on WM and CE | [59] |
6 | Financial Assistance | [60] |
7 | Providing Subsidize | [60] |
8 | Environmental Management System | [61] |
9 | Use of Recycled Materials | [62] |
10 | Building Landfill Sites | [62] |
3. Methods
3.1. Research Design
3.2. Sample Selection and Respondent’s Profile
3.3. Data Analysis
3.3.1. Word Frequency and Cluster Analyses of Interviews
3.3.2. Thematic Analysis of Interviews and Development of Framework
3.3.3. Corroboration and Credibility of Results
4. Results and Discussions
4.1. Results of Word Frequency and Cluster Analysis
4.2. Comparison of Stakeholders’ Perception
4.3. Policy Measures and Developed Framework
4.3.1. Enablers at Planning/Design Phases
4.3.2. Enablers at Execution Phase
4.3.3. Enablers at Post Construction Phase
4.3.4. Organizational-Level Enablers
4.3.5. Industrial-Level
4.3.6. National-Level Enablers
5. Practical Implications for Sustainable Development
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bai, L.; Xiu, C.; Feng, X.; Liu, D. Influence of Urbanization on Regional Habitat Quality: A Case Study of Changchun City. Habitat Int. 2019, 93, 102042. [Google Scholar] [CrossRef]
- Liu, B.; Wang, D.; Xu, Y.; Liu, C.; Luther, M. Embodied Energy Consumption of the Construction Industry and Its International Trade Using Multi-Regional Input–Output Analysis. Energy Build. 2018, 173, 489–501. [Google Scholar] [CrossRef]
- Benachio, G.L.F.; Freitas, M.d.C.D.; Tavares, S.F. Circular Economy in the Construction Industry: A Systematic Literature Review. J. Clean. Prod. 2020, 260, 121046. [Google Scholar] [CrossRef]
- Rodrigo, N.; Omrany, H.; Chang, R.; Zuo, J. Leveraging Digital Technologies for Circular Economy in Construction Industry: A Way Forward. Smart Sustain. Built Environ. 2024, 13, 85–116. [Google Scholar] [CrossRef]
- Shooshtarian, S.; Maqsood, T.; Wong, P.S.P.; Caldera, S.; Ryley, T.; Zaman, A.; Cáceres Ruiz, A.M. Circular Economy in Action: The Application of Products with Recycled Content in Construction Projects–a Multiple Case Study Approach. Smart Sustain. Built Environ. 2024, 13, 370–394. [Google Scholar] [CrossRef]
- Lizárraga-Mendiola, L.; López-León, L.D.; Vázquez-Rodríguez, G.A. Municipal Solid Waste as a Substitute for Virgin Materials in the Construction Industry: A Review. Sustainability 2022, 14, 16343. [Google Scholar] [CrossRef]
- Ajayi, S.O.; Oyedele, L.O.; Akinade, O.O.; Bilal, M.; Alaka, H.A.; Owolabi, H.A.; Kadiri, K.O. Attributes of Design for Construction Waste Minimization: A Case Study of Waste-to-Energy Project. Renew. Sustain. Energy Rev. 2017, 73, 1333–1341. [Google Scholar] [CrossRef]
- Mathews, J.A.; Tan, H. Circular Economy: Lessons from China. Nature 2016, 531, 440–442. [Google Scholar] [CrossRef]
- Begum, R.A.; Siwar, C.; Pereira, J.J.; Jaafar, A.H. A Benefit–Cost Analysis on the Economic Feasibility of Construction Waste Minimisation: The Case of Malaysia. Resour. Conserv. Recycl. 2006, 48, 86–98. [Google Scholar] [CrossRef]
- Benachio, G.L.F.; Freitas, M.d.C.D.; Tavares, S.F. Interactions between Lean Construction Principles and Circular Economy Practices for the Construction Industry. J. Constr. Eng. Manag. 2021, 147, 4021068. [Google Scholar] [CrossRef]
- Oluleye, B.I.; Chan, D.W.M.; Saka, A.B.; Olawumi, T.O. Circular Economy Research on Building Construction and Demolition Waste: A Review of Current Trends and Future Research Directions. J. Clean. Prod. 2022, 357, 131927. [Google Scholar] [CrossRef]
- Ogunmakinde, O.E.; Sher, W.; Egbelakin, T. Circular Economy Pillars: A Semi-Systematic Review. Clean Technol. Environ. Policy 2021, 23, 899–914. [Google Scholar] [CrossRef]
- Halkos, G.E.; Aslanidis, P.-S.C. How Waste Crisis Altered the Common Understanding: From Fordism to Circular Economy and Sustainable Development. Circ. Econ. Sustain. 2024, 4, 1513–1537. [Google Scholar] [CrossRef]
- Kirchherr, J.; Yang, N.-H.N.; Schulze-Spüntrup, F.; Heerink, M.J.; Hartley, K. Conceptualizing the Circular Economy (Revisited): An Analysis of 221 Definitions. Resour. Conserv. Recycl. 2023, 194, 107001. [Google Scholar] [CrossRef]
- Cruz Rios, F.; Grau, D.; Bilec, M. Barriers and Enablers to Circular Building Design in the US: An Empirical Study. J. Constr. Eng. Manag. 2021, 147, 4021117. [Google Scholar] [CrossRef]
- Aslam, M.S.; Huang, B.; Cui, L. Review of Construction and Demolition Waste Management in China and USA. J. Environ. Manag. 2020, 264, 110445. [Google Scholar] [CrossRef]
- Chi, B.; Lu, W.; Ye, M.; Bao, Z.; Zhang, X. Construction Waste Minimization in Green Building: A Comparative Analysis of LEED-NC 2009 Certified Projects in the US and China. J. Clean. Prod. 2020, 256, 120749. [Google Scholar] [CrossRef]
- Eze, E.C.; Aghimien, D.O.; Aigbavboa, C.O.; Sofolahan, O. Building Information Modelling Adoption for Construction Waste Reduction in the Construction Industry of a Developing Country. Eng. Constr. Archit. Manag. 2024, 31, 2205–2223. [Google Scholar] [CrossRef]
- Kabirifar, K.; Mojtahedi, M.; Wang, C.; Tam, V.W.Y. Construction and Demolition Waste Management Contributing Factors Coupled with Reduce, Reuse, and Recycle Strategies for Effective Waste Management: A Review. J. Clean. Prod. 2020, 263, 121265. [Google Scholar] [CrossRef]
- Li, J.; Sun, X.; Dai, X.; Zhang, J.; Liu, B. Policy Analysis on Recycling of Solid Waste Resources in China—Content Analysis Method of CNKI Literature Based on NVivo. Int. J. Environ. Res. Public Health 2022, 19, 7919. [Google Scholar] [CrossRef]
- Liu, J.; Yi, Y.; Wang, X. Exploring Factors Influencing Construction Waste Reduction: A Structural Equation Modeling Approach. J. Clean. Prod. 2020, 276, 123185. [Google Scholar] [CrossRef]
- Du, J.; Zhang, J.; Castro-Lacouture, D.; Hu, Y. Lean Manufacturing Applications in Prefabricated Construction Projects. Autom. Constr. 2023, 150, 104790. [Google Scholar] [CrossRef]
- Abkar, M.M.A.; Yunus, R.; Gamil, Y.; Albaom, M.A. Enhancing Construction Site Performance through Technology and Management Practices as Material Waste Mitigation in the Malaysian Construction Industry. Heliyon 2024, 10, e28721. [Google Scholar] [CrossRef]
- Sharba, A.A.K.; Altemen, A.A.G.A.; Hason, M.M. Shear Behavior of Exploiting Recycled Brick Waste and Steel Slag as an Alternative Aggregate for Concrete Production. Mater. Today Proc. 2021, 42, 2621–2628. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, B.; Zhang, Z.; Zhang, Y.; Wang, C. New Insights into the Effects of Silicate Modulus, Alkali Content and Modification on Multi-Properties of Recycled Brick Powder-Based Geopolymer. J. Build. Eng. 2024, 97, 110989. [Google Scholar] [CrossRef]
- Wang, C.; Liu, J.; Lu, B.; Zhang, Y.; Ma, Z. Stiffness Degradation and Mechanical Behavior of Microfiber-Modified High-Toughness Recycled Aggregate Concrete under Constant Load Cycling. Eng. Fract. Mech. 2024, 312, 110608. [Google Scholar] [CrossRef]
- Evans, M.; Farrell, P. Barriers to Integrating Building Information Modelling (BIM) and Lean Construction Practices on Construction Mega-Projects: A Delphi Study. Benchmarking Int. J. 2021, 28, 652–669. [Google Scholar] [CrossRef]
- Dou, Y.; Xue, X.; Li, H.X.; Luo, X.; Li, Z. Development Strategy Optimization for Off-Site Construction Projects: Synergy of the Government and Developers. J. Manag. Eng. 2022, 38, 4022013. [Google Scholar] [CrossRef]
- Kolupaieva, I.; Lindahl, M. Policy Recommendations for Building a Circular Ukraine. J. Clean. Prod. 2025, 92, 144835. [Google Scholar] [CrossRef]
- Bello, A.O. Towards Achieving Circular Economy in the Nigerian Construction Industry: Policymakers Perspectives and Conceptual Framework Development. Smart Sustain. Built Environ. 2025; ahead-of-print. [Google Scholar]
- Bello, A.O.; Khan, A.A.; Idris, A.; Awwal, H.M. Barriers to Modular Construction Systems Implementation in Developing Countries’ Architecture, Engineering and Construction Industry. Eng. Constr. Archit. Manag. 2024, 31, 3148–3164. [Google Scholar] [CrossRef]
- Halog, A.; Anieke, S. A Review of Circular Economy Studies in Developed Countries and Its Potential Adoption in Developing Countries. Circ. Econ. Sustain. 2021, 1, 209–230. [Google Scholar] [CrossRef]
- Koc, K.; Durdyev, S.; Tleuken, A.; Ekmekcioglu, O.; Mbachu, J.; Karaca, F. Critical Success Factors for Construction Industry Transition to Circular Economy: Developing Countries’ Perspectives. Eng. Constr. Archit. Manag. 2024, 31, 4955–4974. [Google Scholar] [CrossRef]
- Oliveira, M.d.P.S.L.; de Oliveira, E.A.; Fonseca, A.M. Strategies to Promote Circular Economy in the Management of Construction and Demolition Waste at the Regional Level: A Case Study in Manaus, Brazil. Clean Technol. Environ. Policy 2021, 23, 2713–2725. [Google Scholar] [CrossRef]
- Sawhney, A. Striving towards a Circular Economy: Climate Policy and Renewable Energy in India. Clean Technol. Environ. Policy 2021, 23, 491–499. [Google Scholar] [CrossRef]
- Torgautov, B.; Zhanabayev, A.; Tleuken, A.; Turkyilmaz, A.; Mustafa, M.; Karaca, F. Circular Economy: Challenges and Opportunities in the Construction Sector of Kazakhstan. Buildings 2021, 11, 501. [Google Scholar] [CrossRef]
- Hasan, M.R.; Sagar, M.S.I.; Ray, B.C. Barriers to Improving Construction and Demolition Waste Management in Bangladesh. Int. J. Constr. Manag. 2023, 23, 2333–2347. [Google Scholar] [CrossRef]
- Olanrewaju, S.D.; Ogunmakinde, O.E. Waste Minimisation Strategies at the Design Phase: Architects’ Response. Waste Manag. 2020, 118, 323–330. [Google Scholar] [CrossRef]
- Ratnasabapathy, S.; Alashwal, A.; Perera, S. Exploring the Barriers for Implementing Waste Trading Practices in the Construction Industry in Australia. Built Environ. Proj. Asset Manag. 2021, 11, 559–576. [Google Scholar] [CrossRef]
- Bank, A.D. Solid Waste Management Sector in Pakistan; A Reform Road Map for Policy Makers. Available online: https://www.adb.org/sites/default/files/publication/784421/solid-waste-management-pakistan-road-map.pdf (accessed on 9 August 2023).
- Mahanth, T.; Suryasekaran, C.R.; Ponnambalam, S.G.; Sankaranarayanan, B.; Karuppiah, K.; Nielsen, I.E. Modelling the Barriers to Circular Economy Practices in the Indian State of Tamil Nadu in Managing E-Wastes to Achieve Green Environment. Sustainability 2023, 15, 4224. [Google Scholar] [CrossRef]
- Shahid, M.U.; Thaheem, M.J.; Arshad, H. Quantification and Benchmarking of Construction Waste and Its Impact on Cost–a Case of Pakistan. Eng. Constr. Archit. Manag. 2023, 30, 2304–2333. [Google Scholar] [CrossRef]
- Bekr, G.A. Study of the Causes and Magnitude of Wastage of Materials on Construction Sites in Jordan. J. Constr. Eng. 2014, 2014, 283298. [Google Scholar] [CrossRef]
- Babatunde, S.O. Quantitative Assessment of Construction Materials Wastage in the Nigerian Construction Sites. J. Emerg. Trends Econ. Manag. Sci. 2012, 3, 238–241. [Google Scholar]
- Lam, P.T.I.; Ann, T.W.; Wu, Z.; Poon, C.S. Methodology for Upstream Estimation of Construction Waste for New Building Projects. J. Clean. Prod. 2019, 230, 1003–1012. [Google Scholar] [CrossRef]
- Foo, L.C.; Rahman, I.A.; Asmi, A.; Nagapan, S.; Khalid, K.I. Classification and Quantification of Construction Waste at Housing Project Site. Int. J. Zero Waste Gener. 2013, 1, 1–4. [Google Scholar]
- Ding, Z.; Wang, X.; Zou, P.X.W. Barriers and Countermeasures of Construction and Demolition Waste Recycling Enterprises under Circular Economy. J. Clean. Prod. 2023, 420, 138235. [Google Scholar] [CrossRef]
- Li, J.; Ding, Z.; Mi, X.; Wang, J. A Model for Estimating Construction Waste Generation Index for Building Project in China. Resour. Conserv. Recycl. 2013, 74, 20–26. [Google Scholar] [CrossRef]
- Loizou, L.; Barati, K.; Shen, X.; Li, B. Quantifying Advantages of Modular Construction: Waste Generation. Buildings 2021, 11, 622. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, W.; Teng, Y.; Chen, S. Construction Waste Reduction in Buildings through Modular and Offsite Construction. J. Manag. Eng. 2024, 40, 4024026. [Google Scholar] [CrossRef]
- Keles, C.; Cruz Rios, F.; Hoque, S. Digital Technologies and Circular Economy in the Construction Sector: A Review of Lifecycle Applications, Integrations, Potential, and Limitations. Buildings 2025, 15, 553. [Google Scholar] [CrossRef]
- Rajanayagam, H.; Beatini, V.; Poologanathan, K.; Nagaratnam, B. Comprehensive Evaluation of Flat Pack Modular Building Systems: Design, Structural Performance, and Operational Efficiency. J. Build. Eng. 2024, 95, 110099. [Google Scholar] [CrossRef]
- Jahan, I.; Zhang, G.; Bhuiyan, M.; Navaratnam, S.; Shi, L. Experts’ Perceptions of the Management and Minimisation of Waste in the Australian Construction Industry. Sustainability 2022, 14, 11319. [Google Scholar] [CrossRef]
- She, Y.; Udawatta, N.; Liu, C.; Tokede, O. Circular Economy-Related Strategies to Minimise Construction and Demolition Waste Generation in Australian Construction Projects. Buildings 2024, 14, 2487. [Google Scholar] [CrossRef]
- Ferronato, N.; Rada, E.C.; Portillo, M.A.G.; Cioca, L.I.; Ragazzi, M.; Torretta, V. Introduction of the Circular Economy within Developing Regions: A Comparative Analysis of Advantages and Opportunities for Waste Valorization. J. Environ. Manag. 2019, 230, 366–378. [Google Scholar] [CrossRef] [PubMed]
- Hua, C.; Liu, C.; Chen, J.; Yang, C.; Chen, L. Promoting Construction and Demolition Waste Recycling by Using Incentive Policies in China. Environ. Sci. Pollut. Res. 2022, 29, 53844–53859. [Google Scholar] [CrossRef] [PubMed]
- Hartley, K.; van Santen, R.; Kirchherr, J. Policies for Transitioning towards a Circular Economy: Expectations from the European Union (EU). Resour. Conserv. Recycl. 2020, 155, 104634. [Google Scholar] [CrossRef]
- Torkayesh, A.E.; Malmir, B.; Asadabadi, M.R. Sustainable Waste Disposal Technology Selection: The Stratified Best-Worst Multi-Criteria Decision-Making Method. Waste Manag. 2021, 122, 100–112. [Google Scholar] [CrossRef]
- Umar, U.A.; Shafiq, N.; Malakahmad, A.; Nuruddin, M.F.; Khamidi, M.F. A Review on Adoption of Novel Techniques in Construction Waste Management and Policy. J. Mater. Cycles Waste Manag. 2017, 19, 1361–1373. [Google Scholar] [CrossRef]
- Bilal, M.; Khan, K.I.A.; Thaheem, M.J.; Nasir, A.R. Current State and Barriers to the Circular Economy in the Building Sector: Towards a Mitigation Framework. J. Clean. Prod. 2020, 276, 123250. [Google Scholar] [CrossRef]
- Ikram, M.; Zhou, P.; Shah, S.A.A.; Liu, G.Q. Do Environmental Management Systems Help Improve Corporate Sustainable Development? Evidence from Manufacturing Companies in Pakistan. J. Clean. Prod. 2019, 226, 628–641. [Google Scholar] [CrossRef]
- Hossain, M.U.; Ng, S.T.; Antwi-Afari, P.; Amor, B. Circular Economy and the Construction Industry: Existing Trends, Challenges and Prospective Framework for Sustainable Construction. Renew. Sustain. Energy Rev. 2020, 130, 109948. [Google Scholar] [CrossRef]
- Wu, Z.; Li, Q.; Zhang, B. The Role of Innovation and Entrepreneurship Employee Training Programs in Enhancing Organizational Commitment from the Perspective of Industry–Education Integration. Front. Psychol. 2025, 16, 1527741. [Google Scholar] [CrossRef]
- Haydam, N.E.; Steenkamp, P. The Social Sciences Research Methodology Framework and Its Application during COVID-19. In Reshaping Sustainable Development Goals Implementation in the World; B P International: West Bengal, India, 2021; pp. 59–72. [Google Scholar]
- Orth, C.d.O.; Maçada, A.C.G. Corporate Fraud and Relationships: A Systematic Literature Review in the Light of Research Onion. J. Financ. Crime 2021, 28, 741–764. [Google Scholar] [CrossRef]
- Amadi, A. Integration in a Mixed-Method Case Study of Construction Phenomena: From Data to Theory. Eng. Constr. Archit. Manag. 2023, 30, 210–237. [Google Scholar] [CrossRef]
- Proudfoot, K. Inductive/Deductive Hybrid Thematic Analysis in Mixed Methods Research. J. Mix. Methods Res. 2023, 17, 308–326. [Google Scholar] [CrossRef]
- Opoku, D.-G.J.; Agyekum, K.; Ayarkwa, J. Drivers of Environmental Sustainability of Construction Projects: A Thematic Analysis of Verbatim Comments from Built Environment Consultants. Int. J. Constr. Manag. 2022, 22, 1033–1041. [Google Scholar] [CrossRef]
- Giorgi, S.; Lavagna, M.; Wang, K.; Osmani, M.; Liu, G.; Campioli, A. Drivers and Barriers towards Circular Economy in the Building Sector: Stakeholder Interviews and Analysis of Five European Countries Policies and Practices. J. Clean. Prod. 2022, 336, 130395. [Google Scholar] [CrossRef]
- Udawatta, N.; Zuo, J.; Chiveralls, K.; Zillante, G. Improving Waste Management in Construction Projects: An Australian Study. Resour. Conserv. Recycl. 2015, 101, 73–83. [Google Scholar] [CrossRef]
- Kim, K.; Tiedmann, H.R.; Faust, K.M. Construction Industry Changes Induced by the COVID-19 Pandemic. Eng. Constr. Archit. Manag. 2024; ahead-of-print. [Google Scholar]
- Hennink, M.M.; Kaiser, B.N.; Marconi, V.C. Code Saturation versus Meaning Saturation: How Many Interviews Are Enough? Qual. Health Res. 2017, 27, 591–608. [Google Scholar] [CrossRef]
- Olanrewaju, O.I.; Chileshe, N.; Babarinde, S.A.; Sandanayake, M. Investigating the Barriers to Building Information Modeling (BIM) Implementation within the Nigerian Construction Industry. Eng. Constr. Archit. Manag. 2020, 27, 2931–2958. [Google Scholar] [CrossRef]
- Chileshe, N.; Rameezdeen, R.; Hosseini, M.R. Drivers for Adopting Reverse Logistics in the Construction Industry: A Qualitative Study. Eng. Constr. Archit. Manag. 2016, 23, 134–157. [Google Scholar] [CrossRef]
- Dauda, J.A.; Tutt, A.; Ajayi, S.O.; Adebisi, W.A.; Saka, A.B.; Oladiran, O.; Oyegoke, A.S.; Jagun, Z.T. Data-Driven Analysis of Barriers to Net Zero Practises in the UK Construction Sector: A Multidisciplinary Approach Using Clustering and Topic Modelling. Soc. Sci. Res. Netw. 2024, 1–30. [Google Scholar] [CrossRef]
- Mekonnen, G.B.; Dos Muchangos, L.S.; Ito, L.; Tokai, A. Reducing Waste Management Scenario Space for Developing Countries: A Hierarchical Clustering on Principal Components Approach. Waste Manag. Res. 2023, 41, 1622–1631. [Google Scholar] [CrossRef] [PubMed]
- Salmenperä, H.; Pitkänen, K.; Kautto, P.; Saikku, L. Critical Factors for Enhancing the Circular Economy in Waste Management. J. Clean. Prod. 2021, 280, 124339. [Google Scholar] [CrossRef]
- Franz, B.; Roberts, B.A.M. Thematic Analysis of Successful and Unsuccessful Project Delivery Teams in the Building Construction Industry. J. Constr. Eng. Manag. 2022, 148, 5022001. [Google Scholar] [CrossRef]
- Farooq, U.; Rehman, S.K.U.; Javed, M.F.; Jameel, M.; Aslam, F.; Alyousef, R. Investigating BIM Implementation Barriers and Issues in Pakistan Using ISM Approach. Appl. Sci. 2020, 10, 7250. [Google Scholar] [CrossRef]
- Debrah, J.K.; Vidal, D.G.; Dinis, M.A.P. Raising Awareness on Solid Waste Management through Formal Education for Sustainability: A Developing Countries Evidence Review. Recycling 2021, 6, 6. [Google Scholar] [CrossRef]
- Won, J.; Cheng, J.C.P.; Lee, G. Quantification of Construction Waste Prevented by BIM-Based Design Validation: Case Studies in South Korea. Waste Manag. 2016, 49, 170–180. [Google Scholar] [CrossRef]
- Li, J.; Yao, Y.; Zuo, J.; Li, J. Key Policies to the Development of Construction and Demolition Waste Recycling Industry in China. Waste Manag. 2020, 108, 137–143. [Google Scholar] [CrossRef]
- Kar, S.; Jha, K.N. Exploring the Critical Barriers to and Enablers of Sustainable Material Management Practices in the Construction Industry. J. Constr. Eng. Manag. 2021, 147, 4021102. [Google Scholar] [CrossRef]
- Mohammed, M.; Shafiq, N.; Al-Mekhlafi, A.-B.A.; Al-Fakih, A.; Zawawi, N.A.; Mohamed, A.M.; Khallaf, R.; Abualrejal, H.M.; Shehu, A.A.; Al-Nini, A. Beneficial Effects of 3D BIM for Pre-Empting Waste during the Planning and Design Stage of Building and Waste Reduction Strategies. Sustainability 2022, 14, 3410. [Google Scholar] [CrossRef]
- Quiñones, R.; Llatas, C.; Montes, M.V.; Cortés, I. Quantification of Construction Waste in Early Design Stages Using Bim-Based Tool. Recycling 2022, 7, 63. [Google Scholar] [CrossRef]
- Hao, J.L.; Yu, S.; Tang, X.; Wu, W. Determinants of Workers’ pro-Environmental Behaviour towards Enhancing Construction Waste Management: Contributing to China’s Circular Economy. J. Clean. Prod. 2022, 369, 133265. [Google Scholar] [CrossRef]
- Cuellar Lobo, J.D.; Lei, Z.; Liu, H.; Li, H.X.; Han, S. Building Information Modelling-(BIM-) Based Generative Design for Drywall Installation Planning in Prefabricated Construction. Adv. Civ. Eng. 2021, 2021, 6638236. [Google Scholar] [CrossRef]
- Chidambaram, S. Application of Building Information Modelling for Reinforcement Waste Minimisation. Proc. Inst. Civ. Eng.–Waste Resour. Manag. 2019, 172, 3–13. [Google Scholar]
- Lu, W.; Lee, W.M.W.; Xue, F.; Xu, J. Revisiting the Effects of Prefabrication on Construction Waste Minimization: A Quantitative Study Using Bigger Data. Resour. Conserv. Recycl. 2021, 170, 105579. [Google Scholar] [CrossRef]
- Athigakunagorn, N.; Limsawasd, C.; Mano, D.; Khathawatcharakun, P.; Labi, S. Promoting Sustainable Policy in Construction: Reducing Greenhouse Gas Emissions through Performance-Variation Based Contract Clauses. J. Clean. Prod. 2024, 448, 141594. [Google Scholar] [CrossRef]
- Schützenhofer, S.; Kovacic, I.; Rechberger, H.; Mack, S. Improvement of Environmental Sustainability and Circular Economy through Construction Waste Management for Material Reuse. Sustainability 2022, 14, 11087. [Google Scholar] [CrossRef]
- Minunno, R.; O’Grady, T.; Morrison, G.M.; Gruner, R.L. Exploring Environmental Benefits of Reuse and Recycle Practices: A Circular Economy Case Study of a Modular Building. Resour. Conserv. Recycl. 2020, 160, 104855. [Google Scholar] [CrossRef]
- Hwang, J.-M.; Won, J.-H.; Jeong, H.-J.; Shin, S.-H. Identifying Critical Factors and Trends Leading to Fatal Accidents in Small-Scale Construction Sites in Korea. Buildings 2023, 13, 2472. [Google Scholar] [CrossRef]
- Ezzat Othman, A.A.; Kamal, A. Enhancing Building Maintainability through Early Supplier Involvement in the Design Process. Organ. Technol. Manag. Constr. Int. J. 2023, 15, 34–49. [Google Scholar]
- Husgafvel, R.; Sakaguchi, D. Circular Economy Development in the Construction Sector in Japan. World 2021, 3, 1–26. [Google Scholar] [CrossRef]
- Adebayo, Y.A.; Ikevuje, A.H.; Kwakye, J.M.; Esiri, A.E. Driving Circular Economy in Project Management: Effective Stakeholder Management for Sustainable Outcomes. GSC Adv. Res. Rev. 2024, 20, 235–245. [Google Scholar] [CrossRef]
- Yuan, H.; Wu, H.; Zuo, J. Understanding Factors Influencing Project Managers’ Behavioral Intentions to Reduce Waste in Construction Projects. J. Manag. Eng. 2018, 34, 4018031. [Google Scholar] [CrossRef]
- Ramos, M.; Martinho, G.; Pina, J. Strategies to Promote Construction and Demolition Waste Management in the Context of Local Dynamics. Waste Manag. 2023, 162, 102–112. [Google Scholar] [CrossRef]
- Nwokediegwu, Z.Q.S.; Ilojianya, V.I.; Ibekwe, K.I.; Adefemi, A.; Etukudoh, E.A.; Umoh, A.A. Advanced Materials for Sustainable Construction: A Review of Innovations and Environmental Benefits. Eng. Sci. Technol. J. 2024, 5, 201–218. [Google Scholar] [CrossRef]
- Al-Raqeb, H.; Ghaffar, S.H.; Al-Kheetan, M.J.; Chougan, M. Understanding the Challenges of Construction Demolition Waste Management towards Circular Construction: Kuwait Stakeholder’s Perspective. Clean. Waste Syst. 2023, 4, 100075. [Google Scholar] [CrossRef]
- Zhao, X.; Webber, R.; Kalutara, P.; Browne, W.; Pienaar, J. Construction and Demolition Waste Management in Australia: A Mini-Review. Waste Manag. Res. 2022, 40, 34–46. [Google Scholar] [CrossRef]
- Mussa, A.; Suryabhagavan, K.V. Solid Waste Dumping Site Selection Using GIS-Based Multi-Criteria Spatial Modeling: A Case Study in Logia Town, Afar Region, Ethiopia. Geol. Ecol. Landsc. 2021, 5, 186–198. [Google Scholar] [CrossRef]
- Zhang, N.; Konyalıoğlu, A.K.; Duan, H.; Feng, H.; Li, H. The Impact of Innovative Technologies in Construction Activities on Concrete Debris Recycling in China: A System Dynamics-Based Analysis. Environ. Dev. Sustain. 2024, 26, 14039–14064. [Google Scholar] [CrossRef]
- Colmenero Fonseca, F.; Cárcel-Carrasco, J.; Martínez-Corral, A.; Kaur, J.; Llinares Millán, J. Diagnosis of the Economic Potential within the Building and Construction Field and Its Waste in Spain. Buildings 2023, 13, 685. [Google Scholar] [CrossRef]
- Pittri, H.; Godawatte, G.A.G.R.; Esangbedo, O.P.; Antwi-Afari, P.; Bao, Z. Exploring Barriers to the Adoption of Digital Technologies for Circular Economy Practices in the Construction Industry in Developing Countries: A Case of Ghana. Buildings 2025, 15, 1090. [Google Scholar] [CrossRef]
- Jones, L.; Gutiérrez, R.U. Circular Ceramics: Mapping UK Mineral Waste. Resour. Conserv. Recycl. 2023, 190, 106830. [Google Scholar] [CrossRef]
- Xiao, D. Evaluating and Prioritizing Strategies to Reduce Carbon Emissions in the Circular Economy for Environmental Sustainability. J. Environ. Manag. 2025, 373, 123446. [Google Scholar] [CrossRef] [PubMed]
- Véliz, K.D.; Busco, C.; Walters, J.P.; Esparza, C. Circular Economy for Construction and Demolition Waste in the Santiago Metropolitan Region of Chile: A Delphi Analysis. Sustainability 2025, 17, 1057. [Google Scholar] [CrossRef]
Materials | Developing Countries | Developed Countries | |||||||
---|---|---|---|---|---|---|---|---|---|
Pakistan | Jordan | Nigeria | Hong Kong | Malaysia | China | South Korea | Australia | ||
[42] | [43] | [44] | [45] | [46] | [47] | [48] | [49] | ||
Concrete | - | 16.76 | 14.13 | 4 | 6 | 1.5 | 1.5 | 1.89 | |
Tiles | 13.5 | 15.57 | 21.38 | 10 | - | 2 | 2.5 | - | |
Mortar | - | - | 14.91 | 10 | - | 2 | 0.3 | - | |
Bricks | 13.7 | - | 14.15 | 15 | 16 | 2 | - | - | |
Wood | 36.2 | 19.49 | - | - | 49 | - | 13 | 49 | |
Steel | 4.5 | 16.91 | 19.03 | 3 | 4 | 4.5 | - | 5.01 | |
Blocks | 14.5 | 17.05 | - | 10 | - | 2 | 3 | - | |
Ceiling Boards | 13.6 | 20.70 | 15.70 | 4 | - | - | - | 5 |
Sr. No | Characteristics of Respondents | Frequency | Percentage |
---|---|---|---|
1. | Type of Organization
| 05 05 08 06 | 21% 21% 33% 25% |
2. | Qualification (in Years)
| 10 14 | 42% 58% |
3. | Experience (in Years)
| 14 05 05 | 58% 21% 21% |
Sr. No | Scope of Measure | Questions |
---|---|---|
1. | Micro Level | How can the issues of poor design practices for waste generation be avoided? |
2. | What measures contractor should take to reduce and reuse the materials during the construction phase of a project? | |
3. | Do you think any measure, which effectively manages waste during post-construction phase of a project? | |
4. | Macro Level | How construction industry can develop a waste minimization culture at a macro level? |
5. | What measures the government should take to ensure waste management practices in the construction sector? |
Sr. No | Groups | Percent Agreement | Percent Disagreement |
---|---|---|---|
1. | Client–Consultant | 70% | 30% |
2. | Client–Contractor | 70% | 30% |
3. | Client–Regulator | 60% | 40% |
4. | Consultant–Contractor | 80% | 20% |
5. | Consultant–Regulator | 60% | 40% |
6. | Contractor–Regulator | 60% | 40% |
7. | Client–Consultant–Contractor | 60% | 40% |
8. | Client–Consultant–Regulator | 50% | 50% |
9. | Client–Contractor–Regulator | 40% | 60% |
10. | Consultant–Contractor–Regulator | 50% | 50% |
11. | Client–Consultant–Contractor–Regulator | 40% | 60% |
Sr. No | Themes | Percent Coverage | Sr. No | Themes | Percent Coverage |
---|---|---|---|---|---|
1. | Financial Assistance | 14.6% | 11. | Clauses of Waste Management | 3.7% |
2. | Awareness Programs | 11.2% | 12. | Content in Curriculum | 3.5% |
3. | Collaboration of Departments | 7.3% | 13. | Modification of Codes | 3.3% |
4. | Heavy Fines | 5.5% | 14. | Designer Field Experience | 2.7% |
5. | BIM Utilization | 5.0% | 15. | Implementation of Policies | 2.3% |
6. | Waste Control Culture | 5.0% | 16. | Least Waste Design Option | 2.3% |
7. | Clarity of Specifications | 4.1% | 17. | Segregation and Recycling | 2.0% |
8. | Resources Requirements | 4.1% | 18. | On-site Reuse of Materials | 2.0% |
9. | Build Landfill Sites | 4.1% | 19. | Bonus and Penalty Clause | 1.3% |
10. | Long-term Recycling Plans | 3.9% | 20. | Business Development | 1.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahid, M.U.; Ali, M. Enablers and Policy Framework for Construction Waste Minimization Under Circular Economy: Stakeholder Perspectives. Sustainability 2025, 17, 4129. https://doi.org/10.3390/su17094129
Shahid MU, Ali M. Enablers and Policy Framework for Construction Waste Minimization Under Circular Economy: Stakeholder Perspectives. Sustainability. 2025; 17(9):4129. https://doi.org/10.3390/su17094129
Chicago/Turabian StyleShahid, Muhammad Usman, and Majid Ali. 2025. "Enablers and Policy Framework for Construction Waste Minimization Under Circular Economy: Stakeholder Perspectives" Sustainability 17, no. 9: 4129. https://doi.org/10.3390/su17094129
APA StyleShahid, M. U., & Ali, M. (2025). Enablers and Policy Framework for Construction Waste Minimization Under Circular Economy: Stakeholder Perspectives. Sustainability, 17(9), 4129. https://doi.org/10.3390/su17094129