Street Experiments Across EU Cities: An Exploratory Study on Leveraging Data for Urban Mobility Impact Evaluation †
Abstract
:1. Introduction
- (i)
- RQ1. What limitations do the experimental, temporal, and spatial scope of SEs impose on impact evaluation approaches?
- (ii)
- RQ2. What is the expected impact of adopting SEs from the perspective of EU cities?
- (iii)
- RQ3. How might outdoor data collection technologies support the impact measurement by maintaining the experimental flexibility of SEs?
2. Materials and Methods
2.1. Street Experiments Impact Evaluation Scope
2.2. City Insights: Theory of Change Workshops
2.3. Technologies Supporting the Impact Evaluation of Street Experiments
2.4. Labkit Concept and Design
3. Results
3.1. Impact Evaluation Framework for Street Experiments
3.2. Indicator Identification and Selection by Cities
3.3. Labkit Design and Testing
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- González-Sánchez, G.; Olmo-Sánchez, M.I.; Maeso-González, E. Challenges and Strategies for Post-COVID-19 Gender Equity and Sustainable Mobility. Sustainability 2021, 13, 2510. [Google Scholar] [CrossRef]
- Werland, S. Diffusing Sustainable Urban Mobility Planning in the EU. Sustainability 2020, 12, 8436. [Google Scholar] [CrossRef]
- Holden, E.; Gilpin, G.; Banister, D. Sustainable Mobility at Thirty. Sustainability 2019, 11, 1965. [Google Scholar] [CrossRef]
- Nikulina, V.; Simon, D.; Ny, H.; Baumann, H. Context-Adapted Urban Planning for Rapid Transitioning of Personal Mobility towards Sustainability: A Systematic Literature Review. Sustainability 2019, 11, 1007. [Google Scholar] [CrossRef]
- Brownrigg-Gleeson, M.L.; Monzon, A.; Cortez, A. Reasons to Pedestrianise Urban Centres: Impact Analysis on Mobility Habits, Liveability and Economic Activities. Sustainability 2023, 15, 16472. [Google Scholar] [CrossRef]
- Del-Busto, F.; Castillo-Mendigaña, G.; Schoen, A. Design and Testing of a Portable Laboratory for Evaluating the Effect of Local Urban Mobility Interventions. In Proceedings of the 19th Conference on Sustainable Development of Energy, Water and Environment Systems—SDEWES, Rome, Italy, 8 September 2024. [Google Scholar]
- Bertolini, L. From “Streets for Traffic” to “Streets for People”: Can Street Experiments Transform Urban Mobility? Transp. Rev. 2020, 40, 734–753. [Google Scholar] [CrossRef]
- Gandini, A.; Quesada, L.; Prieto, I.; Garmendia, L. Climate Change Risk Assessment: A Holistic Multi-Stakeholder Methodology for the Sustainable Development of Cities. Sustain. Cities Soc. 2021, 65, 102641. [Google Scholar] [CrossRef]
- Chovancová, J.; Popovičová, M.; Huttmanová, E. Decoupling Transport-Related Greenhouse Gas Emissions and Economic Growth in the European Union Countries. J. Sustain. Dev. Energy Water Environ. Syst. 2023, 11, 1–18. [Google Scholar] [CrossRef]
- Shabb, K.; McCormick, K.; Mujkic, S.; Anderberg, S.; Palm, J.; Carlsson, A. Launching the Mission for 100 Climate Neutral Cities in Europe: Characteristics, Critiques, and Challenges. Front. Sustain. Cities 2022, 3, 817804. [Google Scholar] [CrossRef]
- Christidis, P.; Vetters, N.; Ulpiani, G.; Guardiola, M.O.; Soler, J.R.L.; Radics, M.; Gonzalo, M.V. Urban Transport in the EU Mission on Climate Neutral and Smart Cities: Preliminary Data from Applicants’ Expressions of Interest. Transp. Res. Procedia 2023, 72, 580–587. [Google Scholar] [CrossRef]
- Hosseini, K.; Stefaniec, A. A Wolf in Sheep’s Clothing: Exposing the Structural Violence of Private Electric Automobility. Energy Res. Soc. Sci. 2023, 99, 103052. [Google Scholar] [CrossRef]
- Sorrell, S.; Stapleton, L. Rebound Effects in UK Road Freight Transport. Transp. Res. Part D Transp. Environ. 2018, 63, 156–174. [Google Scholar] [CrossRef]
- Mattioli, G. Transport Needs in a Climate-Constrained World. A Novel Framework to Reconcile Social and Environmental Sustainability in Transport. Energy Res. Soc. Sci. 2016, 18, 118–128. [Google Scholar] [CrossRef]
- Chatziioannou, I.; Alvarez-Icaza, L.; Bakogiannis, E.; Kyriakidis, C.; Chias-Becerril, L. A Structural Analysis for the Categorization of the Negative Externalities of Transport and the Hierarchical Organization of Sustainable Mobility’s Strategies. Sustainability 2020, 12, 6011. [Google Scholar] [CrossRef]
- Khomenko, S.; Cirach, M.; Pereira-Barboza, E.; Mueller, N.; Barrera-Gómez, J.; Rojas-Rueda, D.; de Hoogh, K.; Hoek, G.; Nieuwenhuijsen, M. Premature Mortality Due to Air Pollution in European Cities: A Health Impact Assessment. Lancet Planet Health 2021, 5, e121–e134. [Google Scholar] [CrossRef]
- González-Gross, M.; Meléndez, A. Sedentarism, Active Lifestyle and Sport: Impact on Health and Obesity Prevention. Nutr. Hosp. 2013, 28 (Suppl. 5), 89–98. [Google Scholar] [CrossRef]
- López-Lambas, M.E.; Alonso, A.; Ramírez-Saiz, A.; Pereira, A. These Boots Are Made for Walking: A Qualitative Study on the Perceived Barriers to Pedestrian Mobility in Madrid. Future Transp. 2023, 3, 111–132. [Google Scholar] [CrossRef]
- Kott, J. Streets of Clay: Design and Assessment of Sustainable Urban and Suburban Streets; Curtin University: Perth, Australia, 2011. [Google Scholar]
- Creutzig, F.; Javaid, A.; Soomauroo, Z.; Lohrey, S.; Milojevic-Dupont, N.; Ramakrishnan, A.; Sethi, M.; Liu, L.; Niamir, L.; Bren d’Amour, C.; et al. Fair Street Space Allocation: Ethical Principles and Empirical Insights. Transp. Rev. 2020, 40, 711–733. [Google Scholar] [CrossRef]
- Gössling, S. Why Cities Need to Take Road Space from Cars—And How This Could Be Done. J. Urban Des. 2020, 25, 443–448. [Google Scholar] [CrossRef]
- Nello-Deakin, S. Is There Such a Thing as a ‘Fair’ Distribution of Road Space? J. Urban Des. 2019, 24, 698–714. [Google Scholar] [CrossRef]
- Semenza, J.C.; March, T.L. An Urban Community-Based Intervention to Advance Social Interactions. Environ. Behav. 2009, 41, 22–42. [Google Scholar] [CrossRef]
- Lydon, M.; Garcia, A. Tactical Urbanism; Island Press/Center for Resource Economics: Washington, DC, USA, 2015; ISBN 978-1-59726-451-8. [Google Scholar]
- Littke, H. Revisiting the San Francisco Parklets Problematizing Publicness, Parks, and Transferability. Urban For. Urban Green. 2016, 15, 165–173. [Google Scholar] [CrossRef]
- Cowman, K. Play Streets: Women, Children and the Problem of Urban Traffic, 1930–1970. Soc. Hist. 2017, 42, 233–256. [Google Scholar] [CrossRef]
- D’Haese, S.; Van Dyck, D.; De Bourdeaudhuij, I.; Deforche, B.; Cardon, G. Organizing “Play Streets” during School Vacations Can Increase Physical Activity and Decrease Sedentary Time in Children. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 14. [Google Scholar] [CrossRef]
- Pascual Bellido, N.; Foncea Román, Á.; López Escolano, C. El urbanismo táctico como estrategia de adaptación del espacio urbano a los modelos de movilidad pospandemia: El caso de Logroño. In Proceedings of the Geografía: Cambios, Retos y Adaptación: Libro de Actas. XVIII Congreso de la Asociación Española de Geografía, Logroño, Spain, 12–14 September 2023; Asociación Española de Geografía: Madrid, Spain, 2023; pp. 905–915, ISBN 978-84-09-53925-3. [Google Scholar]
- Sarmiento, O.L.; Díaz del Castillo, A.; Triana, C.A.; Acevedo, M.J.; Gonzalez, S.A.; Pratt, M. Reclaiming the Streets for People: Insights from Ciclovías Recreativas in Latin America. Prev. Med. 2017, 103, S34–S40. [Google Scholar] [CrossRef]
- Mueller, N.; Rojas-Rueda, D.; Khreis, H.; Cirach, M.; Andrés, D.; Ballester, J.; Bartoll, X.; Daher, C.; Deluca, A.; Echave, C.; et al. Changing the Urban Design of Cities for Health: The Superblock Model. Environ. Int. 2020, 134, 105132. [Google Scholar] [CrossRef]
- Rueda, S. Superblocks for the Design of New Cities and Renovation of Existing Ones: Barcelona’s Case. In Integrating Human Health into Urban and Transport Planning: A Framework; Nieuwenhuijsen, M., Khreis, H., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 135–153. ISBN 978-3-319-74983-9. [Google Scholar]
- Capasso Da Silva, D.; King, D.A.; Lemar, S. Accessibility in Practice: 20-Minute City as a Sustainability Planning Goal. Sustainability 2020, 12, 129. [Google Scholar] [CrossRef]
- Moreno, C.; Allam, Z.; Chabaud, D.; Gall, C.; Pratlong, F. Introducing the “15-Minute City”: Sustainability, Resilience and Place Identity in Future Post-Pandemic Cities. Smart Cities 2021, 4, 93–111. [Google Scholar] [CrossRef]
- Cariello, A.; Ferorelli, R.; Rotondo, F. Tactical Urbanism in Italy: From Grassroots to Institutional Tool—Assessing Value of Public Space Experiments. Sustainability 2021, 13, 11482. [Google Scholar] [CrossRef]
- Vecchio, G.; Tiznado-Aitken, I.; Mora-Vega, R. Pandemic-Related Streets Transformations: Accelerating Sustainable Mobility Transitions in Latin America. Case Stud. Transp. Policy 2021, 9, 1825–1835. [Google Scholar] [CrossRef]
- Kinigadner, J.; Büttner, B.; Rivas de Gante, A.; Aumann, S. How to Transform Urban Spaces and Mobility: A Framework for Analysing Street Experiments. J. Urban Des. 2024, 29, 536–556. [Google Scholar] [CrossRef]
- Smeds, E.; Papa, E. The Value of Street Experiments for Mobility and Public Life: Citizens’ Perspectives from Three European Cities. J. Urban Mobil. 2023, 4, 100055. [Google Scholar] [CrossRef]
- Kaluarachchi, Y. Implementing Data-Driven Smart City Applications for Future Cities. Smart Cities 2022, 5, 455–474. [Google Scholar] [CrossRef]
- von Schönfeld, K.C.; Bertolini, L. Urban Streets: Epitomes of Planning Challenges and Opportunities at the Interface of Public Space and Mobility. Cities 2017, 68, 48–55. [Google Scholar] [CrossRef]
- Gillis, D.; Semanjski, I.; Lauwers, D. How to Monitor Sustainable Mobility in Cities? Literature Review in the Frame of Creating a Set of Sustainable Mobility Indicators. Sustainability 2016, 8, 29. [Google Scholar] [CrossRef]
- Jung, M.; Wentland, A. Beyond Scalable Impacts: Roles of Mobility Experiments in Local Transition Governance. GAIA-Ecol. Perspect. Sci. Soc. 2024, 33, 80–86. [Google Scholar] [CrossRef]
- Vidović, K.; Šoštarić, M.; Budimir, D. An Overview of Indicators and Indices Used for Urban Mobility Assessment. Promet-Traffic Transp. 2019, 31, 703–714. [Google Scholar] [CrossRef]
- VanHoose, K.; de Gante, A.R.; Bertolini, L.; Kinigadner, J.; Büttner, B. From Temporary Arrangements to Permanent Change: Assessing the Transitional Capacity of City Street Experiments. J. Urban Mobil. 2022, 2, 100015. [Google Scholar] [CrossRef]
- Hosseini, K.; Pramod Choudhari, T.; Stefaniec, A.; O’Mahony, M.; Caulfield, B. E-Bike to the Future: Scalability, Emission-Saving, and Eco-Efficiency Assessment of Shared Electric Mobility Hubs. Transp. Res. Part D Transp. Environ. 2024, 133, 104275. [Google Scholar] [CrossRef]
- Garau, C.; Pirisino, M.S.; Pinna, F. A Literature Review on Street Experiments: A Preliminary Step Towards Adaptive Planned Solutions from Bottom-Up Experiments. In Proceedings of the Computational Science and Its Applications—ICCSA 2024 Workshops, Hanoi, Vietnam, 1–4 July 2024; Gervasi, O., Murgante, B., Garau, C., Taniar, D., C. Rocha, A.M.A., Faginas Lago, M.N., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 184–196. [Google Scholar]
- VanHoose, K. City Street Experiments and System Change: Identifying Barriers and Enablers to the Transformative Process. Transp. Res. Interdiscip. Perspect. 2023, 22, 100982. [Google Scholar] [CrossRef]
- Yassin, H.H. Livable City: An Approach to Pedestrianization through Tactical Urbanism. Alex. Eng. J. 2019, 58, 251–259. [Google Scholar] [CrossRef]
- Cash-Gibson, L.; Diaz, A.B.; Sardà, O.M.; Benach, J. How Do Superblock Interventions Influence Health? A Scoping Review. Cities 2024, 153, 105262. [Google Scholar] [CrossRef]
- Nieuwenhuijsen, M.; de Nazelle, A.; Pradas, M.C.; Daher, C.; Dzhambov, A.M.; Echave, C.; Gössling, S.; Iungman, T.; Khreis, H.; Kirby, N.; et al. The Superblock Model: A Review of an Innovative Urban Model for Sustainability, Liveability, Health and Well-Being. Environ. Res. 2024, 251, 118550. [Google Scholar] [CrossRef] [PubMed]
- Dias, D.; Tchepel, O.; Antunes, A.P. Integrated Modelling Approach for the Evaluation of Low Emission Zones. J. Environ. Manag. 2016, 177, 253–263. [Google Scholar] [CrossRef]
- Li, K.; Wilson, J.P. Modeling the Health Benefits of Superblocks across the City of Los Angeles. Appl. Sci. 2023, 13, 2095. [Google Scholar] [CrossRef]
- Gonzalez, J.N.; Gomez, J.; Vassallo, J.M. Do Urban Parking Restrictions and Low Emission Zones Encourage a Greener Mobility? Transp. Res. Part D Transp. Environ. 2022, 107, 103319. [Google Scholar] [CrossRef]
- Bardaka, E.; Delgado, M.S.; Florax, R.J.G.M. A Spatial Multiple Treatment/Multiple Outcome Difference-in-Differences Model with an Application to Urban Rail Infrastructure and Gentrification. Transp. Res. Part A Policy Pract. 2019, 121, 325–345. [Google Scholar] [CrossRef]
- Delgado, M.S.; Florax, R.J.G.M. Difference-in-Differences Techniques for Spatial Data: Local Autocorrelation and Spatial Interaction. Econ. Lett. 2015, 137, 123–126. [Google Scholar] [CrossRef]
- Riedel, V.; Dziekan, K.; Müller, S.; Abraham, M.; Kettner, S.; Daubitz, S. Evaluation Matters. A Practitioners’ Guide to Sound Evaluation for Urban Mobility Measures. Available online: https://www.researchgate.net/publication/304538182_Evaluation_matters_A_practitioners’_guide_to_sound_evaluation_for_urban_mobility_measures (accessed on 11 December 2024).
- Kraus, L.; Proff, H. Sustainable Urban Transportation Criteria and Measurement—A Systematic Literature Review. Sustainability 2021, 13, 7113. [Google Scholar] [CrossRef]
- Chatziioannou, I.; Nikitas, A.; Tzouras, P.G.; Bakogiannis, E.; Alvarez-Icaza, L.; Chias-Becerril, L.; Karolemeas, C.; Tsigdinos, S.; Wallgren, P.; Rexfelt, O. Ranking Sustainable Urban Mobility Indicators and Their Matching Transport Policies to Support Liveable City Futures: A MICMAC Approach. Transp. Res. Interdiscip. Perspect. 2023, 18, 100788. [Google Scholar] [CrossRef]
- CIVITAS Evaluation Framework|CIVITAS. Available online: https://civitas.eu/resources/civitas-evaluation-framework (accessed on 29 March 2024).
- Chatziioannou, I.; Nakis, K.; Tzouras, P.G.; Bakogiannis, E. How to Monitor and Assess Sustainable Urban Mobility? An Application of Sustainable Urban Mobility Indicators in Four Greek Municipalities . In Proceedings of the Smart Energy for Smart Transport, Skiathos Island, Greece, 31 August–2 September 2022; Nathanail, E.G., Gavanas, N., Adamos, G., Eds.; Springer Nature: Cham, Switzerland, 2023; pp. 1689–1710. [Google Scholar]
- Broz, J.; Angelakis, V.; Penttinen, M.; Schon, A.; Jain, A.; Tichy, T.; Del-Busto, F.; Sioutis, I.; Nese, T.S.; Grundel, I.; et al. Designing an Evaluation Methodology for the Living Labs of the ELABORATOR Project. In Proceedings of the 2024 Smart City Symposium, Prague, Czech Republic, 23–24 May 2024. [Google Scholar]
- Rolfe, S. Divergence in Community Participation Policy: Analysing Localism and Community Empowerment Using a Theory of Change Approach. Local Gov. Stud. 2016, 42, 97–118. [Google Scholar] [CrossRef]
- Bello-Bravo, J.; Medendorp, J.W.; Pittendrigh, B. Just Participation or Just Participation? A Participatory Justice Model for More Successful Theory of Change Design, Implementation, and Solution Uptake. Heliyon 2022, 8, e09808. [Google Scholar] [CrossRef] [PubMed]
- Mangiaracina, R.; Perego, A.; Salvadori, G.; Tumino, A. A Comprehensive View of Intelligent Transport Systems for Urban Smart Mobility. Int. J. Logist. Res. Appl. 2017, 20, 39–52. [Google Scholar] [CrossRef]
- Paiva, S.; Ahad, M.A.; Tripathi, G.; Feroz, N.; Casalino, G. Enabling Technologies for Urban Smart Mobility: Recent Trends, Opportunities and Challenges. Sensors 2021, 21, 2143. [Google Scholar] [CrossRef]
- Chaix, B.; Benmarhnia, T.; Kestens, Y.; Brondeel, R.; Perchoux, C.; Gerber, P.; Duncan, D.T. Combining Sensor Tracking with a GPS-Based Mobility Survey to Better Measure Physical Activity in Trips: Public Transport Generates Walking. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 84. [Google Scholar] [CrossRef]
- Ettehadieh, D.; Farooq, B.; Saunier, N. Automated Pedestrian Data-Collection and Flow Analysis in Public Spaces. Transp. Res. Procedia 2014, 2, 207–212. [Google Scholar] [CrossRef]
- Song, B.; Wynter, L. Real-Time Public Transport Service-Level Monitoring Using Passive WiFi: A Spectral Clustering Approach for Train Timetable Estimation. arXiv 2017, arXiv:1703.00759. [Google Scholar]
- Hou, J.; Zhang, E.; Long, Y. Measuring Pedestrian Flows in Public Spaces: Inferring Walking for Transport and Recreation Using Wi-Fi Probes. Build. Environ. 2023, 230, 109999. [Google Scholar] [CrossRef]
- Lesani, A.; Miranda-Moreno, L. Development and Testing of a Real-Time WiFi-Bluetooth System for Pedestrian Network Monitoring, Classification, and Data Extrapolation. IEEE Trans. Intell. Transp. Syst. 2019, 20, 1484–1496. [Google Scholar] [CrossRef]
- Schulthess, L.; Salzmann, T.; Vogt, C.; Magno, M. A LoRa-Based Energy-Efficient Sensing System for Urban Data Collection. In Proceedings of the 2023 9th International Workshop on Advances in Sensors and Interfaces (IWASI), Bari, Italy, 8–9 June 2023; pp. 69–74. [Google Scholar]
- Karaman, O.; Alhudhaif, A.; Polat, K. Development of Smart Camera Systems Based on Artificial Intelligence Network for Social Distance Detection to Fight against COVID-19. Appl. Soft Comput. 2021, 110, 107610. [Google Scholar] [CrossRef]
- Verma, D.; Mumm, O.; Carlow, V.M. Generating Citywide Street Cross-Sections Using Aerial LiDAR and Detailed Street Plan. Sustain. Cities Soc. 2023, 96, 104673. [Google Scholar] [CrossRef]
- Ansariyar, A.; Jeihani, M. Statistical Analysis of Jaywalking Conflicts by a Lidar Sensor. Sci. J. Sil. Univ. Technol.-Ser. Transp. 2023, 120, 17–36. [Google Scholar] [CrossRef]
- Del Busto Pinzón, D.F.; de Souza, F.T. A Data Based Model as a Metropolitan Management Tool: The Bogotá-Sabana Region Case Study in Colombia. Land Use Policy 2016, 54, 253–263. [Google Scholar] [CrossRef]
- Abdollahzadeh, N.; Biloria, N. Outdoor Thermal Comfort: Analyzing the Impact of Urban Configurations on the Thermal Performance of Street Canyons in the Humid Subtropical Climate of Sydney. Front. Archit. Res. 2021, 10, 394–409. [Google Scholar] [CrossRef]
SUMIs | Indicator Category | Data Collection Category | Type of Intervention Addressed by Indicators [57] | Frequency of Selection by Cities During the ToC Workshops | |||||
---|---|---|---|---|---|---|---|---|---|
TOD | TP | CFP | BL | WS | BS | ||||
Quality of public space | QL | S | * | * | * | * | * | 14: LUN, COP; TRI, HEL, ZGZ; VAL, ISSY, SPL, AMS, MIL, BRA, LND, RIG, VIL | |
Accidents | QL | DB | ✕ | ✕ | ✕ | ✕ | 11: LUN, COP, TRI, HEL, VAL, KRU, LIB, MIL, BRA, LND, VIL | ||
Traffic safety active modes | QL | DB | ✕ | ✕ | ✕ | ✕ | 10: LUN, COP, TRI, HEL, VAL, ISSY, SPL, BRA, LND, VIL | ||
Opportunity for active mobility | MSP | GIS | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | 10: LUN, COP, ZGZ, VAL, MIL, AMS, BRA, LND, RIG, VIL |
Urban functional diversity | MSP | GIS | * | * | * | 8: LUN, COP, ZGZ, HEL, AMS, BRA, LND, RIG | |||
Satisfaction with transport | MSP | S | ✕ | 7: LUN, TRI, ZGZ, MIL, KRU, LND, RIG | |||||
Air pollutant emissions | QL | DB, S, TM | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | 6: KRU, LUN, ZGZ, BRA, LND, VIL |
Noise hindrance | QL | F | ✕ | ✕ | ✕ | 6: ION, ZGZ, SPLI, BRA, LND, VIL | |||
Access to mobility services | QL | GIS | ✕ | ✕ | 5: TRI, ZGZ, MIL, SPLIT, RIG | ||||
Congestion and delays | EC | S, GIS, F | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | 5: LUND, ZGZ, VAL, SPLIT, BRA |
Accessibility for mobility-impaired groups | MSP | S | ✕ | ✕ | 5: LUN, TRI, MIL, LND, VIL | ||||
Security | MSP | S | 5: LUN, ION, MIL, RIG, VIL | ||||||
Mobility space usage | QL | GIS | * | * | * | * | * | * | 5: AMS, MIL, BRA, LND, RIG, |
Greenhouse gas Emissions | ENV | DB, S, TM | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | 4: ION, ZGZ, BTA, LND |
Modal split | MSP | DB, S | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | 3: COP, ZGZ, KRU |
Commuting travel time | EC | S | * | * | * | * | * | * | 3: TRI, ZGZ, BRA |
Multimodal integration | MSP | S, GIS | ✕ | ✕ | 3: LUN, MIL, RIG | ||||
Affordability for the poorest groups | MSP | DB | ✕ | ✕ | - | ||||
Energy efficiency | ENV | DB, S, TM | ✕ | ✕ | ✕ | ✕ | ✕ | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del-Busto, F.; Castillo-Mendigaña, G.; Schön, A.; Ester, L. Street Experiments Across EU Cities: An Exploratory Study on Leveraging Data for Urban Mobility Impact Evaluation. Sustainability 2025, 17, 3622. https://doi.org/10.3390/su17083622
Del-Busto F, Castillo-Mendigaña G, Schön A, Ester L. Street Experiments Across EU Cities: An Exploratory Study on Leveraging Data for Urban Mobility Impact Evaluation. Sustainability. 2025; 17(8):3622. https://doi.org/10.3390/su17083622
Chicago/Turabian StyleDel-Busto, Felipe, Ginna Castillo-Mendigaña, Anne Schön, and Luis Ester. 2025. "Street Experiments Across EU Cities: An Exploratory Study on Leveraging Data for Urban Mobility Impact Evaluation" Sustainability 17, no. 8: 3622. https://doi.org/10.3390/su17083622
APA StyleDel-Busto, F., Castillo-Mendigaña, G., Schön, A., & Ester, L. (2025). Street Experiments Across EU Cities: An Exploratory Study on Leveraging Data for Urban Mobility Impact Evaluation. Sustainability, 17(8), 3622. https://doi.org/10.3390/su17083622