Occurrence and Risk Assessment of Veterinary Antimicrobials in Commercial Organic Fertilizers on Chinese Markets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Target Analytes
2.2. Sample Collection and Pretreatment
2.3. Instrumental Analysis and Quality Assurance and Quality Control (QA/QC)
2.4. Risk Assessment
3. Results and Discussion
3.1. Levels of Antimicrobials in the COFs
3.2. Antimicrobial Residues in COFs Made from Different Raw Materials
3.3. Antimicrobial Residues in COFs Made by Different Processes
3.4. Antimicrobial Residues in COFs Produced from Different Regions
3.5. Ecological Risk of Antimicrobials in COFs on Agricultural Soils
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
COFs | Commercial organic fertilizers |
ARGs | Antimicrobial resistance genes |
Appendix A
Analyte | Precursor Ion (m/z) | Quantitative Ion (m/z) | Qualitive Ion (m/z) | Retention Time (min) | Collision Energy (V) | Entrance Voltage (V) | Lens Voltage (V) | MDL (ng/L) | MQL (ng/L) |
---|---|---|---|---|---|---|---|---|---|
Chlortetracycline | 479 | 444 | 462 | 9.18 | −28/−20 | 30/30 | −122/−92 | 24 | 80 |
Cinoxacin | 263 | 217 | 245 | 9.11 | −29/−21 | 16/19 | −52/−48 | 13 | 43 |
Ciprofloxacin | 332 | 314 | 288 | 8.45 | −31/−24 | 1/0 | −68/−56 | 14 | 47 |
Clindamycin | 425 | 126.3 | 377 | 9.54 | −40/−25 | 25/36 | −76/−84 | 13 | 45 |
Danofloxacin | 358 | 340 | 82 | 8.55 | −33/−58 | 0/4 | −76/−80 | 8 | 26 |
Demeclocycline | 465 | 448 | 430 | 8.88 | −23/−27 | 18/22 | −100/−116 | 75 | 249 |
Difluoxacin | 400 | 382 | 356 | 8.71 | −32/−27 | 17/33 | −76/−68 | 11 | 36 |
Doxycycline | 445 | 428 | 154 | 9.47 | −24/−40 | 30/30 | −80/−82 | 34 | 112 |
Enoxacin | 321 | 303 | 234 | 8.12 | −27/−29 | 22/0 | −60/−64 | 8 | 28 |
Enrofloxacin | 360 | 316 | 342 | 8.52 | −27/−31 | 22/35 | −60/−64 | 9 | 31 |
Erythromycin | 734 | 158 | 576 | 9.8 | −38/−24 | 29/30 | −128/−168 | 58 | 193 |
Fleroxacin | 370 | 326 | 269 | 7.81 | −25/−36 | 28/13 | −72/−92 | 21 | 71 |
Flumequine | 262 | 244 | 202 | 9.71 | −26/−44 | 10/6 | −44/−72 | 3 | 10 |
Isochlortetracycline | 479 | 461.9 | 444 | 8.71 | −27/−29 | 16/6 | −92/−124 | 40 | 134 |
Josamycin | 828 | 174.2 | 109.4 | 9.92 | −45/−58 | 36/47 | −144/−124 | 22 | 73 |
Leucomycin | 702 | 174.2 | 558.2 | 9.14 | −40/−32 | 40/36 | −112/−128 | 55 | 184 |
Lincomycin | 407 | 126 | 359 | 7.81 | −38/−24 | 25/30 | −80/−84 | 1 | 3 |
Lomefloxacin | 352 | 265 | 308 | 8.64 | −32/−23 | 28/18 | −60/−56 | 17 | 55 |
Marbofloxacin | 363 | 72 | 319 | 7.67 | −31/−24 | 31/24 | −64/−76 | 15 | 50 |
Nalidixic acid | 233 | 215 | 187 | 9.63 | −19/−34 | 6/6 | −48/−68 | 6 | 20 |
Norfloxacin | 320 | 302 | 276 | 8.26 | −31/−24 | 2/2 | −60/−52 | 14 | 46 |
Ofloxacin | 362 | 318 | 261 | 8.1 | −27/−37 | 28/35 | −68/−72 | 13 | 43 |
Oleandomycin | 688 | 158.3 | 544.4 | 9.59 | −38/−23 | 16/16 | −116/−96 | 28 | 94 |
Orbifloxacin | 396 | 352 | 295 | 8.69 | −23/−30 | 0/16 | −76/−96 | 6 | 22 |
Oxolinic acid | 461 | 426 | 443 | 8.52 | −24/−17 | 20/20 | −76/−72 | 4 | 15 |
Oxytetracycline | 262 | 244 | 202 | 9.26 | −24/−42 | 13/7 | −64/−108 | 23 | 76 |
Pefloxacin | 334 | 316 | 290 | 8.12 | −29/−24 | 0/0 | −64/−56 | 9 | 31 |
Pipemidic acid | 304 | 217 | 189 | 7.39 | −30/−44 | 4/21 | −72/−68 | 19 | 64 |
Sarafloxacin | 386 | 299 | 368 | 8.81 | −39/−33 | 16/19 | −88/−72 | 15 | 51 |
Sparfloxacin | 393 | 292 | 349 | 8.97 | −30/−27 | 8/15 | −88/−80 | 18 | 59 |
Spiramycin | 844 | 174 | 109 | 9.82 | −45/−56 | 42/52 | −168/−144 | 32 | 107 |
Sulfabenzamide | 277 | 156 | 92 | 8.9 | −16/−47 | 14/6 | −40/−52 | 4 | 12 |
Sulfacetamide | 215 | 156.1 | 108 | 1.63 | −15/−30 | 9/7 | −36/−44 | 8 | 26 |
Sulfachlorpyridazine | 284.9 | 156 | 108.1 | 8.29 | −20/−37 | 18/15 | −56/−56 | 11 | 36 |
Sulfadiazine | 250.9 | 156.1 | 108.2 | 4.76 | −21/−36 | 15/16 | −52/−56 | 15 | 50 |
Sulfadimethoxine | 311 | 156 | 108.1 | 8.71 | −26/−38 | 14/19 | −60/−68 | 7 | 23 |
Sulfadoxine | 311 | 156 | 108.1 | 9.16 | −27/−38 | 14/15 | −60/−64 | 12 | 40 |
Sulfaguanidine | 215 | 156 | 92.1 | 3.5 | −18/−34 | 13/10 | −36–32 | 17 | 56 |
Sulfisomidine | 279 | 124 | 185.9 | 7.79 | −26/−22 | 12/15 | −48/−56 | 6 | 18 |
Sulfamerazine | 264.9 | 155.9 | 172.2 | 6.6 | −23/−22 | 14/24 | −52/−52 | 6 | 19 |
Sulfameter | 280.9 | 156 | 108 | 8.55 | −23/−38 | 20/19 | −64/−64 | 23 | 76 |
Sulfamethazine | 279 | 186 | 156 | 5.23 | −24/−25 | 24/22 | −52/−60 | 8 | 26 |
Sulfamethiazole | 271 | 156.1 | 108.2 | 7.62 | −19/−34 | 19/19 | −52/−56 | 21 | 71 |
Sulfamethoxazole | 254 | 155.9 | 108.1 | 8.47 | −21/−35 | 18/20 | −48/−48 | 26 | 87 |
Sulfamethoxypyridazine | 281 | 155.9 | 92 | 7.43 | −22/−42 | 18/17 | −56/−52 | 15 | 50 |
Sulfamonomethoxine | 280.9 | 156 | 108 | 8 | −23/−38 | 24/24 | −56/−64 | 14 | 48 |
Sulfamoxole | 268 | 92 | 155.9 | 8.73 | −46/−20 | 25/14 | −56/−44 | 7 | 22 |
Sulfanitran | 336 | 134.2 | 197.8 | 9.54 | −38/−29 | 22/26 | −80/−48 | 7 | 25 |
Sulfaphenazole | 315 | 156 | 222 | 9.02 | −28/−26 | 29/31 | −72/−68 | 6 | 21 |
Sulfapyridine | 249.9 | 156 | 184.1 | 6.13 | −23/−23 | 23/26 | −52/−48 | 10 | 34 |
Sulfaquinoxaline | 301 | 156 | 92 | 9.26 | −25/−56 | 28/28 | −48/−68 | 6 | 22 |
Sulfathiazole | 255.9 | 156.1 | 108 | 5.63 | −20/−34 | 22/24 | −52/−48 | 20 | 67 |
Sulfisoxazole | 268 | 156.1 | 107.9 | 7.6 | −19/−35 | 17/21 | −48/−56 | 7 | 23 |
Tetracycline | 445 | 410 | 427 | 8.38 | −25/−17 | 20/27 | −88/−66 | 21 | 71 |
Tilmicosin | 869 | 174 | 132 | 9.35 | −60/−67 | 30/51 | −280/−196 | 3 | 11 |
Trimethoprim | 291 | 230 | 261 | 7.84 | −31/−33 | 34/33 | −52/−56 | 13 | 42 |
Tylosin | 917 | 773.2 | 174.2 | 9.68 | −40/−51 | 44/39 | −164/−172 | 11 | 35 |
Raw Material | Sample Number | Main Treatment and Processes |
---|---|---|
Poultry manure | 20 | Mix, ferment, crush |
Sheep manure | 17 | Mix, ferment, crush |
Cattle manure | 8 | Mix, ferment, crush |
Pig manure | 2 | Mix, ferment, crush |
Bio-organic materials (mushroom residues, bean dreg, Chinese herb residues, etc.) | 14 | Ferment, mix, crush, pellet |
Mixed feedstocks | 32 | Ferment, mix, crush, pellet |
Total | 93 | Mix, ferment, crush, pellet |
Antimicrobial | Maximum (ng/g) | Median (ng/g) | Minimum (ng/g) | Mean (ng/g) | Standard Deviation (ng/g) | Detection Frequency (%) |
---|---|---|---|---|---|---|
Quinolones | ||||||
Ciprofloxacin | 621 | 32.0 | 4.84 | 75.7 | 144 | 17 |
Enrofloxacin | 417 | 47.9 | 3.60 | 106 | 119 | 20 |
Fleroxacin | 14.4 | 9.32 | 5.07 | 9.58 | 3.32 | 5 |
Flumequine | 32.5 | 7.65 | 4.25 | 13.0 | 11.4 | 4 |
Lomefloxacin | 119 | 24.1 | 9.18 | 45.2 | 39.4 | 11 |
Marbofloxacin | 15.1 | 6.37 | 2.24 | 6.55 | 4.13 | 8 |
Nalidixic acid | 50.0 | 10.1 | 1.45 | 13.1 | 10.3 | 30 |
Norfloxacin | 83.9 | 68.0 | 38.1 | 66.9 | 14.4 | 8 |
Ofloxacin | 146 | 23.6 | 2.71 | 37.4 | 36.2 | 49 |
Oxolinic acid | 178 | 79.0 | 43.1 | 100 | 57.2 | 3 |
Sparfloxacin | 13.2 | 6.04 | 3.81 | 7.27 | 3.54 | 4 |
Sulfonamides | ||||||
Sulfadiazine | 24.5 | 6.27 | 0.99 | 8.58 | 8.39 | 5 |
Sulfamethoxazole | 21.8 | 11.4 | 0.95 | 11.4 | 10.4 | 2 |
Sulfaphenazole | 24.5 | 4.23 | 1.94 | 6.61 | 6.06 | 14 |
Sulfapyridine | 128 | 1.98 | 0.76 | 33.1 | 54.6 | 4 |
Sulfaquinoxaline | 17.3 | 2.23 | 0.66 | 3.95 | 4.04 | 17 |
Sulfamoxole | 76.2 | 12.8 | 2.14 | 22.4 | 25.9 | 6 |
Macrolides | ||||||
Erythromycin | 163 | 6.59 | 3.54 | 19.9 | 41.5 | 14 |
Leucomycin | 260 | 58.7 | 14.1 | 87.9 | 79.7 | 20 |
Tilmicosin | 3310 | 42.2 | 11.8 | 458 | 1080 | 9 |
Tylosin | 485 | 55.9 | 37.3 | 193 | 207 | 3 |
Lincosamides | ||||||
Lincomycin | 5.47 | 3.12 | 0.67 | 3.09 | 1.96 | 3 |
References
- Zhang, Q.Q.; Ying, G.G.; Pan, C.G.; Liu, Y.S.; Zhao, J.L. Comprehensive Evaluation of Antibiotics Emission and Fate in the River Basins of China: Source Analysis, Multimedia Modeling, and Linkage to Bacterial Resistance. Environ. Sci. Technol. 2015, 49, 6772–6782. [Google Scholar] [CrossRef] [PubMed]
- Tian, R.; Li, C.; Xie, S.; You, F.; Cao, Z.; Xu, Z.; Yu, G.; Wang, Y. Preparation of Biochar via Pyrolysis at Laboratory and Pilot Scales to Remove Antibiotics and Immobilize Heavy Metals in Livestock Feces. J. Soils Sediments 2019, 19, 2891–2902. [Google Scholar] [CrossRef]
- Ezzariai, A.; Hafidi, M.; Khadra, A.; Aemig, Q.; El Fels, L.; Barret, M.; Merlina, G.; Patureau, D.; Pinelli, E. Human and Veterinary Antibiotics during Composting of Sludge or Manure: Global Perspectives on Persistence, Degradation, and Resistance Genes. J. Hazard. Mater. 2018, 359, 465–481. [Google Scholar] [CrossRef]
- Zhao, L.; Dong, Y.H.; Wang, H. Residues of Veterinary Antibiotics in Manures from Feedlot Livestock in Eight Provinces of China. Sci. Total Environ. 2010, 408, 1069–1075. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.B.; Zakaria, M.P.; Latif, P.A.; Saari, N. Occurrence of Veterinary Antibiotics and Progesterone in Broiler Manure and Agricultural Soil in Malaysia. Sci. Total Environ. 2014, 488–489, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Carballo, E.; González-Barreiro, C.; Scharf, S.; Gans, O. Environmental Monitoring Study of Selected Veterinary Antibiotics in Animal Manure and Soils in Austria. Environ. Pollut. 2007, 148, 570–579. [Google Scholar] [CrossRef]
- European Union. Regulation (EU) No. 37/2010 of 22 December 2009 on Pharmacologically Active Substances and Their Classification Regarding Maximum Residue Limits in Foodstuffs of Animal Origin. Off. J. Eur. Commun. 2010, L15, 1–72. [Google Scholar]
- Liu, S.; Xue, W.; Miao, W.; Sun, H.; Wu, R.; Du, Y.; Tan, Y.; Li, Y. Characteristics and Development Trend of Organic Fertilizer Industry. Vegetables 2018, 12, 26–29. [Google Scholar]
- Zhi, H.; Cheng, H. Development and Validation of a Solid Phase Extraction-UPLC-MS/MS Method for the Determination of Fifty-Nine Antimicrobials in Commercial Organic Fertilizers and Amended Soils. Microchem. J. 2022, 183, 108007. [Google Scholar] [CrossRef]
- Hu, X.; Zhou, Q.; Luo, Y. Occurrence and Source Analysis of Typical Veterinary Antibiotics in Manure, Soil, Vegetables and Groundwater from Organic Vegetable Bases, Northern China. Environ. Pollut. 2010, 158, 2992–2998. [Google Scholar] [CrossRef]
- Lee, C.; Jeong, S.; Ju, M.; Kim, J.Y. Fate of Chlortetracycline Antibiotics During Anaerobic Degradation of Cattle Manure. J. Hazard. Mater. 2020, 386, 121894. [Google Scholar] [CrossRef] [PubMed]
- Spielmeyer, A.; Stahl, F.; Petri, M.S.; Zerr, W.; Brunn, H.; Hamscher, G. Transformation of Sulfonamides and Tetracyclines during Anaerobic Fermentation of Liquid Manure. J. Environ. Qual. 2017, 46, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Fan, L.; Dong, Y.; Li, D.; Zhao, L.; Yuan, X.; Wang, L.; Zhao, S. Determination of Sulfonamide Residues in Livestock and Poultry Manure Using Carbon Nanotube Extraction Combined with UPLC-MS/MS. Food Anal. Methods 2021, 14, 641–652. [Google Scholar] [CrossRef]
- Hu, X.G.; Luo, Y.; Zhou, Q.X.; Xu, L. Determination of Thirteen Antibiotics Residues in Manure by Solid Phase Extraction and High Performance Liquid Chromatography. Chin. J. Anal. Chem. 2008, 36, 1162–1166. [Google Scholar] [CrossRef]
- Ho, Y.; Zakaria, M.P.; Latif, P.A.; Saari, N. Simultaneous Determination of Veterinary Antibiotics and Hormone in Broiler Manure, Soil and Manure Compost by Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. A 2012, 1262, 160–168. [Google Scholar] [CrossRef]
- Li, C.; Chen, J.; Wang, J.; Ma, Z.; Han, P.; Luan, Y.; Lu, A. Occurrence of Antibiotics in Soils and Manures from Greenhouse Vegetable Production Bases of Beijing, China and an Associated Risk Assessment. Sci. Total Environ. 2015, 521–522, 101–107. [Google Scholar] [CrossRef]
- Hou, J.; Wan, W.; Mao, D.; Wang, C.; Mu, Q.; Qin, S.; Luo, Y. Occurrence and Distribution of Sulfonamides, Tetracyclines, Quinolones, Macrolides, and Nitrofurans in Livestock Manure and Amended Soils of Northern China. Environ. Sci. Pollut. Res. 2015, 22, 4545–4554. [Google Scholar] [CrossRef]
- Feng, Y.; Wei, C.; Zhang, W.; Liu, Y.; Li, Z.; Hu, H.; Xue, J.; Davis, M. A Simple and Economic Method for Simultaneous Determination of 11 Antibiotics in Manure by Solid-Phase Extraction and High-Performance Liquid Chromatography. J. Soils Sediments 2016, 16, 2242–2251. [Google Scholar] [CrossRef]
- Hanna, N.; Sun, P.; Sun, Q.; Li, X.; Yang, X.; Ji, X.; Zou, H.; Ottoson, J.; Nilsson, L.E.; Berglund, B.; et al. Presence of Antibiotic Residues in Various Environmental Compartments of Shandong Province in Eastern China: Its Potential for Resistance Development and Ecological and Human Risk. Environ. Int. 2018, 114, 131–142. [Google Scholar] [CrossRef]
- Lu, X.-F.; Zhou, Y.; Zhang, J.; Ren, Y.-P. Determination of Fluoroquinolones in Cattle Manure-Based Biogas Residue by Ultrasonic-Enhanced Microwave-Assisted Extraction Followed by Online Solid Phase Extraction-Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. B 2018, 1086, 166–175. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, Y.; Xuan, Y.; Song, W.; Si, W.; Zhao, Z.; Rao, Q. Ion-Exchange Solid-Phase Extraction Combined with Liquid Chromatography-Tandem Mass Spectrometry for the Determination of Veterinary Drugs in Organic Fertilizers. J. Chromatogr. B 2016, 1022, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Zhi, S.; Zhou, J.; Liu, H.; Wu, H.; Zhang, Z.; Ding, Y.; Zhang, K. Simultaneous Extraction and Determination of 45 Veterinary Antibiotics in Swine Manure by Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. B 2020, 1154, 122286. [Google Scholar] [CrossRef]
- Qian, S.; Lan, Y.; Liu, Q.; Si, W.; Sun, M.; Wang, L.; Shen, G. Response Surface Optimization of Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry Method for Simultaneous Determination of 14 Kinds of Sulfonamide Antibiotics in Organic Fertilizers. Huadong Ligong Daxue Xuebao/J. East China Univ. Sci. Technol. 2021, 47, 209–216. [Google Scholar] [CrossRef]
- Li, C.; Li, Y.; Li, X.; Ma, X.; Ru, S.; Qiu, T.; Lu, A. Veterinary Antibiotics and Estrogen Hormones in Manures from Concentrated Animal Feedlots and Their Potential Ecological Risks. Environ. Res. 2021, 198, 110463. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Yao, H. Effects of Composting Different Types of Organic Fertilizer on the Microbial Community Structure and Antibiotic Resistance Genes. Microorganisms 2020, 8, 268. [Google Scholar] [CrossRef]
- Liu, Z.T.; Ma, R.A.; Zhu, D.; Konstantinidis, K.T.; Zhu, Y.G.; Zhang, S.Y. Organic Fertilization Co-Selects Genetically Linked Antibiotic and Metal(Loid) Resistance Genes in Global Soil Microbiome. Nat. Commun. 2024, 15, 5168. [Google Scholar] [CrossRef]
- Dong, B.; Li, W.; Xu, W. Effects of Partial Organic Substitution for Chemical Fertilizer on Antibiotic Residues in Peri-Urban Agricultural Soil in China. Antibiotics 2021, 10, 1173. [Google Scholar] [CrossRef]
- Shandong Provincial Bureau of Statistics Shandong Statistical Yearbook in 2024. Available online: http://tjj.shandong.gov.cn/tjnj/nj2024/zk/indexch.htm (accessed on 12 March 2025).
- Yang, L.H.; Ying, G.G.; Su, H.C.; Stauber, J.L.; Adams, M.S.; Binet, M.T. Growth-Inhibiting Effects of 12 Antibacterial Agents and Their Mixtures on the Freshwater Microalga Pseudokirchneriella Subcapitata. Environ. Toxicol. Chem. 2008, 27, 1201–1208. [Google Scholar] [CrossRef]
- González-Pleiter, M.; Gonzalo, S.; Rodea-Palomares, I.; Leganés, F.; Rosal, R.; Boltes, K.; Marco, E.; Fernández-Piñas, F. Toxicity of Five Antibiotics and Their Mixtures towards Photosynthetic Aquatic Organisms: Implications for Environmental Risk Assessment. Water Res. 2013, 47, 2050–2064. [Google Scholar] [CrossRef]
- Odinga, E.S.; Chen, X.; Mbao, E.O.; Waigi, M.G.; Gudda, F.O.; Zhou, X.; Ling, W.; Czech, B.; Oleszczuk, P.; Abdalmegeed, D.; et al. Estrogens and Xenoestrogen Residues in Manure-Based Fertilizers and Their Potential Ecological Risks. J. Environ. Manag. 2023, 344, 118609. [Google Scholar] [CrossRef]
- Brar, B.S.; Singh, J.; Singh, G.; Kaur, G. Effects of Long Term Application of Inorganic and Organic Fertilizers on Soil Organic Carbon and Physical Properties in Maize-Wheat Rotation. Agronomy 2015, 5, 220–238. [Google Scholar] [CrossRef]
- Zhao, F.; Yang, L.; Chen, L.; Xiang, Q.; Li, S.; Sun, L.; Yu, X.; Fang, L. Soil Contamination with Antibiotics in a Typical Peri-Urban Area in Eastern China: Seasonal Variation, Risk Assessment, and Microbial Responses. J. Environ. Sci. 2019, 79, 200–212. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.Q.; Yuan, L.; Li, Z.H.; Zhang, H.C.; Sheng, G.P. Tetracycline Exposure Shifted Microbial Communities and Enriched Antibiotic Resistance Genes in the Aerobic Granular Sludge. Environ. Int. 2019, 130, 104902. [Google Scholar] [CrossRef]
- Cheng, G.M.; Cheng, H. Overcoming China’s Animal Waste Disposal Challenge Brought by Elevated Levels of Veterinary Antimicrobial Residues and Antimicrobial Resistance. Environ. Int. 2024, 191, 109009. [Google Scholar] [CrossRef]
- Mohring, S.A.I.; Strzysch, I.; Fernandes, M.R.; Kiffmeyer, T.K.; Tuerk, J.; Hamscher, G. Degradation and Elimination of Various Sulfonamides during Anaerobic Fermentation: A Promising Step on the Way to Sustainable Pharmacy? Environ. Sci. Technol. 2009, 43, 2569–2574. [Google Scholar] [CrossRef]
- Ho, Y.B.; Zakaria, M.P.; Latif, P.A.; Saari, N. Degradation of Veterinary Antibiotics and Hormone during Broiler Manure Composting. Bioresour. Technol. 2013, 131, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Arikan, O.A.; Sikora, L.J.; Mulbry, W.; Khan, S.U.; Foster, G.D. Composting Rapidly Reduces Levels of Extractable Oxytetracycline in Manure from Therapeutically Treated Beef Calves. Bioresour. Technol. 2007, 98, 169–176. [Google Scholar] [CrossRef]
- Selvam, A.; Zhao, Z.; Wong, J.W.C. Composting of Swine Manure Spiked with Sulfadiazine, Chlortetracycline and Ciprofloxacin. Bioresour. Technol. 2012, 126, 412–417. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, H. Use of Veterinary Antimicrobials in China and Efforts on Improving Their Rational Use. J. Glob. Antimicrob. Resist. 2015, 3, 144–146. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, H. Health Risk from Veterinary Antimicrobial Use in China’s Food Animal Production and Its Reduction. Environ. Pollut. 2016, 219, 993–997. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, H.; Tao, S. Environmental and Human Health Challenges of Industrial Livestock and Poultry Farming in China and Their Mitigation. Environ. Int. 2017, 107, 111–130. [Google Scholar] [CrossRef] [PubMed]
Ciprofloxacin | Enrofloxacin | Fleroxacin | Marbofloxacin | Norfloxacin | Ofloxacin | Sulfadiazine | Sulfamethoxazole | Lincomycin | Tilmicosin | Tylosin | Reference | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
COFs (n = 93) | 75.7 ± 144 | 106 ± 119 | 9.58 ± 3.32 | 6.55 ± 4.13 | 66.9 ± 14.4 | 37.4 ± 36.2 | 8.58 ± 8.39 | 11.4 ± 10.4 | 3.09 ± 1.96 | 458 ± 1080 | 193 ± 207 | This study |
Manure (n = 20) | 300–3000 | NA | NA | NA | NA | NA | 2300–5200 | 4500–18,700 | NA | NA | NA | [14] |
Pig manure (n = 61) | 2010 ± 8350 | 2090 ± 8050 | 2230 ± 1440 | NA | 2090 ± 1450 | NA | 210 ± 400 | 510 ± 310 | NA | NA | NA | [4] |
Chicken manure (n = 54) | 3780 ± 11,800 | 4650 ± 366,000 | 3110 ± 24,200 | NA | 4680 ± 54,810 | NA | 150 ± 900 | 780 ± 1470 | NA | NA | NA | [4] |
Cow manure (n = 28) | 3440 ± 10,700 | 6790 ± 11,400 | 2220 | NA | 1840 ± 1080 | NA | ND | ND | NA | NA | NA | [4] |
Manure (n = 10) | NA | 112–26,900 | NA | NA | 30.7–1890 | NA | <MQL−5770 | NA | NA | <MQL−85.2 | 99.5–13,700 | [15] |
Manure (n = 17) | 1310 | 1250 | NA | NA | 692 | NA | 3.9 | 7.5 | NA | NA | NA | [16] |
Manure (n = 32) | 808 ± 2310 | NA | NA | NA | NA | NA | NA | 18.9 ± 20.1 | NA | NA | ND−37.1 | [17] |
Compost (n = 20) | 86.5 | 309 | NA | NA | 31.9 | 42.5 | 3.3 | 19.7 | NA | NA | NA | [21] |
Cow manure | 28.1 | 27.3 | NA | NA | 13.8 | NA | NA | ND | NA | NA | ND | [18] |
Pig manure | 1.0 | 16.2 | NA | NA | 1.8 | NA | NA | 0.3 | NA | NA | ND | [18] |
Chicken manure | 3.4 | 8.2 | NA | NA | 2.2 | NA | NA | 2.4 | NA | NA | 0.2 | [18] |
Pig manure (n = 34) | 1.52 | 0.534 | NA | NA | NA | NA | NA | <MDL | NA | NA | NA | [19] |
Cattle manure (n = 21) | <MQL−70.4 | ND−65.1 | ND−1.2 | ND−12.1 | <MQL−74.6 | <MQL−71.2 | NA | NA | NA | NA | NA | [20] |
Pig manure | 40–70 | 50–70 | ND-60 | NA | ND−60 | 40 | ND | ND | ND | 310–7890 | NA | [22] |
Cow manure | NA | NA | NA | NA | NA | NA | ND | ND | NA | NA | NA | [13] |
Chicken manure | NA | NA | NA | NA | NA | NA | 8.3–18.8 | ND | NA | NA | NA | [13] |
Pig manure | NA | NA | NA | NA | NA | NA | 7.1–37.1 | ND | NA | NA | NA | [13] |
Duck manure | NA | NA | NA | NA | NA | NA | ND | ND | NA | NA | NA | [13] |
COF (n = 6) | NA | NA | NA | NA | NA | NA | NA | 608 | NA | NA | NA | [23] |
Cow manure (n = 23) | 5.2 | 3 | NA | NA | 0.12 | NA | 4.34 | 4.63 | NA | NA | 28.64 | [24] |
Cattle manure (n = 5) | 3380 | 22,100 | NA | NA | 266 | NA | 4030 | ND | NA | NA | ND | [24] |
Pig manure (n = 23) | 363 | 105 | NA | NA | 8.02 | NA | 21.7 | 0.5 | NA | NA | 166 | [24] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhi, H.; Feng, H.; Cheng, H. Occurrence and Risk Assessment of Veterinary Antimicrobials in Commercial Organic Fertilizers on Chinese Markets. Sustainability 2025, 17, 3503. https://doi.org/10.3390/su17083503
Zhi H, Feng H, Cheng H. Occurrence and Risk Assessment of Veterinary Antimicrobials in Commercial Organic Fertilizers on Chinese Markets. Sustainability. 2025; 17(8):3503. https://doi.org/10.3390/su17083503
Chicago/Turabian StyleZhi, Hui, Hui Feng, and Hefa Cheng. 2025. "Occurrence and Risk Assessment of Veterinary Antimicrobials in Commercial Organic Fertilizers on Chinese Markets" Sustainability 17, no. 8: 3503. https://doi.org/10.3390/su17083503
APA StyleZhi, H., Feng, H., & Cheng, H. (2025). Occurrence and Risk Assessment of Veterinary Antimicrobials in Commercial Organic Fertilizers on Chinese Markets. Sustainability, 17(8), 3503. https://doi.org/10.3390/su17083503