Seasonal Dynamics of Nitrogen and Phosphorus in Wetland Plants: Implications for Efficient Eutrophication Control
Abstract
:1. Introduction
2. Research Methodology
2.1. Data Collection and Research Status
2.2. Data Processing and Research Contributions
3. Results and Discussion
3.1. Uptake and Removal Efficiency of Nitrogen and Phosphorus in Wetland Plants
3.1.1. Seasonal Growth Rhythms and Nutrient Requirements
3.1.2. Removal Efficiency of Nitrogen and Phosphorus
3.2. Seasonal Variations in Nitrogen and Phosphorus Contents of Wetland Plants
3.2.1. Nitrogen and Phosphorus Accumulation Inside the Whole Plant
3.2.2. Nitrogen and Phosphorus Contents in Shoots and Roots
3.3. Seasonal Dynamics of Nitrogen and Phosphorus Transfer in Perennial Wetland Plants
3.3.1. Nitrogen
3.3.2. Phosphorus
3.4. Strategic Wetland Plant Management for Efficient Nutrient Removal
3.4.1. Harvesting Strategies
3.4.2. Plant Species Selection for Wetland Configuration
4. Conclusions
5. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Guo, Q.; Tian, L. Tracing phosphorus cycle in global watershed using phosphate oxygen isotopes. Sci. Total Environ. 2022, 829, 154611. [Google Scholar] [CrossRef] [PubMed]
- Scholz, M.J.; Obenour, D.R.; Morrison, E.S.; Elser, J.J. A critical eutrophication–climate change link. Nat. Sustain. 2025, 8, 222–223. [Google Scholar] [CrossRef]
- Li, J.; Sun, Y.; Qin, Y.; Tang, T.; Kahil, T.; Burek, P.; Zhao, G.; Cai, K.; Jiang, Q.; Liu, Y. Uncovering the spatial characteristics of global net anthropogenic nitrogen input at high resolution and across 1.42 million lake basins. Sci. Total Environ. 2024, 953, 176143. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Jiang, S.; Sheng, H.; Liu, X.; Hua, H.; Liu, X.; Zhang, Y. Human perturbation of the global phosphorus cycle: Changes and consequences. Environ. Sci. Technol. 2018, 52, 2438–2450. [Google Scholar] [CrossRef]
- Gao, W.; Cheng, G.; Yan, C.; Chen, Y. Identifying spatiotemporal alteration of nitrogen to phosphorus ratio of Lake Dianchi and its driving forces during 1988–2018. J. Lake Sci. 2021, 33, 64–73. [Google Scholar] [CrossRef]
- Smith, V.H. Eutrophication of freshwater and coastal marine ecosystems a global problem. Environ. Sci. Pollut. Res. 2003, 10, 126–139. [Google Scholar] [CrossRef]
- Gong, L. The Studies on the Effects of Suspenders and on the Algal Growth in the Eutrophic Water of the Three Gorges Reservoir. Master’s Thesis, Southwest University, Chongqing, China, 2006. [Google Scholar]
- Li, H.; Gu, X.; Chen, H.; Mao, Z.; Zeng, Q.; Yang, H.; Kan, K. Comparative toxicological effects of planktonic Microcystis and benthic Oscillatoria on zebrafish embryonic development: Implications for cyanobacteria risk assessment. Environ. Pollut. 2021, 274, 115852. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Q.; Yan, S.; Zhang, P.; Zhang, H.; Kong, X.; Wang, H.; Hansson, L.-A.; Xie, S.; Xu, J.; et al. Eutrophication promotes resource use efficiency and toxin production of Microcystis in a future climate warming scenario. Environ. Res. 2024, 263, 120219. [Google Scholar] [CrossRef]
- Wu, T.S.; Zhou, D.Z.; Hua, J.F.; Yin, Y.L.; Xue, J.H. Study on the N purification of eutrophic water by floating plant-sediment-microbial system. J. Ecol. Rural Environ. 2021, 37, 1341–1351. [Google Scholar] [CrossRef]
- Liu, L.; Yang, K.; Feng, S.; Liu, W.; Shi, L. Different macrophytes and eutrophic gradients regulate microbial communities of phytoremediation for eutrophication pollution and carbon reduction. J. Clean. Prod. 2024, 473, 143536. [Google Scholar] [CrossRef]
- Thomas, G.; Michael, H.; Sabine, H.; Mark, O. Rapid eutrophication of a clearwater lake: Trends and potential causes inferred from phosphorus mass balance analyses. Glob. Change Biol. 2024, 30, 17575. [Google Scholar] [CrossRef]
- Sun, F.; Shang, Y.; Xu, C.; Lv, Y.; Su, X.; Wang, M.; Dong, Q.; Xu, Y.; Li, M.; Yin, X. Performances of nitrogen removal by constructed wetlands with different plant species and seasons. Int. J. Environ. Sci. Technol. 2024, 21, 9555–9564. [Google Scholar] [CrossRef]
- Nandakumar, S.; Pipil, H.; Ray, S.; Haritash, A. Removal of phosphorous and nitrogen from wastewater in Brachiaria-based constructed wetland. Chemosphere 2019, 233, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Xi, S.; Yang, X.; Yang, W.; Li, J.; Gu, B.; He, Z. Purifying eutrophic river waters with integrated floating island systems. Ecol. Eng. 2012, 40, 53–60. [Google Scholar] [CrossRef]
- Li, W.; Dai, T.; Liu, J.; Zhong, J.; Wu, K.; Gao, G.; Chen, Y.; Fan, H. Ferric- and calcium-loaded red soil assist colonization of submerged macrophyte for the in-situ remediation of eutrophic shallow lake: From mesocosm experiment to field enclosure application. Sci. Total Environ. 2024, 924, 171730. [Google Scholar] [CrossRef]
- Li, F.; Yue, C.; Zhang, C.; Zhang, R.; Yang, L.; Mu, J.; Huang, Y. Identification of influencing factors of nitrogen and phosphorus removal from aquaculture wastewater by constructed wetlands. J. Ecol. Rural Environ. 2022, 89, 271–289. [Google Scholar] [CrossRef]
- Yao, D.; Dai, N.; Hu, X.; Cheng, C.; Xie, H.; Hu, Z.; Liang, S.; Zhang, J. New insights into the effects of wetland plants on nitrogen removal pathways in constructed wetlands with low C/N ratio wastewater: Contribution of partial denitrification-anammox. Water Res. 2023, 243, 120277. [Google Scholar] [CrossRef]
- Pelissari, C.; Guivernau, M.; Viñas, M.; García, J.; Velasco-Galilea, M.; Souza, S.S.; Sezerino, P.H.; Ávila, C. Effects of partially saturated conditions on the metabolically active microbiome and on nitrogen removal in vertical subsurface flow constructed wetlands. Water Res. 2018, 141, 185–195. [Google Scholar] [CrossRef]
- Yuan, Y.; Tang, C.; Jin, Y.; Cheng, K.; Yang, F. Contribution of exogenous humic substances to phosphorus availability in soil-plant ecosystem: A review. Crit. Rev. Environ. Sci. Technol. 2022, 53, 1085–1102. [Google Scholar] [CrossRef]
- Wang, Y. Impact of Myriophyllum spicatum, Ceratophyllum demersum and Uniodouglasiae on Water Quality in Baiyangdian Lake: In Situ Enclosure Experiment. Master’s Thesis, Hebei University, Baoding, China, 2011. [Google Scholar]
- Xiang, W.-Y.; Wang, X.-F. Remediation of different aquatic animals and plants on eutrophic water body. Acta Hydrobiol. Sin. 2012, 36, 792–797. [Google Scholar] [CrossRef]
- Xing, W.; Han, Y.; Guo, Z.; Zhou, Y. Quantitative study on redistribution of nitrogen and phosphorus by wetland plants under different water quality conditions. Environ. Pollut. 2020, 261, 114086. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Liu, F.; Zhang, S.; Li, H.; Yao, R.; Jiang, Q.; Xiao, R.; Wu, J. Nitrogen removal and recovery from lagoon-pretreated swine wastewater by constructed wetlands under sustainable plant harvesting management. Bioresour. Technol. 2018, 258, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.; Wang, Y.; Wang, E. Improving the utilization efficiency of nitrogen, phosphorus and potassium: Current situation and future perspectives. Sci. Sin. Vitae 2021, 51, 1415–1423. [Google Scholar] [CrossRef]
- Lan, P. Sewage Purification Effect and Microbial Community Structure of Four Mesophyte Simulated Wetland Systems. Master’s Thesis, Guangxi University, Nanning, China, 2023. [Google Scholar]
- Wang, W.; Zhang, J.; Hou, H.; Fan, X. Study on nitrogen and phosphorus removal from sewage by planting Canna indica in different seasons. Environ. Prot. Sci. 2021, 47, 92–96. [Google Scholar] [CrossRef]
- Ye, L. Study on Phosphorus Removal Characteristics and Mechanism Research in Plants Combinations Constructed Wetlands in Subtrpilcal Hilly Area. Master’s Thesis, Hunan Agricultural University, Changsha, China, 2021. [Google Scholar]
- Ponraj, U.; Theres, K. Keep a distance to be different: Axillary buds initiating at a distance from the shoot apical meristem are crucial for the perennial lifestyle of Arabis alpina. New Phytol. 2020, 227, 116–131. [Google Scholar] [CrossRef]
- Bausenwein, U.; Millard, P.; Thornton, B.; Raven, J.A. Seasonal nitrogen storage and remobilization in the forb Rumex acetosa. Funct. Ecol. 2001, 15, 370–377. [Google Scholar] [CrossRef]
- Garcia, L.M.; Van, S.C.; Majsztrik, J.C.; White, S.A. Short- and long-term dynamics of nutrient removal in floating treatment wetlands. Water Res. 2019, 159, 153–163. [Google Scholar] [CrossRef]
- Guo, C.; Hu, H.; Li, F.; Natsuhashi, A.; Sakota, S. Seasonal dynamics of nitrogen and phosphorus of wetland plants Typha at Nansihu lake. Ecol. Environ. Sci. 2009, 18, 1020–1025. [Google Scholar] [CrossRef]
- Tang, Y. Study on Nitrogen and Phosphorus Purification in Water by Typical Aquatic Plants. Master’s Thesis, East China Normal University, Shanghai, China, 2020. [Google Scholar]
- Ye, B. Impact to Water Environment with Emergent Plants from Erhai Lakeshore and the Parameters of Harvest. Master’s Thesis, Anhui Agricultural University, Hefei, China, 2011. [Google Scholar]
- Li, Y.; Cheng, C.; Li, X. Research progress on water purification efficiency of multiplant combination in constructed wetland. IOP Conf. Ser. Earth Environ. Sci. 2021, 632, 052051. [Google Scholar] [CrossRef]
- Wang, D. Dynamic of Biomass of Phragmites Communis and the Discussion of Harvest Time at Taihu Wetland. Master’s Thesis, Nanjing Forestry University, Nanjing, China, 2010. [Google Scholar]
- Chang, B.; Xu, Y.; Zhang, Z.; Wang, X.; Jin, Q.; Wang, Y. Purification effect of water eutrophication using the mosaic system of submerged–emerged plants and growth response. Plants 2024, 13, 560. [Google Scholar] [CrossRef]
- Li, S.; Cui, L.; Song, H.; Zhang, Y.; Gao, C.; Guo, J.; Wei, W.; Zhao, X.; Zhang, M.; Wang, Y.; et al. Comparison on purification capacity of soil nitrogen and phosphorus in different wetland plants. Ecol. Environ. Sci. 2012, 21, 1870–1874. [Google Scholar] [CrossRef]
- Li, J. Study on Multiple Constructed Wetland System for Treatment Wastewater. Master’s Thesis, Central South University of Forestry and Technology, Changsha, China, 2007. [Google Scholar]
- Shao, X.-X.; Li, W.-H.; Wu, M.; Yang, W.-Y.; Jiang, K.-Y.; Ye, X.-Q. Dynamics of carbon, nitrogen and phosphorus storage of three dominant marsh plants in Hangzhou bay coastal wetland. Environ. Sci. 2013, 34, 3451–3457. [Google Scholar] [CrossRef]
- Yu, H.; Yang, Z.; Xiao, R.; Zhang, S.; Liu, F.; Xiang, Z. Absorption capacity of nitrogen and phosphorus of aquatic plants and harvest management research. Acta Pratacult. Sin. 2013, 22, 294–299. [Google Scholar] [CrossRef]
- Lang, L. Study on the Effect of Ecological Filter-Constructed Wetland Combined Process on Waste Biogas Slurry. Master’s Thesis, Anhui Agricultural University, Hefei, China, 2017. [Google Scholar]
- Zhu, H.; Lin, L.; Xu, W.; Tang, Y.; Cao, R.; Wang, H. Comparative study on nitrogen and phosphorus absorbency of seven wetland plants in Caiyun lake wetland park in different seasons. Chin. J. Environ. Eng. 2017, 11, 645–652. [Google Scholar] [CrossRef]
- Li, L.; Zerbe, S.; Han, W.; Thevs, N.; Li, W.; He, P.; Schmitt, A.O.; Liu, Y.; Ji, C. Nitrogen and phosphorus stoichiometry of common reed (Phragmites australis) and its relationship to nutrient availability in northern China. Aquat. Bot. 2014, 112, 84–90. [Google Scholar] [CrossRef]
- Song, Z.; Wang, R.; Xi, J.; Han, X.; Yao, C. Nitrogen and phosphorous removal efficiency and dynamic feature of constructed wetlands for sewage treatment. Chin. J. Ecol. 2005, 24, 648–651. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, Z.; Zhao, J.; Gu, B. Contaminant removal of domestic wastewater by constructed wetlands: Effects of plant species. J. Integr. Plant Biol. 2007, 49, 437–446. [Google Scholar] [CrossRef]
- Zhang, Y. Purification of Nitrogen and Phosphorus from Eutrophic Water by Aquatic Plants and Rhizosphere Microorganisms. Master’s Thesis, Xi’an University of Technology, Xi’an, China, 2019. [Google Scholar]
- Qi, Y. Experimental Study on Purification of Aquaticplants in Different Seasons. Master’s Thesis, Fujian Normal University, Fuzhou, China, 2017. [Google Scholar]
- Wan, L.; Zhang, C.; Zhang, H.; Yang, Y.; Zhang, L. Seasonal variation in the sewage purification effect of cold-resistant plants in constructed wetlands. Jiangsu Agric. Sci. 2014, 42, 351–354. [Google Scholar] [CrossRef]
- Mesquita, C.; Albuquerque, A.; Amaral, L.; Nogueira, R. Effectiveness and temporal variation of a full-scale horizontal constructed wetland in reducing nitrogen and phosphorus from domestic wastewater. Chemengineering 2018, 2, 3. [Google Scholar] [CrossRef]
- Huang, D. Study on Purification of Eutrophic Scenic Water and the Mechanisms with Constructed Wetlands. Ph.D. Thesis, Tongji University, Shanghai, China, 2007. [Google Scholar]
- Li, L. Research on Test of Nitrogen and Phosphor Removal Form Sewage by Subsurface Flow Constructed Wetlands. Master’s Thesis, East China Jiaotong University, Nanchang, China, 2008. [Google Scholar]
- Zhao, Y.-J.; Cheng, P.; Pei, X.; Zhang, H.; Yan, C.; Wang, S.-B. Performance of hybrid vertical up- and downflow subsurface flow constructed wetlands in treating synthetic high-strength wastewater. Environ. Sci. Pollut. Res. 2013, 20, 4886–4894. [Google Scholar] [CrossRef]
- Moortel, A.V.d.; Meers, E.; Pauw, N.d.; Tack, F.M.G. Effects of vegetation, season and temperature on removal of pollutants in experimental floating treatment wetlands. Water Air Soil. Pollut. 2010, 212, 281–297. [Google Scholar] [CrossRef]
- Wu, A.-P.; Wu, S.-K.; Ni, L.-Y. Study of macrophytes nitrogen and phosphorus contents of the shallow lakes in the middle reaches of Changjiang river. Acta Hydrobiol. Sin. 2005, 29, 406–412. [Google Scholar] [CrossRef]
- Jeke, N.N.; Zvomuya, F.; Cicek, N.; Ross, L.; Badiou, P. Nitrogen and phosphorus phytoextraction by cattail (Typha spp.) during wetland-based phytoremediation of an end-of-life municipal lagoon. J. Environ. Qual. 2019, 48, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Tong, C.; Liu, M.; Zhu, Y.; Chen, P. Seasonal variations of carbon, nitrogen, phosphorus stoichiometry of four emergent hydrophytes in Jinze reservoir, Shanghai. Acta Ecol. Sin. 2020, 40, 4528–4537. [Google Scholar]
- Wu, S.; Xu, Y.; Jiang, Z.; Zhou, D.; Lin, Y. Seasonal dynamics of nitrogen, phosphorus and biomass of Phragmites commuisat Mengqingyuan garden artificial wetland in Shanghai. J. Agro-Environ. Sci. 2006, 1594–1597. [Google Scholar] [CrossRef]
- Wu, H. Long-Term Performance and Mechanism in the Surface Constructed Wetland for Treating Polluted River Water in Northern China. Master’s Thesis, Shandong University, Jinan, China, 2011. [Google Scholar]
- Liao, X.; Luo, S.; Wu, Y.; Wang, Z. Comparison of nutrient removal ability between Cyperus alternifolius and Vetiveria zizanioides in constructed wetlands. J. Appl. Ecol. 2005, 16, 156–160. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, P.; Deng, A.; Zhuang, T. Seasonal variation of several nutrient elements of red alga Caloglossa leprieuriiin kandelia candel forest in Jiulongjiang setuary, Fujian of Chian. Mar. Sci. 2003, 27, 46–49. [Google Scholar] [CrossRef]
- Zeng, C.; Zhang, L.; Tong, C. Seasonal dynamics of nitrogen and phosphorus in Phragmites australis and Spartina alterniflora in the wetlands of Min river estuary. Wetl. Sci. 2009, 7, 16–24. [Google Scholar] [CrossRef]
- Zhang, L. Net Primary Productivity and Nitrogen and Phosphrous Dynamics of Dominant Plants in the Wetland of Minjiang River Estuary. Master’s Thesis, Fujian Normal University, Fuzhou, China, 2008. [Google Scholar]
- Pan, L.; Wei, J.; Chen, Y.; Pu, C.; Fan, H. Distribution characteristics and seasonal dynamics of organic carbon, total nitrogen, total phosphorus of Cyperus malaccensis and sediments in Maoweihai bay. Wetl. Sci. 2012, 10, 467–473. [Google Scholar]
- Edwards, K.R.; Čižková, H.; Zemanová, K.; Šantrůčková, H. Plant growth and microbial processes in a constructed wetland planted with Phalaris arundinacea. Ecol. Eng. 2006, 27, 153–165. [Google Scholar] [CrossRef]
- Fürtauer, L.; Weiszmann, J.; Weckwerth, W.; Nägele, T. Dynamics of plant metabolism during cold acclimation. Int. J. Mol. Sci. 2019, 20, 5411. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Hwarari, D.; Korboe, H.M.; Ahmad, B.; Cao, Y.; Movahedi, A.; Yang, L. Low temperature stress-induced perception and molecular signaling pathways in plants. Environ. Exp. Bot. 2022, 207, 105190. [Google Scholar] [CrossRef]
- Ji, C.; Yu, S. The relationship between superoxide dismutase activity and cold resistance in Eichhornia crassipes. Physiol. Mol. Biol. Plants 1989, 15, 133–137. [Google Scholar] [CrossRef]
- Ding, H.; Wang, M.; Xie, J.; Xiong, X.; Hu, X.; Qin, Y. Esponse to low temperature stress in plants and advances in research methods. Jiangsu Agric. Sci. 2019, 47, 31–36. [Google Scholar] [CrossRef]
- Tang, H. Status of Constructed Wetland Wastewater Treatment in Chongqing Villages and Selection of Cold-Resistant Wetland Plants. Master’s Thesis, Chongqing University, Chongqing, China, 2016. [Google Scholar]
- Mu, X.; Chen, Y. The physiological response of photosynthesis to nitrogen deficiency. Plant Physiol. Biochem. 2021, 158, 76–82. [Google Scholar] [CrossRef]
- Thuynsma, R.; Kleinert, A.; Kossmann, J.; Valentine, A.J.; Hills, P.N. The effects of limiting phosphate on photosynthesis and growth of Lotus japonicus. S. Afr. J. Bot. 2016, 104, 244–248. [Google Scholar] [CrossRef]
- Chen, C.; Condron, L.; Davis, M.; Sherlock, R. Seasonal changes in soil phosphorus and associated microbial properties under adjacent grassland and forest in New Zealand. For. Ecol. Manag. 2003, 177, 539–557. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, Y.; Liu, S.; Li, J.; Jiang, Z.; Luo, H.; Huang, X. Plant growth and development of tropical seagrass determined rhizodeposition and its related microbial community. Mar. Pollut. Bull. 2023, 199, 115940. [Google Scholar] [CrossRef]
- Zhao, M.; Zhao, J.; Yuan, J.; Hale, L.; Wen, T.; Huang, Q.; Vivanco, J.M.; Zhou, J.; Kowalchuk, G.A.; Shen, Q. Root exudates drive soil-microbe-nutrient feedbacks in response to plant growth. Plant Cell Environ. 2020, 44, 613–628. [Google Scholar] [CrossRef]
- Cregger, M.A.; Schadt, C.W.; McDowell, N.G.; Pockman, W.T.; Classen, A.T. Response of the soil microbial community to changes in precipitation in a semiarid ecosystem. Appl. Environ. Microbiol. 2012, 78, 8587–8594. [Google Scholar] [CrossRef]
- Xu, X.; Qiu, Y.; Zhang, K.; Yang, F.; Chen, M.; Luo, X.; Yan, X.; Wang, P.; Zhang, Y.; Chen, H.; et al. Climate warming promotes deterministic assembly of arbuscular mycorrhizal fungal communities. Glob. Change Biol. 2021, 28, 1147–1161. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.E.; Jakobsen, S.I. Functional diversity in arbuscular mycorrhizal (AM) symbioses: The contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol. 2004, 162. [Google Scholar] [CrossRef]
- Jin, J.; Tang, C.; Sale, P. The impact of elevated carbon dioxide on the phosphorus nutrition of plants: A review. Ann. Bot. 2015, 116, 987–999. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, U.N.; Ball, B.A. Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems. Glob. Change Biol. 2014, 21, 1407–1421. [Google Scholar] [CrossRef]
- Kushawaha, V.; Singh, M.K. Temporal variation in distribution pattern of nitrogen in Albizia chinensis (Osb.) Merr. as a function of nitrate reductase and nitrogenase activity. Plant Physiol. Rep. 2022, 27, 436–442. [Google Scholar] [CrossRef]
- Guo, L.; Yu, Z.; Li, Y.; Xie, Z.; Wang, G.; Liu, X.; Liu, J.; Liu, J.; Jin, J. Plant phosphorus acquisition links to phosphorus transformation in the rhizospheres of soybean and rice grown under CO2 and temperature co-elevation. Sci. Total Environ. 2022, 823, 153558. [Google Scholar] [CrossRef]
- Fan, X.; Xu, D.; Wang, D.; Wang, Y.; Zhang, X.; Ye, N. Nutrient uptake and transporter gene expression of ammonium, nitrate, and phosphorus in Ulva linza: Adaption to variable concentrations and temperatures. J. Appl. Phycol. 2020, 32, 1311–1322. [Google Scholar] [CrossRef]
- Kaisermann, A.; Vries, F.T.D.; Griffiths, R.I.; Bardgett, R.D. Legacy effects of drought on plant–soil feedbacks and plant–plant interactions. New Phytol. 2017, 215, 1413–1424. [Google Scholar] [CrossRef]
- Dijkstra, F.A.; He, M.; Johansen, M.P.; Harrison, J.J.; Keitel, C. Plant and microbial uptake of nitrogen and phosphorus affected by drought using 15N and 32P tracers. Soil. Biol. Biochem. 2015, 82, 135–142. [Google Scholar] [CrossRef]
- Jones, T.L.; Tucker, D.E.; Ort, D.R. Chilling delays circadian pattern of sucrose phosphate synthase and nitrate reductase activity in tomato. Plant Physiol. 1998, 1181, 149–158. [Google Scholar] [CrossRef]
- Jie, H.; Yu, M.; Cheng, X. Effects of light intensity variation on nitrogen and phosphorus contents, allocation and limitation in five shade-enduring plants. Chin. J. Plant Ecol. 2017, 41, 559–569. [Google Scholar] [CrossRef]
- Li, S.; Li, Z.; Wang, X.; Zhang, P. Advances in research of physiological and ecological process of nitrogen and phosphorus absorption and utilization in plant. Shandong Agric. Sci. 2019, 51, 151–157. [Google Scholar] [CrossRef]
- Ma, N.; Wang, W.; Gao, J.; Chen, J. Removal of cadmium in subsurface vertical flow constructed wetlands planted with Iris sibirica in the low-temperature season. Ecol. Eng. 2017, 109, 48–56. [Google Scholar] [CrossRef]
- Chen, X.; Wu, J.; Zhong, F.; Yu, S.; Chen, K.; Zeng, X.; Duan, D.; Cheng, S. Mechanism of Iris sibirica and aeration combination on promoting the water purification performance of constructed wetland under low temperature. Environ. Sci. Pollut. Res. 2024, 31, 19715–19724. [Google Scholar] [CrossRef]
- Xie, C. Study on the Nutritional Characteristies of Hangzhou Xixi Wetland Ecosystem. Master’s Thesis, Hangzhou Normal University, Hangzhou China, 2012. [Google Scholar]
- Liu, C.; Yang, Y.; Yang, Y. Distribution characteristics and seasonal dynamics of N, P and K in wetland plants in upper shoal of Jiuduansha, Shanghai. Chin. J. Ecol. 2008, 27, 1876–1882. [Google Scholar] [CrossRef]
- Sauter, J.J.; Van Cleve, B. Biochemical, immunochemical, and ultrastructural studies of protein storage in poplar (Populus × canadensis ‘robusta’) wood. Planta 1991, 183, 92–100. [Google Scholar] [CrossRef]
- Ourry, A.; Kim, T.H.; Boucaud, J. Nitrogen reserve mobilization during regrowth of Medicago sativa L. (relatsh. between availab. regrowth yield). Plant Physiol. 1994, 105, 831–837. [Google Scholar] [CrossRef]
- Peuke, A.D. Correlations in concentrations, xylem and phloem flows, and partitioning of elements and ions in intact plants. A summary and statistical re-evaluation of modelling experiments in Ricinus communis. J. Exp. Bot. 2009, 61, 635–655. [Google Scholar] [CrossRef]
- Li, D.; Wang, J.; Chen, R.; Chen, J.; Zong, J.; Li, L.; Hao, D.; Guo, H. Review: Nitrogen acquisition, assimilation, and seasonal cycling in perennial grasses. Plant Sci. 2024, 342, 112054. [Google Scholar] [CrossRef]
- Millard, P.; Grelet, G.-A. Nitrogen storage and remobilization by trees: Ecophysiological relevance in a changing world. Tree Physiol. 2010, 30, 1083–1095. [Google Scholar] [CrossRef]
- Gloser, V. Seasonal changes of nitrogen storage compounds in a rhizomatous grass Calamagrostis epigeios. Biol. Plant. 2002, 45, 563–568. [Google Scholar] [CrossRef]
- Diaz, C.; Lemaître, T.; Christ, A.; Azzopardi, M.; Kato, Y.; Sato, F.; Morot-Gaudry, J.-F.; Le Dily, F.; Masclaux-Daubresse, C. Nitrogen recycling and remobilization are differentially controlled by leaf senescence and development stage in arabidopsis under low nitrogen nutrition. Plant Physiol. 2008, 147, 1437–1449. [Google Scholar] [CrossRef] [PubMed]
- Havé, M.; Marmagne, A.; Chardon, F.; Masclaux-Daubresse, C. Nitrogen remobilization during leaf senescence, lessons from arabidopsis to crops. J. Exp. Bot. 2017, 68, 2513–2529. [Google Scholar] [CrossRef] [PubMed]
- Sakuraba, Y. Molecular basis of nitrogen starvation-induced leaf senescence. Front. Plant Sci. 2022, 13, 1013304. [Google Scholar] [CrossRef]
- Grassi, G.; Millard, P.; Wendler, R.; Minotta, G.; Tagliavini, M. Measurement of xylem sap amino acid concentrations in conjunction with whole tree transpiration estimates spring N remobilization by cherry (Prunus avium L.) trees. Plant Cell Environ. 2002, 25, 1689–1699. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, D.; Liu, M.; Zhang, Y. The molecular mechanism of long-distance sugar transport in plants. Chin. Bull. Bot. 2015, 50, 107–121. [Google Scholar] [CrossRef]
- Yin, Z.; Fan, R. Ultrastructural analyses on programmed cell death on sieve element/companion cell complex in poplar. J. Nanjing For. Univ. 2007, 31, 1–5. [Google Scholar] [CrossRef]
- Babst, B.A.; Coleman, G.D. Seasonal nitrogen cycling in temperate trees: Transport and regulatory mechanisms are key missing links. Plant Sci. 2018, 270, 268–277. [Google Scholar] [CrossRef]
- Couturier, J.; Doidy, J.; Guinet, F.; Wipf, D.; Blaudez, D.; Chalot, M. Glutamine, arginine and the amino acid transporter Pt-CAT11 play important roles during senescence in poplar. Ann. Bot. 2010, 105, 1159–1169. [Google Scholar] [CrossRef]
- Yao, X.; Nie, J.; Bai, R.; Sui, X. Amino acid transporters in plants: Identification and function. Plants 2020, 9, 972. [Google Scholar] [CrossRef]
- Tylewicz, S.; Petterle, A.; Marttila, S.; Miskolczi, P.; Azeez, A.; Singh, R.K.; Immanen, J.; Mähler, N.; Hvidsten, T.R.; Eklund, D.M.; et al. Photoperiodic control of seasonal growth is mediated by ABA acting on cell-cell communication. Science 2018, 360, 212–215. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Wei, Q.; Huang, H.; Xia, J. Amino acid transporters in plant cells: A brief review. Plants 2020, 9, 967. [Google Scholar] [CrossRef] [PubMed]
- Maurya, J.P.; Bhalerao, R.P. Photoperiod- and temperature-mediated control of growth cessation and dormancy in trees: A molecular perspective. Ann. Bot. 2017, 120, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Fracheboud, Y.; Luquez, V.; Björkén, L.; Sjödin, A.; Tuominen, H.; Jansson, S. The control of autumn senescence in European aspen. Plant Physiol. 2009, 149, 1982–1991. [Google Scholar] [CrossRef]
- Coleman, G.D.; Chen, T.H.H.; Ernst, S.G.; Fuchigami, L. Photoperiod control of poplar bark storage protein accumulation. Plant Physiol. 1991, 96, 686–692. [Google Scholar] [CrossRef]
- Zhu, B.; Coleman, G.D. Phytochrome-mediated photoperiod perception, shoot growth, glutamine, calcium, and protein phosphorylation influence the activity of the poplar bark storage protein gene promoter (bspA). Plant Physiol. 2001, 126, 342–351. [Google Scholar] [CrossRef]
- Hsu, C.-Y.; Adams, J.P.; Kim, H.; No, K.; Ma, C.; Strauss, S.H.; Drnevich, J.; Vandervelde, L.; Ellis, J.D.; Rice, B.M.; et al. FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar. Proc. Natl. Acad. Sci. USA 2011, 108, 10756–10761. [Google Scholar] [CrossRef]
- Guo, D.; Huang, X. Progress on the multifaceted roles of flowering control gene flowering locus T (FT). Bot. Res. 2014, 03, 218–226. [Google Scholar] [CrossRef]
- Nilsson, O. Winter dormancy in trees. Curr. Biol. 2022, 32, 630–634. [Google Scholar] [CrossRef]
- Netzer, F.; Schmid, C.; Herschbach, C.; Rennenberg, H. Phosphorus-nutrition of European beech (Fagus sylvatica L.) during annual growth depends on tree age and P-availability in the soil. Environ. Exp. Bot. 2017, 137, 194–207. [Google Scholar] [CrossRef]
- Keskitalo, J.; Bergquist, G.; Gardeström, P.; Jansson, S. A Cellular timetable of autumn senescence. Plant Physiol. 2005, 139, 1635–1648. [Google Scholar] [CrossRef] [PubMed]
- Kurita, Y.; Baba, K.; Ohnishi, M.; Matsubara, R.; Kosuge, K.; Anegawa, A.; Shichijo, C.; Ishizaki, K.; Kaneko, Y.; Hayashi, M.; et al. Inositol hexakis phosphate is the seasonal phosphorus reservoir in the deciduous woody plant Populus alba L. Plant Cell Physiol. 2017, 58, 1477–1485. [Google Scholar] [CrossRef] [PubMed]
- Chapin, F.S.; Kedrowski, R.A. Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology 1983, 64, 376–391. [Google Scholar] [CrossRef]
- Netzer, F.; Herschbach, C.; Oikawa, A.; Okazaki, Y.; Dubbert, D.; Saito, K.; Rennenberg, H. Seasonal alterations in organic phosphorus metabolism drive the phosphorus economy of annual growth in f. sylvatica trees p-impoverished soil. Front. Plant Sci. 2018, 9, 723. [Google Scholar] [CrossRef]
- Kurita, Y.; Kanno, S.; Sugita, R.; Hirose, A.; Ohnishi, M.; Tezuka, A.; Deguchi, A.; Ishizaki, K.; Fukaki, H.; Baba, K.; et al. Visualization of phosphorus re-translocation and phosphate transporter expression profiles in a shortened annual cycle system of poplar. Plant Cell Environ. 2022, 45, 1749–1764. [Google Scholar] [CrossRef]
- Chiou, T.-J. The diverse roles of rice PHO1 in phosphate transport: From root to node to grain. Plant Cell Physiol. 2020, 61, 1384–1386. [Google Scholar] [CrossRef]
- Che, J.; Yamaji, N.; Miyaji, T.; Mitani-Ueno, N.; Kato, Y.; Shen, R.F.; Ma, J.F. Node-localized transporters of phosphorus essential for seed development in rice. Plant Cell Physiol. 2020, 61, 1387–1398. [Google Scholar] [CrossRef]
- Zeng, M.; Li, G.; Wu, C.; Tao, L.; Yao, Y. Effects of plants harvesting on substrate enzyme activities of constructed wetlands. Freshw. Fish. 2008, 38, 51–53. [Google Scholar] [CrossRef]
- Lv, G.; He, H.; Yang, D.; Cai, X.; Jin, Y. Cutting effects on growth and wastewater purification of Cyperus alternifolius in constructed wetland. Acta Ecol. Sin. 2012, 32, 4932–4939. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, X.; Wang, X.; Wan, G.; Bai, J.; Jiang, Y. Analysis on the effects of submerged plant mechanical harvesting on water quality in Baiyangdian lake. J. Hebei Univ. Technol. 2023, 52, 69–75. [Google Scholar] [CrossRef]
- Su, Y.; Yang, T. Analysis of the removal effects of nitrogen and phosphorus on reaping wetland plants in autumn by Loushijiang wetland as an example. Environ. Sci. Surv. 2018, 37, 30–33. [Google Scholar] [CrossRef]
- He, S. Analysis of nitrogen and phosphorus accumulation in different organs of four plants. Chin. Water Wastewater 2011, 27, 92–95. [Google Scholar] [CrossRef]
- Zhang, S.-N.; Xiao, R.-L.; Yu, H.-B.; Liu, F. Effects of cutting aquatic plants on nitrogen and phosphorus interception in ecological ditches. Chin. J. Eco-Agric. 2012, 20, 1066–1071. [Google Scholar] [CrossRef]
- Liu, X. Characteristics of the Wetland Vegetations and Their Potential Capacity for Water Purification in Hetao Area. Master’s Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2011. [Google Scholar]
- Zhang, J.; Si, H.; Wang, Y.; Li, R.; Li, S.; Zhou, L.; Wang, Y.; Wang, L.; Yin, L.; Zhang, H. Mixed cropping enhances the nitrogen and phosphorus purification efficiency of sewage in wetland ecosystems. J. Water Process. Eng. 2023, 57, 104557. [Google Scholar] [CrossRef]
- Zeng, J.; Zou, R.; Yao, J.; Wu, H.; Li, C.; Guo, Y. On the removal ability of nitrogen and phosphorus nutrient salt by mixed-planting different life-type aquatic plants. J. Zhaoqing Univ. 2019, 40, 16–21. [Google Scholar] [CrossRef]
- Zhu, H.; Li, J.; Mou, C.; He, J.; Zhang, Y.; Gao, C. Research on the purification of eutrophic water bodies by different aquatic plant combinations. Environ. Prot. Circ. Econ. 2024, 44, 48–52. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, B.; Fu, Q.; Jing, J.; Li, H.; Ding, N.; Liu, C.; Lin, Y. Screening of hydrophyte plant species with high uptake of N and P potential for remediation of polluted water. Acta Agric. Zhejiangensis 2011, 23, 1210–1215. [Google Scholar] [CrossRef]
- Su, G.; Xu, S.; Li, Y.; Xie, C. Hydrological condition restoration and environmental effects in the drawdown zone of reservoir river mouths. Acta Hydrobiol. Sin. 2022, 46, 1527–1534. [Google Scholar] [CrossRef]
Wetland Plants | Biomass (g/m2) | Reference | |||
---|---|---|---|---|---|
Spring | Summer | Autumn | Winter | ||
Pontederia cordata | 893.53 ± 56.32 | 1541.77 ± 102.37 | 1119.39 ± 69.57 | / | [39] |
Scirpus mariqueter | 44.30 ± 6.17 | 482.54 ± 58.32 | 153.49 ± 8.51 | / | [40] |
Eichhornia crassipes | 451.36 ± 28.54 | 1514.00 ± 124.57 | 1198.00 ± 97.83 | / | [39] |
Typha orientalis | 584.54 ± 63.26 | 2633.91 ± 264.21 | 2049.74 ± 187.65 | / | [39] |
Scirpus validus | 953.19 ± 89.47 | 1514.89 ± 88.63 | 1140.42 ± 74.35 | 748.93 ± 54.34 | [42] |
Phragmites australis | 891.85 ± 54.36 | 3726.71 ± 321.75 | 3329.10 ± 302.17 | 2122.34 ± 176.62 | [40] |
Myriophyllum elatinoides | 829.91 ± 43.77 | 871.79 ± 56.84 | 940.17 ± 68.55 | 649.57 ± 63.54 | [43] |
Spartina alterniflora | 2402.38 ± 366.52 | 2784.90 ± 261.57 | 2991.87 ± 231.98 | 741.28 ± 54.28 | [40] |
Thalia dealbata | 1572.65 ± 124.25 | 2358.97 ± 203.42 | 2615.38 ± 164.33 | 2034.19 ± 189.67 | [43] |
Iris tectorum | 1042.73 ± 89.33 | 1367.52 ± 96.57 | 1692.30 ± 121.94 | 1196.58 ± 107.53 | [42] |
Acorus calamus | 871.79 ± 67.54 | 1709.40 ± 102.73 | 1931.62 ± 153.67 | 1384.61 ± 157.35 | [42] |
Wetland Plants | Total Nitrogen Removal Rate % | Total Phosphorus Removal Rate % | References | ||||||
---|---|---|---|---|---|---|---|---|---|
Spring | Summer | Autumn | Winter | Spring | Summer | Autumn | Winter | ||
P. australis | 40.90 ± 3.27–90.24 ± 8.51 | 37.59 ± 2.73–94.26 ± 5.45 | 38.70 ± 4.51–68.74 ± 6.39 | 1.37 ± 0.01–58.39 ± 3.57 | 24.70 ± 3.36–88.89 ± 11.22 | 37.40 ± 4.07–92.22 ± 8.36 | 30.90 ± 2.55–84.34 ± 6.73 | 23.27 ± 2.31–85.83 ± 7.54 | [45,46,50] |
Canna glauca | 52.47 ± 7.54–92.39 ± 11.34 | 54.74 ± 4.26–90.27 ± 7.63 | 62.73 ± 5.47–67.28 ± 4.32 | 38.85 ± 4.84–62.26 ± 8.69 | 63.12 ± 7.33–83.36 ± 11.27 | 68.17 ± 5.64–90.96 ± 12.36 | 75.14 ± 6.18–82.61 ± 9.66 | 29.76 ± 1.57–84.36 ± 6.48 | [43,46,48,51,52] |
T. orientalis | 88.28 ± 9.17 | 97.77 ± 11.32 | 40.72 ± 3.52 | 31.12 ± 5.46 | 52.99 ± 3.21 | 80.00 ± 12.33 | 72.17 ± 9.67 | 81.99 ± 6.42 | [46] |
Vetiveria zizanioide | 84.96 ± 7.51 | 94.54 ± 8.34 | 45.39 ± 3.25 | 41.84 ± 3.36 | 71.79 ± 8.84 | 94.44 ± 10.27 | 91.30 ± 7.33 | 90.05 ± 12.69 | [46] |
Sesuvium portulacastrum | 72.26 ± 5.63 | 90.75 ± 8.47 | / | 46.57 ± 1.58 | 46.57 ± 3.75 | 57.87 ± 4.26 | / | 21.92 ± 1.38 | [17] |
E. crassipes | / | 81.92 ± 9.33 | 52.31 ± 4.12 | 15.95 ± 1.25 | / | 87.88 ± 7.88 | 50.76 ± 6.57 | 43.07 ± 4.14 | [47] |
T. dealbata | 51.30 ± 11.24 | 72.37 ± 9.36–72.81 ± 11.33 | 57.82 ± 4.58 | 42.78 ± 3.37–53.02 ± 4.27 | 51.84 ± 8.61 | 58.06 ± 5.43–60.55 ± 8.96 | 71.85 ± 12.36 | 47.83 ± 6.17–80.51 ± 9.67 | [43,48] |
A. calamus | 58.99 ± 8.23–59.66 ± 4.47 | 73.43 ± 6.36–75.80 ± 6.15 | 47.72 ± 3.28–71.66 ± 9.67 | 41.93 ± 3.56–59.58 ± 6.14 | 60.09 ± 7.33–67.61 ± 6.57 | 73.00 ± 11.24–82.15 ± 14.58 | 67.14 ± 6.51–79.52 ± 9.42 | 42.50 ± 3.36–57.27 ± 6.17 | [43,53] |
Cyperus alternifolius | 44.15 ± 3.28–58.14 ± 3.66 | 56.98 ± 4.17–63.83 ± 5.62 | 52.35 ± 4.33 | 38.48 ± 2.87–49.07 ± 5.57 | 39.70 ± 3.16–48.58 ± 4.50 | 42.62 ± 3.92–60.85 ± 7.49 | 53.56 ± 4.30 | 31.38 ± 2.56–46.12 ± 7.33 | [26,43,52] |
S. validus | 47.92 ± 3.27 | 69.32 ± 8.65 | 50.71 ± 5.24 | 38.64 ± 4.33 | 57.92 ± 6.92 | 60.76 ± 7.36 | 66.73 ± 5.48 | 55.77 ± 6.33 | [43] |
M. elatinoides | 44.85 ± 3.16 | 60.11 ± 7.54 | 57.89 ± 9.42 | 31.45 ± 5.17 | 67.46 ± 3.31 | 83.76 ± 7.52 | 73.49 ± 4.63 | 60.87 ± 6.78 | [43] |
Alternanthera philoxeroides | / | 69.35 ± 5.24 | 63.50 ± 6.71 | 20.71 ± 3.28 | / | 66.67 ± 7.78 | 61.53 ± 5.33 | 53.84 ± 4.52 | [47] |
I. tectorum | 54.79 ± 5.27–59.47 ± 4.36 | 67.41 ± 6.98–84.43 ± 9.33 | 45.92 ± 3.15–75.66 ± 6.48 | 33.86 ± 4.23–64.14 ± 7.15 | 52.71 ± 5.12–86.41 ± 9.66 | 66.24 ± 4.27–94.76 ± 13.78 | 75.69 ± 6.36–85.15 ± 9.12 | 47.80 ± 3.57–77.97 ± 2.18 | [43,47,48,49] |
Lythrum salicaria | 47.51 ± 3.36 | 66.46 ± 5.42 | 59.03 ± 6.87 | 49.77 ± 4.33 | 78.40 ± 8.94 | 87.32 ± 9.66 | 77.46 ± 5.26 | 68.07 ± 7.38 | [53] |
Elodea nuttallii | / | 58.36 ± 7.58 | 80.77 ± 9.34 | 41.41 ± 54.36 | / | 59.09 ± 11.23 | 72.31 ± 8.69 | 58.46 ± 6.57 | [47] |
Carex | 38.40 ± 2.37 | 40.20 ± 3.87 | 36.90 ± 2.56 | 47.00 ± 5.45 | 13.00 ± 2.36 | 39.00 ± 4.28 | 30.70 ± 3.77 | 18.40 ± 1.05 | [54] |
Zizania latifolia | / | 20.41 ± 1.56–61.97 ± 5.74 | / | 25.56 ± 3.18–34.82 ± 1.98 | / | 28.61 ± 2.74–72.29 ± 9.63 | / | 45.02 ± 6.33–49.93 ± 2.79 | [48,52] |
P. cordata | / | 50.10 ± 4.32 | / | 18.32 ± 3.74 | / | 30.69 ± 1.25 | / | 26.28 ± 4.62 | [48] |
Plant Types | Species | Harvesting Method | Harvest Time | Enhancement Effects | Reference | ||
---|---|---|---|---|---|---|---|
Nitrogen Removal | Phosphorus Removal | Control | |||||
Spring–summer growth plants (SSPs) | T. orientalis | Single harvest | October | 22.67 ± 3.17 g/m2 | 5.22 ± 4.12 g/m2 | non-harvesting | [128] |
E. crassipes | October | 22.17 ± 2.14 g/m2 | 3.02 ± 0.42 g/m2 | non-harvesting | [128] | ||
Nelumbo nucifera | October | 12.88 ± 2.36 g/m2 | 2.69 ± 0.31 g/m2 | non-harvesting | [128] | ||
Nymphaea tetragona | October | 12.05 ± 1.78 g/m2 | 2.39 ± 0.25 g/m2 | non-harvesting | [128] | ||
Potamogeton filiformis | July | 39.40 ± 5.41 g/kg | 2.30 ± 0.17 g/kg | non-harvesting | [127] | ||
Hydrilla verticillata | July | 12.05 ± 2.31 g/kg | 2.39 ± 0.28 g/kg | non-harvesting | [127] | ||
P. cordata | October | 20.31 ± 2.33 g/m2 | 2.87 ± 0.33 g/m2 | non-harvesting | [128] | ||
Spring–summer–autumn growth plants (SSAPs) | P. australis | October | 37.50 ± 4.57 g/m2 | 6.90 ± 1.21 g/m2 | non-harvesting | [128] | |
P. australis | October | 48.00 ± 4.12 g/m2 | 4.20 ± 0.05 g/m2 | non-harvesting | [129] | ||
Z. latifolia | October | 33.88 ± 3.78 g/m2 | 6.97 ± 6.53 g/m2 | non-harvesting | [128] | ||
C. papyrus | October | 22.74 ± 4.77 g/m2 | 6.04 ± 1.22 g/m2 | non-harvesting | [128] | ||
Ceratophyllum demersum | July | 49.60 ± 5.96 g/kg | 4.02 ± 0.05 g/kg | non-harvesting | [127] | ||
M. elatinoides | November | 53.33 ± 6.87 g/m2 | 16.00 ± 2.55 g/m2 | non-harvesting | [129] | ||
All-year-round growth plants (APs) | C. alternifolius | July | 50.56 ± 9.62 g/m2 | 10.48 ± 2.18 g/m2 | non-harvesting | [126] | |
A. calamus | January | 38.50 ± 4.33 g/m2 | 5.00 ± 0.06 g/m2 | non-harvesting | [129] | ||
SSPs | Hydrocotyle vulgaris | Multiple harvests | May; September; November | 1.78 ± 0.22 g/m2 | 0.26 ± 0.03 g/m2 | single harvest in November | [41] |
H. vulgaris | September; November | 590.00 ± 71.58 g | 50.00 ± 8.36 g | single harvest in September | [130] | ||
Sparganium stoloniferum | May; September; December | 2.08 ± 0.35 g/m2 | 0.46 ± 0.04 g/m2 | single harvest in November | [41] | ||
SSAPs | C. glauca | June; September; November | 5.91 ± 0.76 g/m2 | 0.88 ± 0.11 g/m2 | single harvest in November | [41] | |
C. glauca | September; November | 3550.00 ± 412.69.00 g | 100.00 ± 18.25 g | single harvest in September | [130] | ||
M. elatinoides | September; November | 710.00 ± 74.36 g | 60.00 ± 4.33 g | single harvest in September | [130] | ||
M. elatinoides | April; June; September; November | 5.67 ± 1.17 g/m2 | 0.88 ± 0.12 g/m2 | single harvest in November | [41] | ||
Juncus effusus | April; June; September; November | 2.14 ± 0.21 g/m2 | 0.45 ± 0.05 g/m2 | single harvest in November | [41] | ||
J. effusus | September; November | 370.00 ± 27.45 g | 10.00 ± 2.56 g | single harvest in September | [130] |
Harvesting Strategy | ||
---|---|---|
Plant Type | Specific Species | Harvesting Method |
SSPs | S. stoloniferum, S. mariqueter, H. vulgaris, T. orientalis, S. portulacastrum, P. cordata, Z. latifolia, E. crassipes, Pistia stratiotes, and J. effusus et al. | Harvest some of the above-ground parts from May to July, and harvest all of the above-ground parts before September. |
SSAPs | P. australis, S. alterniflora, C. glauca, S. validus, T. dealbata, H. verticillata, L. salicaria, Pennisetum purpureum Schum, A. philoxeroides, Vallisneria natans, and M. elatinoides et al. | Harvest some of the above-ground parts from June to August, and harvest all of the above-ground parts before November. |
APs | I. tectorum, A. calamus, C. alternifolius, E. nuttallii, and V. zizanioides et al. | Harvest some of the above-ground parts in summer and autumn, and leave the rest to survive the winter. |
Configuration Strategy | ||
Plant Types | Specific Species | Target Water Area |
Emergent plants and submerged plants | Emergent plants: P. australis, C. glauca, T. dealbata, T. orientalis, and P. cordata et al. Submerged plants: M. elatinoides, V. natans, C. demersum, and E. nuttallii et al. | Suitable for restoring water areas with extremely high nitrogen and phosphorus concentrations. |
Emergent plants and floating plants | Emergent plants: P. australis, C. glauca, T. dealbata, T. orientalis, and P. cordata et al. Floating plants: P. stratiotes, E. crassipes, and Lemna minor et al. | Suitable for restoring water areas with large variations in nitrogen and phosphorus concentrations and complex hydrological conditions. |
SSPs and SSAPs and APs | SSPs: T. orientalis, P. cordata, S. stoloniferum, and S. mariqueter et al. SSAPs: P. australis, C. glauca, T. dealbata, and M. elatinoides et al. APs: I. tectorum, A. calamus, and V. zizanioides et al. | Achieve stable purification effects on the target water area throughout the year. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, K.; Chen, L.; Wang, Q.; Li, Y.; Zheng, Y.; Ma, Q.; Li, H.; Zhang, Y.; Li, F. Seasonal Dynamics of Nitrogen and Phosphorus in Wetland Plants: Implications for Efficient Eutrophication Control. Sustainability 2025, 17, 3443. https://doi.org/10.3390/su17083443
Wu K, Chen L, Wang Q, Li Y, Zheng Y, Ma Q, Li H, Zhang Y, Li F. Seasonal Dynamics of Nitrogen and Phosphorus in Wetland Plants: Implications for Efficient Eutrophication Control. Sustainability. 2025; 17(8):3443. https://doi.org/10.3390/su17083443
Chicago/Turabian StyleWu, Keyang, Lin Chen, Qian Wang, Yuanyuan Li, Yu Zheng, Qihao Ma, Haiyang Li, Yu Zhang, and Fengmin Li. 2025. "Seasonal Dynamics of Nitrogen and Phosphorus in Wetland Plants: Implications for Efficient Eutrophication Control" Sustainability 17, no. 8: 3443. https://doi.org/10.3390/su17083443
APA StyleWu, K., Chen, L., Wang, Q., Li, Y., Zheng, Y., Ma, Q., Li, H., Zhang, Y., & Li, F. (2025). Seasonal Dynamics of Nitrogen and Phosphorus in Wetland Plants: Implications for Efficient Eutrophication Control. Sustainability, 17(8), 3443. https://doi.org/10.3390/su17083443