Identifying the Main Urban Density Factors and Their Heterogeneous Effects on PM2.5 Concentrations in High-Density Historic Neighborhoods from a Social-Biophysical Perspective: A Case Study in Beijing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. PM2.5 Concentration Data
2.2.1. Monitoring of PM2.5 Concentrations
2.2.2. Numerical Simulation of CFD Model
2.3. Independent Variables
2.4. Statistical Models
2.4.1. Pearson Correlation Analysis
2.4.2. Least Absolute Shrinkage and Selection Operator
2.4.3. Quantile Regression
3. Results
3.1. Results of Air Monitoring and Numerical Simulation
3.2. Spatial Distribution and Descriptive Statistical Analysis
3.3. Results of Pearson Correlation Analysis
3.4. LASSO Regression
3.5. Results of Quantile Regression
4. Discussion
4.1. The Mechanism of Urban Density on PM2.5
4.1.1. The Impact of Population Activity on PM2.5 Concentration
4.1.2. The Impact of Commercial Activity on PM2.5 Concentration
4.1.3. The Impact of Building Morphology on PM2.5 Concentration
4.1.4. The Impact of Vegetation Morphology on PM2.5 Concentration
4.2. Heterogeneous Effect of Urban Density on PM2.5
4.3. Limitation and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RPD | Residential Population Density |
VPD | Visiting Population Density |
CSFD | Catering Service Facilities Density |
SLFD | Shopping and Leisure Services Facilities Density |
BD | Building Density |
BHD | Building Height Density |
GCR | Green Coverage Rate |
PSI | Plaque Shape Index |
MRAD | Motorway Road Area Density |
PRAD | Pavement Road Area Density |
Appendix A
Equipment Name | Principles | Range | Accuracy | Resolution |
---|---|---|---|---|
CO Sensor | Laser Principles | 0–10,000 ppm | ±2% FS | 1 ppm |
PM2.5 Sensor | Laser Principles | PM2.5: 0~1000 µg/m3 | ±10 µg/m3 | 1 µg/m3 |
Temperature and Humidity sensors | Electronic Sensing Principles | Temperature: −40~120 °C Humidity: 0–100% RH | ±0.3 °C ±3% RH | 0.1 °C 1% RH |
Wind Direction and Speed Instruments | Ultrasound Principles | Wind Speed: 0~60 m/s Wind Direction: 0~359.9 | ±3% | 0.1 m/s 0.1° |
Dates | Wind Speed (m/s) | Wind Direction | Temperature (°C) | PM2.5 Concentration (μg/m3) |
---|---|---|---|---|
28 March 2022 | 1.5 | S | 9 | 53 |
18 July 2021 | 0.6 | N | 26 | 16 |
19 October 2022 | 1.1 | N | 10 | 6 |
2 January 2022 | 0.4 | N | −3 | 11 |
Variables | Difference in Value | t | Sig. Double | ||||
---|---|---|---|---|---|---|---|
Mean | Standard Deviation | Standard Error of the Mean | 95% Confidence Interval | ||||
Lower Limit | Upper Limit | ||||||
PM2.5 | 3.615653 | 2.5167146 | 0.1317931 | −0.657465 | 0.4681257 | 1.528 | 0.135 |
Metrics | Expression | Description | Data Source | ||
---|---|---|---|---|---|
Population Activity | Residential Population Density (RPD) | NRpop = Number of Residential Population S = Site area (m2) | Spatial distribution of the resident population | LBS data from China Unicom | |
Visiting Population Density (VPD) | NVpop = Number of Visiting Population S = Site area (m2) | Spatial distribution of the visiting population | LBS data from China Unicom | ||
Commercial Activity | Catering Service Facilities Density (CSFD) | Ncsf = Number of Catering Service Facilities S = Site area (km2) | Spatial distribution of the Catering Service Facilities | GaoDe Map POI data | |
Shopping and Leisure Services Facilities Density (SLFD) | Nssf = Number of Shopping and Leisure Services Facilities S = Site area (km2) | Spatial distribution of Shopping and Leisure Services Facilities | GaoDe Map POI data | ||
Building Morphology | Building Density (BD) | BA = Building area (m2) S = Site area (m2) | Building congestion in the study area | 2023 OpenStreetMap (OSM) data | |
Building Height Density (BHD) | Hi = Building height (m) n = Number of buildings | Degree of spatial variation in building height | 2023 OpenStreetMap (OSM) data | ||
Vegetation Morphology | Green Coverage Rate (GCR) | SG = Area covered by vegetation (m2) S = Site area (m2) | Vegetation cover density | 2021 Remote sensing data from the French PNEO satellite | |
Plaque Shape Index (PSI) | P = plaque circumference of vegetation (m) A = Plaque area of vegetation (m2) | Compactness of vegetation patches | 2021 Remote sensing data from the French PNEO satellite | ||
Road Traffic Pattern | Motorway Road Area Density (MRAD) | SMR = Motorway Area (m2) S = Site area (m2) | The range of scales of the surface space that the motorway road actually has | 2023 OpenStreetMap (OSM) data | |
Pavement Road Area Density PRAD) | SPR = Pavement Area (m2) S = Site area (m2) | The range of scales of the surface space that the pavement road actually has | 2023 OpenStreetMap (OSM) data |
Metrics (Abbreviation) | Coefficient | |
---|---|---|
population activity | Residential population density (RPD) | 0.102 |
Visitor population density (VPD) | 0.533 *** | |
Building morphology | Building density (BD) | −0.653 *** |
Building height density (BHD) | −0.198 | |
Landscape pattern | Green Coverage Rate (GCR) | 0.438 *** |
Plaque Shape Index (PSI) | 0.609 *** | |
Catering service facilities density (CSFD) | 0.311 ** | |
commercial activity | Shopping and Leisure service facilities density (SLFD) | 0.428 *** |
Motorway area Road density (MRAD) | 0.463 *** | |
Pavement road area density (PRAD) | −0.198 |
R2 | 0.7409 | |||||
Adjusted R2 | 0.7206 | |||||
Root MSE | 0.17398 | |||||
Variables | Coefficient | Standard error | t-value | Prob (>|t|) | VIF | |
VPD | 0.0942529 | 0.0328049 | 2.87 | 0.006 | ** | 1.96 |
BD | −0.1508619 | 0.0343236 | −4.40 | 0.000 | *** | 2.14 |
SLFD | 0.0944151 | 0.0328119 | 2.88 | 0.006 | ** | 1.96 |
PSI | 0.0898761 | 0.0344049 | 2.61 | 0.012 | * | 2.15 |
cons | 3.572706 | 0.0232497 | 153.67 | 0.000 |
Quantile | Grading Interval of LnPM2.5 | Cells |
---|---|---|
The lower 25th quantile grade | [0, 3.329) | 38, 30, 27, 34, 36, 29, 37, 52, 47, 39, 28, 20, 51, 50 |
The 25–50th quantile grade | [3.329, 3.385) | 35, 42, 43, 44, 19, 45, 22, 46, 26, 31, 21, 23, 53, 12 |
The 50–75th quantile grade | [3.385, 3.807) | 11, 55, 14, 13, 15, 18, 54, 3, 41, 6, 10, 32, 33, 17 |
The 75–90th quantile grade | [3.807, 3.917) | 5, 2, 4, 48, 9, 8, 1, 7 |
The upper 90th quantile grade | [3.917) | 49, 25, 16, 40, 56, 24 |
Coef | Std Err | Z | p > |Z| | |
---|---|---|---|---|
Sobel | −0.24313056 | 0.13842537 | −1.756 | 0.07901984 |
Goodman-1 (Aroian) | −0.24313056 | 0.14323623 | −1.697 | 0.08961925 |
Goodman-2 | −0.24313056 | 0.13344117 | −1.822 | 0.06845415 |
a coefficient | −2.49083 | 1.1681 | −2.13238 | 0.032975 |
b coefficient | 0.09761 | 0.031513 | 3.09741 | 0.001952 |
Indirect effect | −0.243131 | 0.138425 | −1.7564 | 0.07902 |
Direct effect | −1.60236 | 0.281662 | −5.68896 | 1.3 × 10−8 |
Total effect | −1.84549 | 0.291234 | −6.33681 | 2.3 × 10−10 |
References
- Basu, S.; Nagendra, H.; Verburg, P.; Plieninger, T. Perceptions of Ecosystem Services and Knowledge of Sustainable Development Goals around Community and Private Wetlands Users in a Rapidly Growing City. Landsc. Urban Plan. 2024, 244, 104989. [Google Scholar] [CrossRef]
- Huang, A.; Chu, M.; Cheng, W.; Wang, G.; Guan, P.; Zhang, L.; Jia, J. Dynamic Evaluation of China’s Atmospheric Environmental Pressure from 2008 to 2017: Trends and Drivers. J. Environ. Sci. 2025, 150, 177–187. [Google Scholar] [CrossRef]
- Li, F.; Liu, X.; Hu, D.; Wang, R.; Yang, W.; Li, D.; Zhao, D. Measurement Indicators and an Evaluation Approach for Assessing Urban Sustainable Development: A Case Study for China’s Jining City. Landsc. Urban Plan. 2009, 90, 134–142. [Google Scholar] [CrossRef]
- Patias, N.; Rowe, F.; Cavazzi, S.; Arribas-Bel, D. Sustainable urban development indicators in Great Britain from 2001 to 2016. Landsc. Urban Plan. 2021, 214, 104148. [Google Scholar] [CrossRef]
- Ahn, H.; Lee, J.; Hong, A. Urban Form and Air Pollution: Clustering Patterns of Urban Form Factors Related to Particulate Matter in Seoul, Korea. Sustain. Cities Soc. 2022, 81, 103859. [Google Scholar] [CrossRef]
- Lopes, D.; Ferreira, J.; Rafael, S.; Hoi, K.I.; Li, X.; Liu, Y.; Yuen, K.-V.; Mok, K.M.; Miranda, A.I. High-Resolution Multi-Scale Air Pollution System: Evaluation of Modelling Performance and Emission Control Strategies. J. Environ. Sci. 2024, 137, 65–81. [Google Scholar] [CrossRef]
- Zhang, A.; Xia, C.; Li, W. Exploring the Effects of 3D Urban Form on Urban Air Quality: Evidence from Fifteen Megacities in China. Sustain. Cities Soc. 2022, 78, 103649. [Google Scholar] [CrossRef]
- Yang, J.; Shi, B.; Shi, Y.; Marvin, S.; Zheng, Y.; Xia, G. Air Pollution Dispersal in High Density Urban Areas: Research on the Triadic Relation of Wind, Air Pollution, and Urban Form. Sustain. Cities Soc. 2020, 54, 101941. [Google Scholar] [CrossRef]
- Cai, X.; Wu, Z.; Cheng, J. Using Kernel Density Estimation to Assess the Spatial Pattern of Road Density and Its Impact on Landscape Fragmentation. Int. J. Geogr. Inf. Sci. 2013, 27, 222–230. [Google Scholar] [CrossRef]
- Wang, C.; Wu, Y.; Shi, X.; Li, Y.; Zhu, S.; Jin, X.; Zhou, X. Dynamic Occupant Density Models of Commercial Buildings for Urban Energy Simulation. Build. Environ. 2020, 169, 106549. [Google Scholar] [CrossRef]
- Wu, J.; Ma, L.; Li, W.; Peng, J.; Liu, H. Dynamics of Urban Density in China: Estimations Based on DMSP/OLS Nighttime Light Data. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2014, 7, 4266–4275. [Google Scholar] [CrossRef]
- Wang, S.; Xu, L.; Ge, S.; Jiao, J.; Pan, B.; Shu, Y. Driving Force Heterogeneity of Urban PM2.5 Pollution: Evidence from the Yangtze River Delta, China. Ecol. Indic. 2020, 113, 106210. [Google Scholar] [CrossRef]
- Chen, J.; Wang, B.; Huang, S.; Song, M. The Influence of Increased Population Density in China on Air Pollution. Sci. Total Environ. 2020, 735, 139456. [Google Scholar] [CrossRef]
- Gouveia, N.; Kephart, J.L.; Dronova, I.; McClure, L.; Granados, J.T.; Betancourt, R.M.; O’Ryan, A.C.; Texcalac-Sangrador, J.L.; Martinez-Folgar, K.; Rodriguez, D.; et al. Ambient Fine Particulate Matter in Latin American Cities: Levels, Population Exposure, and Associated Urban Factors. Sci. Total Environ. 2021, 772, 145035. [Google Scholar] [CrossRef] [PubMed]
- Lee, C. How do built environments measured at two scales influence PM2.5 concentrations? Transp. Res. D Transp. Environ. 2021, 99, 103014. [Google Scholar] [CrossRef]
- Stone, B. Urban Sprawl and Air Quality in Large US Cities. J. Environ. Manag. 2008, 86, 688–698. [Google Scholar] [CrossRef]
- Lee, C. Impacts of Multi-Scale Urban Form on PM2.5 Concentrations Using Continuous Surface Estimates with High-Resolution in U.S. Metropolitan Areas. Landsc. Urban Plan. 2020, 204, 103935. [Google Scholar] [CrossRef]
- Wang, H.; Li, J.; Gao, Z.; Yim, S.H.L.; Shen, H.; Ho, H.C.; Li, Z.; Zeng, Z.; Liu, C.; Li, Y.; et al. High-Spatial-Resolution Population Exposure to PM2.5 Pollution Based on Multi-Satellite Retrievals: A Case Study of Seasonal Variation in the Yangtze River Delta, China in 2013. Remote Sens. 2019, 11, 2724. [Google Scholar] [CrossRef]
- Apergis, N.; Ozturk, I. Testing Environmental Kuznets Curve Hypothesis in Asian Countries. Ecol. Indic. 2015, 52, 16–22. [Google Scholar] [CrossRef]
- Aşıcı, A.A.; Acar, S. Does income growth relocate ecological footprint? Ecol. Indic. 2016, 61, 707–714. [Google Scholar] [CrossRef]
- Lin, B.; Zhu, J. Changes in Urban Air Quality during Urbanization in China. J. Clean. Prod. 2018, 188, 312–321. [Google Scholar] [CrossRef]
- McCarty, J.; Kaza, N. Urban Form and Air Quality in the United States. Landsc. Urban Plan. 2015, 139, 168–179. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, X.; Li, R. Does Urbanization Redefine the Environmental Kuznets Curve? An Empirical Analysis of 134 Countries. Sustain. Cities Soc. 2022, 76, 103382. [Google Scholar] [CrossRef]
- Gariazzo, C.; Pelliccioni, A.; Bolignano, A. A Dynamic Urban Air Pollution Population Exposure Assessment Study Using Model and Population Density Data Derived by Mobile Phone Traffic. Atmos. Environ. 2016, 131, 289–300. [Google Scholar] [CrossRef]
- Park, Y.M.; Kwan, M.-P. Individual Exposure Estimates May Be Erroneous When Spatiotemporal Variability of Air Pollution and Human Mobility Are Ignored. Health Place 2017, 43, 85–94. [Google Scholar] [CrossRef]
- Cui, C.; Wang, Z.; He, P.; Yuan, S.; Niu, B.; Kang, P.; Kang, C. Escaping from Pollution: The Effect of Air Quality on Inter-City Population Mobility in China. Environ. Res. Lett. 2019, 14, 124025. [Google Scholar] [CrossRef]
- He, G.; Pan, Y.; Tanaka, T. The Short-Term Impacts of COVID-19 Lockdown on Urban Air Pollution in China. Nat. Sustain. 2020, 3, 1005–1011. [Google Scholar] [CrossRef]
- Volke, M.I.; Abarca-del-Rio, R.; Ulloa-Tesser, C. Impact of Mobility Restrictions on NO2 Concentrations in Key Latin American Cities during the First Wave of the COVID-19 Pandemic. Urban Clim. 2023, 48, 101412. [Google Scholar] [CrossRef]
- Wei, L.; Donaire-Gonzalez, D.; Helbich, M.; Van Nunen, E.; Hoek, G.; Vermeulen, R.C.H. Validity of Mobility-Based Exposure Assessment of Air Pollution: A Comparative Analysis with Home-Based Exposure Assessment. Environ. Sci. Technol. 2024, 58, 10685–10695. [Google Scholar] [CrossRef]
- Yu, X.; Ivey, C.; Huang, Z.; Gurram, S.; Sivaraman, V.; Shen, H.; Eluru, N.; Hasan, S.; Henneman, L.; Shi, G.; et al. Quantifying the Impact of Daily Mobility on Errors in Air Pollution Exposure Estimation Using Mobile Phone Location Data. Environ. Int. 2020, 141, 105772. [Google Scholar] [CrossRef]
- Boniardi, L.; Borghi, F.; Straccini, S.; Fanti, G.; Campagnolo, D.; Campo, L.; Olgiati, L.; Lioi, S.; Cattaneo, A.; Spinazzè, A.; et al. Commuting by Car, Public Transport, and Bike: Exposure Assessment and Estimation of the Inhaled Dose of Multiple Airborne Pollutants. Atmos. Environ. 2021, 262, 118613. [Google Scholar] [CrossRef]
- Tomar, G.; Nagpure, A.S.; Kumar, V.; Jain, Y. High Resolution Vehicular Exhaust and Non-Exhaust Emission Analysis of Urban-Rural District of India. Sci. Total Environ. 2022, 805, 150255. [Google Scholar] [CrossRef]
- Hoek, G.; Beelen, R.; De Hoogh, K.; Vienneau, D.; Gulliver, J.; Fischer, P.; Briggs, D. A Review of Land-Use Regression Models to Assess Spatial Variation of Outdoor Air Pollution. Atmos. Environ. 2008, 42, 7561–7578. [Google Scholar] [CrossRef]
- Weber, N.; Haase, D.; Franck, U. Assessing Modelled Outdoor Traffic-Induced Noise and Air Pollution around Urban Structures Using the Concept of Landscape Metrics. Landsc. Urban Plan. 2014, 125, 105–116. [Google Scholar] [CrossRef]
- Deng, X.; Cao, Q.; Wang, L.; Wang, W.; Wang, S.; Wang, S.; Wang, L. Characterizing Urban Densification and Quantifying Its Effects on Urban Thermal Environments and Human Thermal Comfort. Landsc. Urban Plan. 2023, 237, 104803. [Google Scholar] [CrossRef]
- Liu, C.; Henderson, B.H.; Wang, D.; Yang, X.; Peng, Z. A Land Use Regression Application into Assessing Spatial Variation of Intra-Urban Fine Particulate Matter (PM2.5) and Nitrogen Dioxide (NO2) Concentrations in City of Shanghai, China. Sci. Total Environ. 2016, 565, 607–615. [Google Scholar] [CrossRef]
- Ke, B.; Hu, W.; Huang, D.; Zhang, J.; Lin, X.; Li, C.; Jin, X.; Chen, J. Three-Dimensional Building Morphology Impacts on PM2.5 Distribution in Urban Landscape Settings in Zhejiang, China. Sci. Total Environ. 2022, 826, 154094. [Google Scholar] [CrossRef]
- Shi, Y.; Xie, X.; Fung, J.C.-H.; Ng, E. Identifying Critical Building Morphological Design Factors of Street-Level Air Pollution Dispersion in High-Density Built Environment Using Mobile Monitoring. Build. Environ. 2018, 128, 248–259. [Google Scholar] [CrossRef]
- Jiang, Z.; Cheng, H.; Zhang, P.; Kang, T. Influence of Urban Morphological Parameters on the Distribution and Diffusion of Air Pollutants: A Case Study in China. J. Environ. Sci. 2021, 105, 163–172. [Google Scholar] [CrossRef]
- Cao, Q.; Luan, Q.; Liu, Y.; Wang, R. The Effects of 2D and 3D Building Morphology on Urban Environments: A Multi-Scale Analysis in the Beijing Metropolitan Region. Build. Environ. 2021, 192, 107635. [Google Scholar] [CrossRef]
- Du, H.; Savory, E.; Perret, L. Effect of Morphology and an Upstream Tall Building on the Mean Turbulence Statistics of a Street Canyon Flow. Build. Environ. 2023, 241, 110428. [Google Scholar] [CrossRef]
- Lu, D.; Mao, W.; Yang, D.; Zhao, J.; Xu, J. Effects of Land Use and Landscape Pattern on PM2.5 in Yangtze River Delta, China. Atmos. Pollut. Res. 2018, 9, 705–713. [Google Scholar] [CrossRef]
- Tallis, M.; Taylor, G.; Sinnett, D.; Freer-Smith, P. Estimating the Removal of Atmospheric Particulate Pollution by the Urban Tree Canopy of London, under Current and Future Environments. Landsc. Urban Plan. 2011, 103, 129–138. [Google Scholar] [CrossRef]
- Yan, J.; Chen, W.Y.; Zhang, Z.; Zhao, W.; Liu, M.; Yin, S. Mitigating PM2.5 Exposure with Vegetation Barrier and Building Designs in Urban Open-Road Environments Based on Numerical Simulations. Landsc. Urban Plan. 2024, 241, 104918. [Google Scholar] [CrossRef]
- Chen, H.-S.; Lin, Y.-C.; Chiueh, P.-T. High-Resolution Spatial Analysis for the Air Quality Regulation Service from Urban Vegetation: A Case Study of Taipei City. Sustain. Cities Soc. 2022, 83, 103976. [Google Scholar] [CrossRef]
- Chen, M.; Dai, F.; Yang, B.; Zhu, S. Effects of Neighborhood Green Space on PM2.5 Mitigation: Evidence from Five Megacities in China. Build. Environ. 2019, 156, 33–45. [Google Scholar] [CrossRef]
- Zhang, X.; Du, J.; Huang, T.; Zhang, L.; Gao, H.; Zhao, Y.; Ma, J. Atmospheric Removal of PM 2.5 by Man-Made Three Northern Regions Shelter Forest in Northern China Estimated Using Satellite Retrieved PM 2.5 Concentration. Sci. Total Environ. 2017, 593–594, 713–721. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, T.; Zeng, Y.; Cheng, B.; Li, H. Designating National Forest Cities in China: Does the Policy Improve the Urban Living Environment? For. Policy Econ. 2021, 125, 102400. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, H.; Zhou, J.; Xia, M. GIS-Based Urban Afforestation Spatial Patterns and a Strategy for PM2.5 Removal. Forests 2019, 10, 875. [Google Scholar] [CrossRef]
- Rogan, J.E.; Lacher, T.E. Impacts of Habitat Loss and Fragmentation on Terrestrial Biodiversity. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2018; p. B9780124095489109133. ISBN 978-0-12-409548-9. [Google Scholar]
- Cao, W.; Zhou, W.; Yu, W.; Wu, T. Combined Effects of Urban Forests on Land Surface Temperature and PM2.5 Pollution in the Winter and Summer. Sustain. Cities Soc. 2024, 104, 105309. [Google Scholar] [CrossRef]
- Zhai, C.; Bao, G.; Zhang, D.; Sha, Y. Urban Forest Locations and Patch Characteristics Regulate PM2.5 Mitigation Capacity. Forests 2022, 13, 1408. [Google Scholar] [CrossRef]
- Chen, M.; Dai, F.; Yang, B.; Zhu, S. Effects of Urban Green Space Morphological Pattern on Variation of PM2.5 Concentration in the Neighborhoods of Five Chinese Megacities. Build. Environ. 2019, 158, 1–15. [Google Scholar] [CrossRef]
- Xue, F.; Li, X. The Impact of Roadside Trees on Traffic Released PM 10 in Urban Street Canyon: Aerodynamic and Deposition Effects. Sustain. Cities Soc. 2017, 30, 195–204. [Google Scholar] [CrossRef]
- Lee, J.-H.; Wu, C.-F.; Hoek, G.; De Hoogh, K.; Beelen, R.; Brunekreef, B.; Chan, C.-C. LUR Models for Particulate Matters in the Taipei Metropolis with High Densities of Roads and Strong Activities of Industry, Commerce and Construction. Sci. Total Environ. 2015, 514, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.; Hyun, M.; Jeong, S.; Ryu, H.; Lee, M.G.; Chung, W.; Hong, J.; Kwon, J.-T.; Lee, J.; Kim, Y. A Correlation Study of Road Dust Pollutants, Tire Wear Particles, Air Quality, and Traffic Conditions in the Seoul (South Korea). Atmos. Pollut. Res. 2024, 15, 102309. [Google Scholar] [CrossRef]
- Jareemit, D.; Liu, J.; Srivanit, M. Modeling the Effects of Urban Form on Ventilation Patterns and Traffic-Related PM2.5 Pollution in a Central Business Area of Bangkok. Build. Environ. 2023, 244, 110756. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, W.; Han, L. The Spatial and Seasonal Complexity of PM2.5 Pollution in Cities from a Social-Ecological Perspective. J. Clean. Prod. 2021, 309, 127476. [Google Scholar] [CrossRef]
- Zhou, C.; Chen, J.; Wang, S. Examining the Effects of Socioeconomic Development on Fine Particulate Matter (PM2.5) in China’s Cities Using Spatial Regression and the Geographical Detector Technique. Sci. Total Environ. 2018, 619–620, 436–445. [Google Scholar] [CrossRef]
- Chen, M.; Bai, J.; Zhu, S.; Yang, B.; Dai, F. The Influence of Neighborhood-Level Urban Morphology on PM2.5 Variation Based on Random Forest Regression. Atmos. Pollut. Res. 2021, 12, 101147. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, Z.; Li, C.; Zheng, T.; Peng, Z.-R. Assessing Neighborhood Variations in Ozone and PM2.5 Concentrations Using Decision Tree Method. Build. Environ. 2021, 188, 107479. [Google Scholar] [CrossRef]
- Yang, J.; Shi, B.; Zheng, Y.; Shi, Y.; Xia, G. Urban Form and Air Pollution Disperse: Key Indexes and Mitigation Strategies. Sustain. Cities Soc. 2020, 57, 101955. [Google Scholar] [CrossRef]
- Yan, D.; Ren, X.; Kong, Y.; Ye, B.; Liao, Z. The Heterogeneous Effects of Socioeconomic Determinants on PM2.5 Concentrations Using a Two-Step Panel Quantile Regression. Appl. Energy 2020, 272, 115246. [Google Scholar] [CrossRef]
- Zou, Q.; Shi, J. The Heterogeneous Effect of Socioeconomic Driving Factors on PM2.5 in China’s 30 Province-Level Administrative Regions: Evidence from Bayesian Hierarchical Spatial Quantile Regression. Environ. Pollut. 2020, 264, 114690. [Google Scholar] [CrossRef] [PubMed]
- Che, W.; Zhang, Y.; Lin, C.; Fung, Y.H.; Fung, J.C.H.; Lau, A.K.H. Impacts of Pollution Heterogeneity on Population Exposure in Dense Urban Areas Using Ultra-Fine Resolution Air Quality Data. J. Environ. Sci. 2023, 125, 513–523. [Google Scholar] [CrossRef]
- Jean-Pierre, F. Identification of Treatment Effects Using Control Functions in Models With Continuous, Endogenous Treatment and Heterogeneous Effects. Econometrica 2008, 76, 1191–1206. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, Z.; Liu, C.; Peng, Z.-R. Assessing Neighborhood Air Pollution Exposure and Its Relationship with the Urban Form. Build. Environ. 2019, 155, 15–24. [Google Scholar] [CrossRef]
- Su, W.; Zhang, L.; Chang, Q. Nature-Based Solutions for Urban Heat Mitigation in Historical and Cultural Block: The Case of Beijing Old City. Build. Environ. 2022, 225, 109600. [Google Scholar] [CrossRef]
- Beijing’s Urban Master Plan(2016–2035); China Architecture & Building Press: Beijing, China, 2019.
- Technical Regulation for Selection of Ambient Air Quality Monitoring Station; China Environmental Science Press: Beijing, China, 2013.
- Franke, J.; Hellsten, A.; Schlunzen, K.H.; Carissimo, B. The COST 732 Best Practice Guideline for CFD Simulation of Flows in the Urban Environment: A Summary. Int. J. Environ. Pollut. 2011, 44, 419. [Google Scholar] [CrossRef]
- Guo, L.; Luo, J.; Yuan, M.; Huang, Y.; Shen, H.; Li, T. The Influence of Urban Planning Factors on PM2.5 Pollution Exposure and Implications: A Case Study in China Based on Remote Sensing, LBS, and GIS Data. Sci. Total Environ. 2019, 659, 1585–1596. [Google Scholar] [CrossRef]
- Qiang, W.; Lee, H.F.; Lin, Z.; Wong, D.W.H. Revisiting the Impact of Vehicle Emissions and Other Contributors to Air Pollution in Urban Built-up Areas: A Dynamic Spatial Econometric Analysis. Sci. Total Environ. 2020, 740, 140098. [Google Scholar] [CrossRef]
- Tan, X.; Zhou, Z.; Wang, W. Relationships between Urban Form and PM2.5 Concentrations from the Spatial Pattern and Process Perspective. Build. Environ. 2023, 234, 110147. [Google Scholar] [CrossRef]
- Xu, H.; Chen, H. Impact of Urban Morphology on the Spatial and Temporal Distribution of PM2.5 Concentration: A Numerical Simulation with WRF/CMAQ Model in Wuhan, China. J. Environ. Manag. 2021, 290, 112427. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Song, Y.; Huang, Y.; Shen, H.; Li, T. Exploring the Association between the Built Environment and Remotely Sensed PM2.5 Concentrations in Urban Areas. J. Clean. Prod. 2019, 220, 1014–1023. [Google Scholar] [CrossRef]
- Qi, X.; Qu, J.; Liu, J.; Wang, X.; Guo, P.; Zhang, Y.; Jia, K.; Zhang, Y.; Liu, Y. Preliminary Estimation of Chemical Compositions and Emissions of Particulate Matters from Domestic Cooking in Beijing. IOP Conf. Ser. Earth Environ. Sci. 2020, 508, 012140. [Google Scholar] [CrossRef]
- Lin, P.; Gao, J.; He, W.; Nie, L.; Schauer, J.J.; Yang, S.; Xu, Y.; Zhang, Y. Estimation of Commercial Cooking Emissions in Real-World Operation: Particulate and Gaseous Emission Factors, Activity Influencing and Modelling. Environ. Pollut. 2021, 289, 117847. [Google Scholar] [CrossRef]
- Buccolieri, R.; Jeanjean, A.P.R.; Gatto, E.; Leigh, R.J. The Impact of Trees on Street Ventilation, NOx and PM2.5 Concentrations across Heights in Marylebone Rd Street Canyon, Central London. Sustain. Cities Soc. 2018, 41, 227–241. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Koenker, R.; Bassett, G. Regression Quantiles. Econometrica 1978, 46, 33. [Google Scholar] [CrossRef]
- GB3095-2012; Ambient Air Quality Standards. China Environmental Science Press: Beijing, China, 2012.
- GB50180-2018; Standard for Urban Residential Area Planning and Design. China Architecture & Building Press: Beijing, China, 2018.
- Bao, Y.; Xiao, F.; Gao, Z.; Gao, Z. Investigation of the Traffic Congestion during Public Holiday and the Impact of the Toll-Exemption Policy. Transp. Res. B Methodol. 2017, 104, 58–81. [Google Scholar] [CrossRef]
- Opinions on the Implementation of the “14th Five-Year Plan” Period to Deepen the Promotion of “Dredging and Remediation and Promotion” Special Action. Available online: https://www.beijing.gov.cn/zhengce/zhengcefagui/202102/t20210205_2277859.html (accessed on 16 May 2024).
- Zhang, J.; Duan, W.; Cheng, S.; Wang, C. A High-Resolution (0.1° × 0.1°) Emission Inventory for the Catering Industry Based on VOCs and PM2.5 Emission Characteristics of Chinese Multi-Cuisines. Atmos. Environ. 2024, 319, 120314. [Google Scholar] [CrossRef]
- Alavipanah, S.; Schreyer, J.; Haase, D.; Lakes, T.; Qureshi, S. The Effect of Multi-Dimensional Indicators on Urban Thermal Conditions. J. Clean. Prod. 2018, 177, 115–123. [Google Scholar] [CrossRef]
- Gadish, I.; Saaroni, H.; Pearlmutter, D. A Predictive Analysis of Thermal Stress in a Densifying Urban Business District under Summer Daytime Conditions in a Mediterranean City. Urban Clim. 2023, 48, 101298. [Google Scholar] [CrossRef]
- Ghosh, B.; Padhy, P.K.; Ali, S.Y.; Shaik, R.; Hossain, M.; Nayek, S.; Bhui, I.; Majee, C.K. Spatiotemporal Distribution of PM2.5 and Health Risk Assessment in Kolkata, India: Evaluation of Non-Carcinogenic Health Hazards and Premature Mortality. Urban Clim. 2024, 56, 102005. [Google Scholar] [CrossRef]
- Pakarnseree, R.; Chunkao, K.; Bualert, S. Physical Characteristics of Bangkok and Its Urban Heat Island Phenomenon. Build. Environ. 2018, 143, 561–569. [Google Scholar] [CrossRef]
- Dawson, J.P.; Adams, P.J.; Pandis, S.N. Sensitivity of PM2.5 to Climate in the Eastern US: A Modeling Case Study. Atmos. Chem. Phys. 2007, 7, 4295–4309. [Google Scholar] [CrossRef]
- Regulatory Plan for the Core Area of the Capital(Neighborhood Level). Available online: https://ghzrzyw.beijing.gov.cn/zhengwuxinxi/ghcg/xxgh/sj/202008/t20200829_1993379.html (accessed on 16 May 2024).
- Li, K.; Li, C.; Hu, Y.; Xiong, Z.; Wang, Y. Quantitative Estimation of the PM2.5 Removal Capacity and Influencing Factors of Urban Green Infrastructure. Sci. Total Environ. 2023, 867, 161476. [Google Scholar] [CrossRef]
- Shi, Y.; Ren, C.; Lau, K.K.-L.; Ng, E. Investigating the Influence of Urban Land Use and Landscape Pattern on PM2.5 Spatial Variation Using Mobile Monitoring and WUDAPT. Landsc. Urban Plan. 2019, 189, 15–26. [Google Scholar] [CrossRef]
- Yang, H.; Leng, Q.; Xiao, Y.; Chen, W. Investigating the Impact of Urban Landscape Composition and Configuration on PM2.5 Concentration under the LCZ Scheme: A Case Study in Nanchang, China. Sustain. Cities Soc. 2022, 84, 104006. [Google Scholar] [CrossRef]
- He, H.; Zhu, Y.; Liu, L.; Du, J.; Liu, L.; Liu, J. Effects of Roadside Trees Three-Dimensional Morphology Characteristics on Traffic-Related PM2.5 Distribution in Hot-Humid Urban Blocks. Urban Clim. 2023, 49, 101448. [Google Scholar] [CrossRef]
- Cowie, C.T.; Ding, D.; Rolfe, M.I.; Mayne, D.J.; Jalaludin, B.; Bauman, A.; Morgan, G.G. Neighbourhood Walkability, Road Density and Socio-Economic Status in Sydney, Australia. Environ. Health 2016, 15, 58. [Google Scholar] [CrossRef]
- Xu, S.; Sun, C.; Wei, H.; Hou, X. Road Construction and Air Pollution: Analysis of Road Area Ratio in China. Appl. Energy 2023, 351, 121794. [Google Scholar] [CrossRef]
- Xu, J.; Liu, M.; Chen, H.; Luo, M. Spatially Heterogeneous Influence of Street Greenery on Street-Level PM2.5 Pollution Using Mobile Monitoring from a Three-Dimensional Perspective. Urban Clim. 2023, 48, 101414. [Google Scholar] [CrossRef]
- Lee, B.K.; Sohn, S.Y.; Yang, S. Design Guidelines for the Dashilar, Beijing Open Green Space Redevelopment Project. Urban For. Urban Green. 2014, 13, 385–396. [Google Scholar] [CrossRef]
- Ren, X. Consensus in Factors Affecting Landscape Preference: A Case Study Based on a Cross-Cultural Comparison. J. Environ. Manag. 2019, 252, 109622. [Google Scholar] [CrossRef]
Boundary Condition | Parameters Settings |
---|---|
Inflow boundary | Wind speed: |
The turbulent kinetic energy: | |
Exit boundary | Energy dissipation rate: |
Upper boundary and two sides boundary | |
Lower boundary | Standard surface function: surface roughness thickness Ks = 0.0025 m, roughness constant Cs = 0.75 |
Building Surfaces | Standard surface function: Ks = 0.003 m, Cs = 0.75 |
Metrics (Abbreviation) | Direction | Assumption | ||
---|---|---|---|---|
Socioeconomic dimension | Population Activity | Residential Population Density (RPD) | + | High RPD may add more household domestic emissions and thus increase air pollution [77]. |
− | High RPD can reduce air pollution by encouraging the use of public transit [17]. | |||
Visiting Population Density (VPD) | + | High VPD may increase all kinds of production and living activities and cause dust to fly up from the ground, which may increase PM2.5 concentrations [57]. | ||
Commercial Activity | Catering Service Facilities Density (CSFD) | + | High CSFD directly causes air emissions by cooking, which increase PM2.5 concentrations [78]. | |
Shopping and Leisure Services Facilities Density (SLFD) | + | High SLFD can restrict airflow and increase the secondary pollutants generated by attracting a large number of people for a short period of time, which may increase PM2.5 concentrations. | ||
Biophysical dimension | Building Morphology | Building Density (BD) | + | High BD may increase surface roughness and impede the dispersion of pollutants, which may increase PM2.5 concentrations [39]. |
− | Low BD causes high wind speed due to lack of obstruction, which may cause dust accumulation and increase PM2.5 concentrations [8]. | |||
Building Height Density (BHD) | + | High BHD produces a shading effect that delays the longwave radiation from the street canyons, which may increase the atmospheric turbulent energy and favor the vertical PM2.5 dispersion [75]. | ||
− | High BHD may create an urban canyon effect, which may impede air circulation and increase PM2.5 concentrations. | |||
Vegetation Morphology | Green Coverage Rate (GCR) | − | High GCR absorbs and deposits more pollutants, which may decrease PM2.5 concentrations [48]. | |
Patch Shape Index (PSI) | + | High PSI may cause localized poor air circulation, making it difficult for pollutants to disperse, thus increasing PM2.5 concentrations [79]. | ||
− | High PSI can provide more surface area in contact with the air, which promotes the adsorption and deposition of pollutants, thus reducing PM2.5 concentrations [53]. | |||
Road Morphology | Motorway Road Area Density (MRAD) | + | More motorway roads, as emission sources, may increase PM2.5 concentrations [57]. | |
Pavement Road Area Density (PRAD) | − | More pavement roads allow for increased wind flow and accelerated dispersion of pollutants, which may decrease PM2.5 concentrations. |
Variable Type | Metrics | Units | Minimum | Maximum | Median | Mean | Standard Deviation | |
---|---|---|---|---|---|---|---|---|
Explained variable | PM2.5 concentration | PM2.5 | µg/m3 | 27.299 | 131.844 | 29.517 | 37.957 | 16.959 |
lnPM2.5 | µg/m3 | 3.307 | 4.882 | 3.385 | 3.573 | 0.326 | ||
Explanatory variables | Population activity | RPD | Person/m2 | 0.003 | 0.077 | 0.013 | 0.019 | 0.016 |
VPD | Person/m2 | 0.054 | 0.565 | 0.111 | 0.151 | 0.122 | ||
Commercial activity | CSFD | individuals/km2 | 0.000 | 894.154 | 55.885 | 122.747 | 218.088 | |
SLFD | individuals/km2 | 0.000 | 782.385 | 55.885 | 119.753 | 160.318 | ||
Building morphology | BD | —— | 0.211 | 0.766 | 0.608 | 0.564 | 0.115 | |
BHD | m/m2 | 0.004 | 0.026 | 0.015 | 0.015 | 0.005 | ||
Vegetation Morphology | GCR | —— | 0.005 | 0.268 | 0.067 | 0.084 | 0.060 | |
PSI | —— | 1.170 | 1.591 | 1.291 | 1.324 | 0.102 | ||
Road Morphology | MRAD | —— | 0.000 | 0.368 | 0.068 | 0.090 | 0.089 | |
PRAD | —— | 0.000 | 0.111 | 0.042 | 0.044 | 0.030 |
Metrics | Coefficient |
---|---|
VPD | 0.08966835 |
SLFD | 0.08177266 |
BD | −0.14191426 |
PSI | 0.08136056 |
Intercept | 3.57270579 |
Variables | QR | OLS | |||
---|---|---|---|---|---|
25th Quantile | 50th Quantile | 75th Quantile | 90th Quantile | ||
Z_VPD | 0.0756 * (0.0384) | 0.0879 (0.0601) | 0.1832 ** (0.0768) | 0.1578 * (0.0905) | 0.0943 *** (0.0328) |
Z_SLFD | 0.0484 (0.0519) | 0.0226 (0.0605) | 0.0947 (0.0775) | 0.1406 (0.0928) | 0.0944 *** (0.0328) |
Z_BD | −0.1678 *** (0.0380) | −0.1494 *** (0.0347) | −0.1877 *** (0.0467) | −0.1527 * (0.0778) | −0.1509 *** (0.0343) |
Z_PSI | 0.0418 (0.0562) | 0.0919 ** (0.0442) | 0.0647 * (0.0339) | 0.0747 (0.0628) | 0.0899 ** (0.0344) |
Intercept | 3.4866 *** (0.0272) | 3.5557 *** (0.0325) | 3.7001 *** (0.0497) | 3.7511 *** (0.0564) | 3.5727 *** (0.0232) |
Pseudo R2 | 0.3438 | 0.5232 | 0.5645 | 0.6125 | 0.7206 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Cheng, H.; Cai, B.; Xiang, F. Identifying the Main Urban Density Factors and Their Heterogeneous Effects on PM2.5 Concentrations in High-Density Historic Neighborhoods from a Social-Biophysical Perspective: A Case Study in Beijing. Sustainability 2025, 17, 3309. https://doi.org/10.3390/su17083309
Wang Y, Cheng H, Cai B, Xiang F. Identifying the Main Urban Density Factors and Their Heterogeneous Effects on PM2.5 Concentrations in High-Density Historic Neighborhoods from a Social-Biophysical Perspective: A Case Study in Beijing. Sustainability. 2025; 17(8):3309. https://doi.org/10.3390/su17083309
Chicago/Turabian StyleWang, Yi, Haomiao Cheng, Bin Cai, and Fanding Xiang. 2025. "Identifying the Main Urban Density Factors and Their Heterogeneous Effects on PM2.5 Concentrations in High-Density Historic Neighborhoods from a Social-Biophysical Perspective: A Case Study in Beijing" Sustainability 17, no. 8: 3309. https://doi.org/10.3390/su17083309
APA StyleWang, Y., Cheng, H., Cai, B., & Xiang, F. (2025). Identifying the Main Urban Density Factors and Their Heterogeneous Effects on PM2.5 Concentrations in High-Density Historic Neighborhoods from a Social-Biophysical Perspective: A Case Study in Beijing. Sustainability, 17(8), 3309. https://doi.org/10.3390/su17083309