The Arctic Permafrost Vulnerability Index
Abstract
1. Introduction
2. Materials and Methods
2.1. Defining Vulnerability, Exposure, and Adaptive Capacity
2.2. Choosing Pertinent Indicators in the Context of Vulnerability to Permafrost Thaw
2.3. Implementing the APVI
3. Results and Discussion
3.1. Selected Indicators
3.1.1. Exposure Indicators
Soils
Landscapes
Infrastructure
Health
3.1.2. Adaptive Capacity Indicators
3.2. Difference in Vulnerability to Permafrost Thaw
3.3. Limitations to the APVI
3.3.1. Subjectivity and Lack of Indicators
3.3.2. Top-Down and Static Approach
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
APVI | Arctic Permafrost Vulnerability Index |
ACPR | Arctic Circumpolar Permafrost Region |
ASI | Arctic Social Indicators |
References
- Ramage, J.; Jungsberg, L.; Wang, S.; Westermann, S.; Lantuit, H.; Heleniak, T. Population living on permafrost in the Arctic. Popul. Environ. 2021, 43, 22–38. [Google Scholar] [CrossRef]
- Obu, J. How much of the earth’s surface is underlain by permafrost? J. Geophys. Res. Earth Surf. 2021, 126, e2021JF006123. [Google Scholar] [CrossRef]
- Rantanen, M.; Karpechko, A.Y.; Lipponen, A.; Nordling, K.; Hyvärinen, O.; Ruosteenoja, K.; Vihma, T.; Laaksonen, A. The Arctic has warmed nearly four times faster than the globe since 1979. Commun Earth Environ 2022, 3, 168. [Google Scholar] [CrossRef]
- Biskaborn, B.K.; Smith, S.L.; Noetzli, J.; Matthes, H.; Vieira, G.; Streletskiy, D.A.; Schoeneich, P.; Romanovsky, V.E.; Lewkowicz, A.G.; Abramov, A.; et al. Permafrost is warming at a global scale. Nat. Commun. 2019, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhang, M.; Pei, W.; Melnikov, A.; Khristoforov, I.; Li, R.; Yu, F. Changes in permafrost extent and active layer thickness in the Northern Hemisphere from 1969 to 2018. Sci. Total Environ. 2022, 804, 150182. [Google Scholar] [CrossRef]
- Nitze, I.; Grosse, G.; Jones, B.M.; Romanovsky, V.E.; Boike, J. Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic. Nat. Commun. 2018, 9, 5423. [Google Scholar] [CrossRef] [PubMed]
- Walter Anthony, K.; Schneider von Deimling, T.; Nitze, I.; Frolking, S.; Emond, A.; Daanen, R.; Anthony, P.; Lindgren, P.; Jones, B.; Grosse, G. 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nat. Commun. 2018, 9, 3262. [Google Scholar] [CrossRef]
- Irrgang, A.M.; Bendixen, M.; Farquharson, L.M.; Baranskaya, A.V.; Erikson, L.H.; Gibbs, A.E.; Ogorodov, S.A.; Overduin, P.P.; Lantuit, H.; Grigoriev, M.N.; et al. Drivers, dynamics and impacts of changing Arctic coasts. Nat. Rev. Earth Environ. 2022, 3, 39–54. [Google Scholar] [CrossRef]
- Abass, K.; Doloisio, N.; Gartler, S.; Ingeman-Nielsen, T.; Ingimundarson, J.H.; Jungsberg, L.; Meyer, A.; Rautio, A.; Scheer, J.; Timlin, U.; et al. Thawing Permafrost in Arctic Coastal Communities: A Framework for Studying Risks from Climate Change. Sustainability 2021, 13, 2651. [Google Scholar] [CrossRef]
- Vonk, J.E.; Tank, S.E.; Bowden, W.B.; Laurion, I.; Vincent, W.F.; Alekseychik, P.; Amyot, M.; Billet, M.F.; Canário, J.; Cory, R.M.; et al. Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences 2015, 12, 7129–7167. [Google Scholar]
- Christensen, T.R.; Lund, M.; Skov, K.; Abermann, J.; López-Blanco, E.; Scheller, J.; Scheel, M.; Jackowicz-Korczynski, M.; Langley, K.; Murphy, M.J.; et al. Multiple Ecosystem Effects of Extreme Weather Events in the Arctic. Ecosystems 2021, 24, 122–136. [Google Scholar] [CrossRef]
- Ramage, J.; Kuhn, M.; Virkkala, A.M.; Voigt, C.; Marushchak, M.E.; Bastos, A.; Biasi, C.; Canadell, J.G.; Ciais, P.; López-Blanco, E.; et al. The net GHG balance and budget of the permafrost region (2000–2020) from ecosystem flux upscaling. Glob. Biogeochem. Cycles 2024, 38, e2023GB007953. [Google Scholar]
- Hjort, J.; Streletskiy, D.; Doré, G.; Wu, Q.; Bjella, K.; Luoto, M. Impacts of permafrost degradation on infrastructure. Nat. Rev. Earth Environ. 2022, 3, 24–38. [Google Scholar] [CrossRef]
- Gibson, C.M.; Brinkman, T.; Cold, H.; Brown, D.; Turetsky, M. Identifying increasing risks of hazards for northern land-users caused by permafrost thaw: Integrating scientific and community-based research approaches. Environ. Res. Lett. 2021, 16, 064047. [Google Scholar]
- Lytkin, V.; Suleymanov, A.; Vinokurova, L.; Grigorev, S.; Golomareva, V.; Fedorov, S.; Kuzmina, A.; Syromyatnikov, I. Influence of permafrost landscapes degradation on livelihoods of Sakha Republic (Yakutia) rural communities. Land 2021, 10, 101. [Google Scholar] [CrossRef]
- Ramage, J.; Jungsberg, L.; Meyer, A.; Gartler, S. ‘No longer solid’: Perceived impacts of permafrost thaw in three Arctic communities. Polar Geogr. 2022, 45, 1–14. [Google Scholar]
- Ford, J.D.; Pearce, T.; Canosa, I.V.; Harper, S. The rapidly changing Arctic and its societal implications. Wiley Interdiscip. Rev. Clim. Chang. 2021, 12, e735. [Google Scholar]
- Sokolickova, Z.; Meyer, A.; Vlakhov, A. Changing Svalbard: Tracing interrelated socio-economic and environmental change in remote Arctic settlements. Polar Rec. 2022, 58, E23. [Google Scholar] [CrossRef]
- Larsen, J.N.; Huskey, L. The Arctic Economy in a Global Context. In The New Arctic; Evengaard, B., Larsen, J.N., Paasche, Ø., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; ISBN 978-3-319-17601-7. [Google Scholar]
- Ford, J.D.; Champalle, C.; Tudge, P.; Riedlsperger, R.; Bell, T.; Sparling, E. Evaluating climate change vulnerability assessments: A case study of research focusing on the built environment in northern Canada. Mitig. Adapt. Strateg. Glob. Change 2015, 20, 1267–1288. [Google Scholar]
- Debortoli, N.S.; Sayles, J.S.; Clark, D.G.; Ford, J.D. A systems network approach for climate change vulnerability assessment. Environ. Res. Lett. 2018, 13, 104019. [Google Scholar]
- Naylor, A.W.; Ford, J.D.; Pearce, T.; Fawcett, D.; Clark, D.; van Alstine, J. Monitoring the dynamic vulnerability of an Arctic subsistence food system to climate change: The case of Ulukhaktok, NT. PLoS ONE 2021, 16, e0258048. [Google Scholar] [CrossRef] [PubMed]
- Kliskey, A.; Williams, P.; Abatzoglou, J.T.; Alessa, L.; Lammers, R.B. Enhancing a community-based water resource tool for assessing environmental change: The arctic water resources vulnerability index revisited. Environ. Syst. Decis. 2019, 39, 183–197. [Google Scholar]
- Spence, C.; Norris, M.; Bickerton, G.; Bonsal, B.R.; Brua, R.; Culp, J.M.; Dibike, Y.; Gruber, S.; Morse, P.D.; Peters, D.L.; et al. The Canadian water resource vulnerability index to permafrost thaw (CWRVIPT). Arct. Sci. 2020, 6, 437–462. [Google Scholar] [CrossRef]
- IPCC Annex II: Glossary. In Climate Change 2022: Impacts, Adaptation and Vulnerability; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 2897–2930. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Synthesis Report; Island Press: Washington, DC, USA, 2005; Volume 748. [Google Scholar]
- Larsen, J.N.; Schweitzer, P.; Fondahl, G. Arctic Social Indicators (ASI)—A follow-up to the Arctic Human Development Report. In TemaNord; Nordic Council of Ministers: Copenhagen, Denmark, 2010; Volume 519. [Google Scholar] [CrossRef]
- Brown, J.; Ferrians, O.; Heginbottom, J.A.; Melnikov, E. Circum-Arctic Map of Permafrost and Ground-Ice Conditions, Version 2; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2002. [Google Scholar] [CrossRef]
- Westermann, S.; Barboux, C.; Bartsch, A.; Delaloye, R.; Grosse, G.; Heim, B.; Hugelius, G.; Irrgang, A.; Kääb, A.M.; Matthes, H.; et al. ESA Permafrost Climate Change Initiative (Permafrost_cci): Permafrost Version 4 Data Products. NERC EDS Centre for Environmental Data Analysis. 2024. Available online: http://catalogue.ceda.ac.uk/uuid/7479606004d9465bad949671501e5f21 (accessed on 30 January 2022).
- Nelson, F.E.; Anisimov, O.A.; Shiklomanov, N.I. Subsidence risk from thawing permafrost. Nature 2001, 410, 889–890. [Google Scholar] [PubMed]
- Hjort, J.; Karjalainen, O.; Aalto, J.; Westermann, S.; Romanovsky, V.E.; Nelson, F.E.; Etzelmüller, B.; Luoto, M. Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nat. Commun. 2018, 9, 1–9. [Google Scholar] [CrossRef]
- Olefeldt, D.; Goswami, S.; Grosse, G.; Hayes, D.; Hugelius, G.; Kuhry, P.; McGuire, A.D.; Romanovsky, V.E.; Sannel, A.B.K.; Schuur, E.A.G.; et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 2016, 7, 13043. [Google Scholar] [CrossRef] [PubMed]
- Ford, J.D.; McDowell, G.; Pearce, T. The adaptation challenge in the Arctic. Nat. Clim. Chang. 2015, 5, 1046–1053. [Google Scholar]
- Lantuit, H.; Overduin, P.P.; Couture, N.; Wetterich, S.; Aré, F.; Atkinson, D.; Brown, J.; Cherkashov, G.; Drozdov, D.; Forbes, D.L.; et al. The Arctic coastal dynamics database: A new classification scheme and statistics on Arctic permafrost coastlines. Estuaries Coasts 2012, 35, 383–400. [Google Scholar]
- Jaskólski, M.W.; Pawłowski, Ł.; Strzelecki, M.C. High Arctic coasts at risk—The case study of coastal zone development and degradation associated with climate changes and multidirectional human impacts in Longyearbyen (Adventfjorden, Svalbard). Land. Degrad. Dev. 2018, 29, 2514–2524. [Google Scholar] [CrossRef]
- Karjalainen, O.; Aalto, J.; Luoto, M.; Westermann, S.; Romanovsky, V.E.; Nelson, F.E.; Etzelmüller, B.; Hjort, J. Circumpolar permafrost maps and geohazard indices for near-future infrastructure risk assessments. Sci. Data 2019, 6, 190037. [Google Scholar] [CrossRef]
- Stella, E.; Mari, L.; Gabrieli, J.; Barbante, C.; Bertuzzo, E. Permafrost dynamics and the risk of anthrax transmission: A modelling study. Sci. Rep. 2020, 10, 16460. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.J.; Dudík, M.; Schapire, R.E. A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-First International Conference on Machine Learning, Banff, AB, Canada, 4–8 July 2004. [Google Scholar]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the black box: An open-source release of Maxent. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- Merow, C.; Smith, M.J.; Silander, J.A. A practical guide to MaxEnt for modeling species’ distributions: What it does and why inputs and settings matter. Ecography 2013, 36, 1058–1069. [Google Scholar]
- Muttarak, R. Vulnerability to Climate Change and Adaptive Capacity from a Demographic Perspective. In International Handbook of Population and Environment. International Handbooks of Population; Hunter, L.M., Gray, C., Véron, J., Eds.; Springer: Cham, Switzerland, 2022; Volume 10. [Google Scholar] [CrossRef]
- Weeks, J.R. Population: An Introduction to Concepts and Issues, 10th ed.; Thompson Wadsworth: Belmont, CA, USA, 2008. [Google Scholar]
- Heleniak, T. The future of the Arctic populations. Polar Geogr. 2021, 44, 136–152. [Google Scholar]
- Emelyanova, A. Population projections of the Arctic by levels of education. In IIASA Working Paper; IIASA: Laxenburg, Austria, 2017; WP-17-022. [Google Scholar]
- Williams, C.; Fenton, A.; Huq, S. Knowledge and adaptive capacity. Nat. Clim. Chang. 2015, 5, 82–83. [Google Scholar] [CrossRef]
- Jones, L.; Ludi, E.; Levine, S. Towards a Characterisation of Adaptive Capacity: A Framework for Analysing Adaptive Capacity at the Local Level; Overseas Development Institute: London, UK, 2010. [Google Scholar]
- Adger, W.L.; Brooks, N.; Bentham, G.; Agnew, M.; Eriksen, S.E. New indicators of vulnerability and adaptive capacity. Tycall Centre for Climate Change Resarch. Tech. Rep. 2004, 7, 1–128. [Google Scholar]
- Muttarak, R.; Lutz, W. Is education a key to reducing natural vulnerability to natural distaters and hence unvoidable climate change? Ecol. Soc. 2014, 19, 42. [Google Scholar] [CrossRef]
- Granderson, A.A. The role of traditional knowledge in building adaptive capacity for climate change: Perspectives from Vanuatu. Weather. Clim. Soc. 2017, 9, 545–561. [Google Scholar] [CrossRef]
- Pearce, T.; Smit, B.; Duerden, F.; Ford, J.; Goose, A.; Kataoyak, G. Inuit vulnerability and adaptive capacity to climate change in Ulukhaktok, Northwest Territories, Canada. Polar Rec. 2009, 46, 157–177. [Google Scholar] [CrossRef]
- Berkes, F.; Armitage, D. Co-management institutions, knowledge, and learning: Adapting to change in the Arctic. Études/Inuit/Stud. 2010, 34, 109–131. [Google Scholar] [CrossRef]
- Ford, J.D.; Labbé, J.; Flynn, M.; Araos, M. Readiness for climate change adaptation in the Arctic: A case study from Nunavut, Canada. Clim. Chang. 2017, 145, 85–100. [Google Scholar]
- Jungsberg, L.; Turunen, E.; Heleniak, T.; Wang, S.; Ramage, J.; Roto, J. Atlas of Population, Society and Economy in the Arctic; Nordregio: Stockholm, Sweden, 2019. [Google Scholar]
- Pearce, T.; Ford, J.; Willox, A.C.; Smit, B. Inuit traditional ecological knowledge (TEK), subsistence hunting and adaptation to climate change in the Canadian Arctic. Arctic 2015, 68, 233–245. [Google Scholar] [CrossRef]
- McLeman, R. Impacts of population change on vulnerability and the capacity to adapt to climate change and variability: A typology based on lessons from “a hard country”. Popul. Environ. 2010, 31, 286–316. [Google Scholar]
- Liu, S.; Crossman, N.D.; Nolan, M.; Ghirmay, H. Bringing ecosystem services into integrated water resources management. J. Environ. Manag. 2013, 129, 92–102. [Google Scholar]
- Scaggs, S.A.; Gerkey, D.; McLaughlin, K.R. Linking subsistence harvest diversity and productivity to adaptive capacity in an Alaskan food sharing network. Am. J. Hum. Biol. 2021, 33, e23573. [Google Scholar]
- Lebel, L. Local knowledge and adaptation to climate hange in natural resource-based societies of the Asia-Pacific. Mitig. Adapt. Strategy Glob. Chang. 2013, 18, 1057–1076. [Google Scholar]
- Herman-Mercer, N.M.; Laituri, M.; Massey, M.; Matkin, E.; Toohey, R.C.; Elder, K.; Schuster, P.F.; Mutter, E. Vulnerability of subsistence systems due to social and environmental change. Arctic 2019, 72, 258–272. [Google Scholar]
- Juhola, S.; Kruse, S. A framework for analysing regional adaptive capacity assessments: Challenges for methodology and policy making. Mitig. Adapt. Strateg. Glob. Chang. 2015, 20, 99–120. [Google Scholar] [CrossRef]
- Engle, N.L. Adaptive capacity and its assessment. Glob. Environ. Chang. 2011, 21, 647–656. [Google Scholar]
- Feldmeyer, D.; Birkmann, J.; McMillan, J.M.; Stringer, L.; Leal Filho, W.; Djalante, R.; Pinho, P.F.; Liwenga, E. Global vulnerability hotspots: Differences and agreement between international indicator-based assessments. Clim. Chang. 2021, 169, 1–22. [Google Scholar]
- Turner, B.L.; Kasperson, R.E.; Matson, P.A.; McCarthy, J.J.; Corell, R.W.; Christensen, L.; Eckley, N.; Kasperson, J.X.; Luers, A.; Martello, M.L.; et al. A framework for vulnerability analysis in sustainability science. Proc. Natl. Acad. Sci. USA 2003, 100, 8074–8079. [Google Scholar] [CrossRef] [PubMed]
- ESA Permafrost Climate Change Initiative (Permafrost_cci): Permafrost Extent for the Northern Hemisphere, v3.0. 2021. Available online: https://catalogue.ceda.ac.uk/uuid/6e2091cb0c8b4106921b63cd5357c97c (accessed on 30 January 2022).
- Olefeldt, D.; Goswami, S.; Grosse, G.; Hayes, D.J.; Hugelius, G.; Kuhry, P.; Sannel, B.; Schuur, E.A.G.; Turetsky, M.R. Arctic Circumpolar Distribution and Soil Carbon of Thermokarst Landscapes; ORNL DAAC: Oak Ridge, TN, USA, 2015. [Google Scholar] [CrossRef]
- Stella, E.; Mari, L.; Gabrieli, J.; Barbante, C.; Bertuzzo, E. Mapping environmental suitability for anthrax reemergence in the Arctic. Environ. Res. Lett. 2021, 16, 105013. [Google Scholar]
- OECD, Regional Economy Dataset. Available online: http://stats.oecd.org/Index.aspx?DataSetCode=REGION_ECONOM (accessed on 30 January 2022).
Exposure Index | Very High Exposure | High Exposure | Moderate Exposure | Low Exposure | ||
Scores | 4 | 3 | 2 | 1 | ||
Soils | Permafrost coverage | % coverage | >50 | 25–50 | 5–25 | <5 |
Change in permafrost extent | % change | <−26 | −13–26 | 0–13 | >0 | |
Ground ice coverage 1 | Index | Chf, Dhf, Cmr, Dmr | Cmf, Dmf, Shf, Clr, Dlr, Smr, Imr | Clf, Dlf, Smf, Ihf, Slr | Slf, Ilf, Imf, Ilr | |
Landscapes | Thermokarst coverage | % coverage | 60–100 | 30–60 | 10–30 | 0–10 |
Coastal erosion rate | m/y−1 | >2 | 1–2 | 0–1 | 0 | |
Infrastructure | Infrastructure risk | indice | 3 | 2 | 1 | 0 |
Health | Risk of anthrax outbreak | % | >50 | 20–50 | 5–20 | 0–5 |
Adaptive capacity index | Low capacity | Moderate capacity | High capacity | Very high capacity | ||
scores | 4 | 3 | 2 | 1 | ||
Demographic capacity | Youth dependency ratio (0–14 years) | Ratio | <10 or >40 | 10–14 or 36–40 | 15–21 or 29–35 | 22–28 |
Working-age population | Ratio | <45 or >70 | 45–49 or 66–70 | 50–55 or 62–65 | 56–61 | |
Old-age dependency ratio (>64 years) | Ratio | <5 or >25 | 5–9 or 21–25 | 10–12 or 18–20 | 13–17 | |
Gender ratio | Ratio | <80 or >120 | 80–89 or 111–120 | 90–98 or 102–110 | 99–101 | |
Rate of natural increase | Ratio | <0 or >10 | 5.1 to 9.9 | 2.6 to 5 | 0 to 2.5 | |
Net migration | % | <−2 or >2 | −2–(−1) or 1–2 | −1–0 or 0–1 | 0 | |
Knowledge capacity | Tertiary education | % | <20 or >40 | 15–20 or 36–40 | 21–27 or 33–35 | 28–32 |
% of Indigenous population | % | <20 | 20–49 | 50–79 | 80–100 | |
10+ years of residency | % | <20 | 20–49 | 50–79 | 80–100 | |
Economic capacity | GRP per capita | EUR PPP at 2017 prices | 0–30,000 | 30,001–50,000 | 50,001–70,000 | >70,001 |
Employment by economic activity | Balance | <2/6 | 3/6 | 4/6 | >5/6 | |
Share of subsistence income | % | <20 or >80 | 20–35 or 70–80 | 36–44 or 56–69 | 45–55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramage, J.; Vasilevskaya, A.; Heleniak, T.; Jungsberg, L.; Cordier, M.; Stella, E.; Westermann, S.; Larsen, J.N. The Arctic Permafrost Vulnerability Index. Sustainability 2025, 17, 3288. https://doi.org/10.3390/su17083288
Ramage J, Vasilevskaya A, Heleniak T, Jungsberg L, Cordier M, Stella E, Westermann S, Larsen JN. The Arctic Permafrost Vulnerability Index. Sustainability. 2025; 17(8):3288. https://doi.org/10.3390/su17083288
Chicago/Turabian StyleRamage, Justine, Anna Vasilevskaya, Timothy Heleniak, Leneisja Jungsberg, Mateo Cordier, Elisa Stella, Sebastian Westermann, and Joan Nymand Larsen. 2025. "The Arctic Permafrost Vulnerability Index" Sustainability 17, no. 8: 3288. https://doi.org/10.3390/su17083288
APA StyleRamage, J., Vasilevskaya, A., Heleniak, T., Jungsberg, L., Cordier, M., Stella, E., Westermann, S., & Larsen, J. N. (2025). The Arctic Permafrost Vulnerability Index. Sustainability, 17(8), 3288. https://doi.org/10.3390/su17083288