Comparative Life Cycle Assessment (LCA) in the Aerospace Industry Regarding Aviation Seat Frame Options
Abstract
:1. Introduction
1.1. Literature Review
1.1.1. Aviation Seat Frames
1.1.2. Aviation Life Cycle Assessments
2. Methods
2.1. Functional Unit
2.2. System Boundary
2.3. Life Cycle Inventory (LCI)
- The LCI does not account for unexpected seat frame repairs and labour, since this has variability leading to added uncertainty;
- Energy requirements are not measured for the assembly of parts of the frame;
- The LCI involves the economy class seating of an Airbus A350-900;
- The distances are approximated using Google Maps.
3. Results
Sensitivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fortune Business Insights Aircraft Seating Market Size, Share & Industry Analysis, By Aircraft Type Source. Available online: https://www.fortunebusinessinsights.com/industry-reports/aircraft-seating-market-101680 (accessed on 31 March 2025).
- Ritchie, H. What Share of Global CO2 Emissions Come from Aviation? Our World Data. Available online: https://ourworldindata.org/global-aviation-emissions (accessed on 15 February 2025).
- United Nations The 17 Goals | Sustainable Development. Available online: https://sdgs.un.org/goals#:~:text=Promote%20peaceful%20and%20inclusive%20societies,inclusive%20institutions%20at%20all%20levels (accessed on 1 March 2025).
- Kokorikou, A.; Vink, P.; de Pauw, I.C.; Braca, A. Exploring the Design of a Lightweight, Sustainable and Comfortable Aircraft Seat. Work 2016, 54, 941–954. [Google Scholar] [CrossRef] [PubMed]
- Airliners Airbus A320. Available online: https://www.airliners.net/aircraft-data/airbus-a320/23#:~:text=A320%2D200%20%2D%20Operating%20empty%20with,11.76m%20(38ft%207in) (accessed on 1 March 2025).
- Tsai, W.-H.; Chang, Y.-C.; Lin, S.-J.; Chen, H.-C.; Chu, P.-Y. A Green Approach to the Weight Reduction of Aircraft Cabins. J. Air Transp. Manag. 2014, 40, 65–77. [Google Scholar] [CrossRef]
- Danon, B. How This Light-Weight Airplane Seat Can Save Airlines $200,000,000 (and Dramatically Reduce Carbon Emissions). Available online: https://adsknews.autodesk.com/en/stories/how-this-light-weight-airplane-seat-can-save-airlines-200000000-and-dramatically-reduce-carbon-emissions/ (accessed on 2 March 2025).
- Federal Aviation Administration Seating Systems. Available online: https://www.faa.gov/aircraft/air_cert/design_approvals/dah/seating_systems (accessed on 2 March 2025).
- Baumeister, S. Mitigating the Climate Change Impacts of Aviation through Behavioural Change. Transp. Res. Procedia 2020, 48, 2006–2017. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, P. How Does Civil Aviation Achieve Sustainable Low-Carbon Development?—An Abatement–Cost Perspective. Heliyon 2023, 9, e20821. [Google Scholar] [CrossRef]
- FAA Appendix C Materials Used in Aircraft. Available online: https://www.fire.tc.faa.gov/pdf/handbook/00-12_apC.pdf (accessed on 3 March 2025).
- McFarlane, D. Stainless Steel vs. Alloy Steel: Is It Worth the Money? Available online: https://www.mcfarlaneaviation.com/articles/stainless-steel-vs-alloy-steel-is-it-worth-the-money/ (accessed on 3 March 2025).
- Horton, W. Magnesium Alloy Economy Seat Design Introduces New Weight Savings. Available online: https://runwaygirlnetwork.com/2020/03/magnesium-alloy-economy-seat-design-introduces-new-weight-savings/ (accessed on 5 March 2025).
- El Mogahzy, Y.E. Development of Textile Fiber Products for Transportation Applications. In Engineering Textiles; Elsevier: Amsterdam, The Netherlands, 2009; pp. 435–474. [Google Scholar]
- Kerster, M. Titanium Sheet and Titanium Rolled Products. Available online: https://www.aaaairsupport.com/titanium-sheet-and-titanium-rolled-products/ (accessed on 3 March 2025).
- Colasanti, E. Design and Development of a Lightweight Seat Frame Using Magnesium Extrusions and Stampings. SAE Tech. Pap. 1994, 103, 940406. [Google Scholar]
- Yang, Y.; Xiong, X.; Chen, J.; Peng, X.; Chen, D.; Pan, F. Research Advances in Magnesium and Magnesium Alloys Worldwide in 2020. J. Magnes. Alloys 2021, 9, 705–747. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, Z.; Han, S.; Gu, Y.; Zhu, Z.; Zhang, H. Evolution, Limitations, Advantages, and Future Challenges of Magnesium Alloys as Materials for Aerospace Applications. J. Alloys Compd. 2024, 1008, 176707. [Google Scholar] [CrossRef]
- Gopinath, V.M.; Arulvel, S. A Review on the Steels, Alloys/High Entropy Alloys, Composites and Coatings Used in High Temperature Wear Applications. Mater. Today Proc. 2021, 43, 817–823. [Google Scholar] [CrossRef]
- Abdullah, N.H.; Azhan, A.S.; Hamdan, N.I.H.N.; Abdullah, S.; Nur, N.M.; Yusri, G. Finite Element Modeling of a Seating System Frame for Children with Special Needs. AIP Conf. Proc. 2023, 2723, 020001. [Google Scholar]
- MarkWide Research Aircraft Seat Frames Market Analysis. Available online: https://markwideresearch.com/aircraft-seat-frames-market/ (accessed on 27 February 2025).
- Boyer, R.R.; Cotton, J.D.; Mohaghegh, M.; Schafrik, R.E. Materials Considerations for Aerospace Applications. MRS Bull. 2015, 40, 1055–1066. [Google Scholar] [CrossRef]
- CAISC Enterprise 1060 Aluminum Plate in Aerospace: Strength and Lightweight Design. Available online: https://www.cnaluminiumsc.com/about-us.html (accessed on 27 February 2025).
- Azo Network Grade 2 Unalloyed Ti (“Pure”) 50A (UNS R50400). Available online: https://www.azom.com/article.aspx?ArticleID=9413 (accessed on 27 February 2025).
- Ozve Aminian, N.; Izzuddin Romli, F. Ergonomics Assessment of Current Aircraft Passenger Seat Design against Malaysian Anthropometry Data. Int. J. Eng. Technol. 2018, 7, 18–21. [Google Scholar] [CrossRef]
- Lyon, R.E. Materials with Reduced Flammability in Aerospace and Aviation. In Advances in Fire Retardant Materials; Elsevier: Amsterdam, The Netherlands, 2008; pp. 573–598. [Google Scholar]
- Li, S.; Yue, X.; Li, Q.; Peng, H.; Dong, B.; Liu, T.; Yang, H.; Fan, J.; Shu, S.; Qiu, F.; et al. Development and Applications of Aluminum Alloys for Aerospace Industry. J. Mater. Res. Technol. 2023, 27, 944–983. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, A.; Li, C.; Xie, H.; Jiang, B.; Dong, Z.; Jin, P.; Pan, F. Recent Advances of High Strength Mg-RE Alloys: Alloy Development, Forming and Application. J. Mater. Res. Technol. 2023, 26, 2919–2940. [Google Scholar] [CrossRef]
- Dassault Systems SolidWorks, version 2024; 10, rue Marcel Dassault Paris Campus Vélizy-Villacoublay, 78140 France. 2024. Available online: https://www.3ds.com/newsroom/media-alerts/dassault-systemes-solidworks-2024-enables-users-create-experiences-smarter-faster-together (accessed on 10 February 2025).
- Top, B.; Nur Bekçi, B. Economy Class Airplane Seat. Available online: https://www.behance.net/gallery/132110831/Share-Economy-Class-Airplane-Seat (accessed on 13 February 2025).
- Wang, J.; Zhi, J.-Y.; Zhang, X.-W.; Wei, F.; Zhang, L.-L. A Method of Aircraft Seat Dimension Design for Long-Term Use by Passengers with Different Body Types. Int. J. Ind. Erg. 2023, 98, 103520. [Google Scholar] [CrossRef]
- Bao, J.; Zhou, Q.; Wang, X.; Yin, C. Comfort Evaluation of Slow-Recovery Ejection Seat Cushions Based on Sitting Pressure Distribution. Front. Bioeng. Biotechnol. 2021, 9, 759442. [Google Scholar] [CrossRef]
- Meister, P.; Mahabaleshwara, A.; Romero, M. Removable Arm Rest Shroud for Aircraft Seating 2014. Available online: https://patents.google.com/patent/US20150108814A1/en (accessed on 10 February 2025).
- Bartels, V.T. Thermal Comfort of Aeroplane Seats: Influence of Different Seat Materials and the Use of Laboratory Test Methods. Appl. Erg. 2003, 34, 393–399. [Google Scholar] [CrossRef]
- Rupcic, L.; Pierrat, E.; Saavedra-Rubio, K.; Thonemann, N.; Ogugua, C.; Laurent, A. Environmental Impacts in the Civil Aviation Sector: Current State and Guidance. Transp. Res. Part D Transp. Environ. 2023, 119, 103717. [Google Scholar] [CrossRef]
- Arvidsson, R.; Nordelöf, A.; Brynolf, S. Life Cycle Assessment of a Two-Seater All-Electric Aircraft. Int. J. Life Cycle Assess 2024, 29, 240–254. [Google Scholar] [CrossRef]
- Rahn, A.; Schuch, M.; Wicke, K.; Sprecher, B.; Dransfeld, C.; Wende, G. Beyond Flight Operations: Assessing the Environmental Impact of Aircraft Maintenance through Life Cycle Assessment. J. Clean. Prod. 2024, 453, 142195. [Google Scholar] [CrossRef]
- Mazur, K.; Saleh, M.; Hornung, M. Integrating Life Cycle Assessment in Conceptual Aircraft Design: A Comparative Tool Analysis. Aerospace 2024, 11, 101. [Google Scholar] [CrossRef]
- Keiser, D.; Schnoor, L.H.; Pupkes, B.; Freitag, M. Life Cycle Assessment in Aviation: A Systematic Literature Review of Applications, Methodological Approaches and Challenges. J. Air Transp. Manag. 2023, 110, 102418. [Google Scholar] [CrossRef]
- Khalifa, R.; Alherbawi, M.; Bicer, Y.; Al-Ansari, T. Fueling Circularity: A Thorough Review of Circular Practices in the Aviation Sector with Sustainable Fuel Solutions. Resour. Conserv. Recycl. Adv. 2024, 23, 200223. [Google Scholar] [CrossRef]
- Reichert, T.; Salles, A. Life Cycle Assessment—A Tool to Eco-Design Structural Composite Parts; 2018; p. 020140. Available online: https://publica.fraunhofer.de/entities/publication/33379c4c-7474-4a1d-a8fd-7e6968005e52 (accessed on 13 February 2025).
- Howe, S.; Kolios, A.J.; Brennan, F.P. Environmental Life Cycle Assessment of Commercial Passenger Jet Airliners. Transp. Res. Part D Transp. Environ. 2013, 19, 34–41. [Google Scholar] [CrossRef]
- Keiser, D.; Arenz, M.; Freitag, M.; Reiß, M. Method to Model the Environmental Impacts of Aircraft Cabin Configurations during the Operational Phase. Sustainability 2023, 15, 5477. [Google Scholar] [CrossRef]
- Scholz, A.E.; Trifonov, D.; Hornung, M. Environmental Life Cycle Assessment and Operating Cost Analysis of a Conceptual Battery Hybrid-Electric Transport Aircraft. CEAS Aeronaut. J. 2022, 13, 215–235. [Google Scholar] [CrossRef]
- Vidal, R.; Moliner, E.; Martin, P.P.; Fita, S.; Wonneberger, M.; Verdejo, E.; Vanfleteren, F.; Lapeña, N.; González, A. Life Cycle Assessment of Novel Aircraft Interior Panels Made from Renewable or Recyclable Polymers with Natural Fiber Reinforcements and Non-Halogenated Flame Retardants. J. Ind. Ecol. 2018, 22, 132–144. [Google Scholar] [CrossRef]
- Klenner, J.; Lund, M.T.; Muri, H.; Strømman, A.H. Combining Fleetwide AviTeam Aviation Emission Modeling with LCA Perspectives for an Alternative Fuel Impact Assessment. Environ. Sci. Technol. 2024, 58, 9135–9146. [Google Scholar] [CrossRef]
- Magill, H.; Bradford, J.; Patel, A.; Boysen, A. NASA Life Cycle Cost Modeling of High-Speed Commercial Aircraft—Final Report; NASA: Washington, DC, USA, 2023. [Google Scholar]
- Gue, I.H.V.; Tan, R.R.; Chiu, A.S.F.; Ubando, A.T. Environmentally-Extended Input-Output Analysis of Circular Economy Scenarios in the Philippines. J. Clean. Prod. 2022, 377, 134360. [Google Scholar] [CrossRef]
- Yakath Ali, N.S.; See, K.F. Revisiting an Environmental Efficiency Analysis of Global Airlines: A Parametric Enhanced Hyperbolic Distance Function. J. Clean. Prod. 2023, 394, 135982. [Google Scholar] [CrossRef]
- Salesa, A.; León, R.; Moneva, J.M. Airlines Practices to Incorporate Circular Economy Principles into the Waste Management System. Corp. Soc. Responsib. Environ. Manag. 2023, 30, 443–458. [Google Scholar] [CrossRef]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2006; pp. 1–20.
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO: Geneva, Switzerland, 2006; pp. 1–46.
- PRé Sustainability SimaPro, version 9.6; Long Trail Sustainability, SimaPro Partner in Canada, 830 Taft Road, VT 05462, Hun-tington, USA. 2024. Available online: https://network.simapro.com/pre/ (accessed on 15 February 2025).
- Ecoinvent Ecoinvent v3.10. Available online: https://ecoinvent.org/ecoinvent-v3-10/ (accessed on 15 February 2025).
- IPCC. The Scientific Basis Intergovernmental Panel on Climate Change (IPCC). Available online: https://www.ipcc.ch/about/ (accessed on 18 February 2025).
- Mar, K.A.; Unger, C.; Walderdorff, L.; Butler, T. Beyond CO2 Equivalence: The Impacts of Methane on Climate, Ecosystems, and Health. Environ. Sci. Policy 2022, 134, 127–136. [Google Scholar] [CrossRef]
- Cathay Pacific Airways Airbus A350-900 Features and Seating Plan. Available online: https://www.cathaypacific.com/cx/en_HK/flying-with-us/aircraft-and-fleet/airbus-a350/900.html#:~:text=Business:%2038%20(flat%20bed),end%20of%20the%20last%20section.2025 (accessed on 20 February 2025).
- Meier, R. Airbus A350-900ULR Can Fly 9,700 Nautical Miles Non-Stop. Available online: https://www.airdatanews.com/airbus-a350-900ulr-can-fly-9700-nautical-miles-non-stop/ (accessed on 17 February 2025).
- SourceOne Spares Exploring Aircraft Lifespans and Retirement Decisions. Available online: https://blog.sourceonespares.com/exploring-aircraft-lifespans-and-retirement-decisions (accessed on 17 February 2025).
- Recardo The Lightweight SL3510 Seat to Premiere in the Asian Growth Market. Available online: https://www.recaro-as.com/en/press/press-releases/details/the-lightweight-sl3510-seat-to-premiere-in-the-asian-growth-market.html (accessed on 17 February 2025).
- Tansor, M. Airbus vs. Boeing—Which Aircraft Offers Most Fuel Efficiency? Available online: https://www.i6.io/blog/airbus-vs-boeing-which-aircraft-offers-most-fuel-efficiency (accessed on 5 March 2025).
- Aerospace Technology Institute. Sustainable Cabin Design: New Approaches in Sustainable Aircraft Interior Design. 2022. Available online: https://www.ati.org.uk/wp-content/uploads/2022/03/FZO-AIR-POS-0039-Sustainable-Cabin-Design.pdf (accessed on 5 March 2025).
- Karuwa, T.; Finlay, M. 9 Years Of Flight: Which Airbus A350s Have Flown The Most Cycles? Available online: https://simpleflying.com/airbus-a350-most-flight-cycles/#:~:text=According%20to%20ch%2Daviation%2C%20it%20has%20completed%207%2C193%20cycles%20as%20of%20December%202023 (accessed on 5 March 2025).
- Keiser, D.; Demir, M.; Freitag, M. Implementation of Life Cycle Assessment into the Customization Process of Aircraft Cabins. Transp. Res. Procedia 2024, 81, 25–34. [Google Scholar] [CrossRef]
- Johanning, A.; Scholz, D.; Hamburg University of Applied Sciences Aircraft Design and Systems Group (AERO). A First Step Towards the Integration of Life Cycle Assessment into Conceptual Aircraft Design. 2013. Available online: https://www.fzt.haw-hamburg.de/pers/Scholz/Airport2030/Airport2030_PUB_DLRK_13-09-10.pdf (accessed on 15 February 2025).
- Vieira, D.R.; Bravo, A. Life Cycle Carbon Emissions Assessment Using an Eco-Demonstrator Aircraft: The Case of an Ecological Wing Design. J. Clean. Prod. 2016, 124, 246–257. [Google Scholar] [CrossRef]
- Dhara, A.; Muruga Lal, J. Sustainable Technology on Aircraft Design: A Review. IOP Conf. Ser. Earth Environ. Sci. 2021, 889, 012068. [Google Scholar] [CrossRef]
- Iba Which Aircraft Class Is More Efficient on Transatlantic Routes? Available online: https://www.iba.aero/resources/articles/narrowbody-vs-widebody-which-aircraft-are-more-profitable-and-efficient-on-transatlantic-routes/ (accessed on 5 March 2025).
- Halversen, H.; Mitchell, R.; Spear, M.; Vo, B.; Takahashi, T.T. Optimal Design of an N+1 Narrow-Body Transport Aircraft. In Proceedings of the AIAA Scitech 2020 Forum; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2020. [Google Scholar]
- Froes, F. Combining Additive Manufacturing with Conventional Casting and Reduced Density Materials to Greatly Reduce the Weight of Airplane Components Such as Passenger Seat Frames. In Additive Manufacturing for the Aerospace Industry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 419–425. [Google Scholar]
- Singamneni, S.; LV, Y.; Hewitt, A.; Chalk, R.; Thomas, W.; Jordison, D. Additive Manufacturing for the Aircraft Industry: A Review. J. Aeronaut. Aerosp. Eng. 2019, 8, 214. [Google Scholar] [CrossRef]
- Trivers, N.C.; Carrick, C.A.; Kim, I.Y. Design Optimization of a Business Aircraft Seat Considering Static and Dynamic Certification Loading and Manufacturability. Struct. Multidiscip. Optim. 2020, 62, 3457–3476. [Google Scholar] [CrossRef]
- Johnstone, P.; Hielscher, S. Phasing out Coal, Sustaining Coal Communities? Living with Technological Decline in Sustainability Pathways. Extr. Ind. Soc. 2017, 4, 457–461. [Google Scholar] [CrossRef]
- Brauers, H. Natural Gas as a Barrier to Sustainability Transitions? A Systematic Mapping of the Risks and Challenges. Energy Res. Soc. Sci. 2022, 89, 102538. [Google Scholar] [CrossRef]
- Yusaf, T.; Faisal Mahamude, A.S.; Kadirgama, K.; Ramasamy, D.; Farhana, K.; Dhahad, H.A.; Abu Talib, A.R. Sustainable Hydrogen Energy in Aviation—A Narrative Review. Int. J. Hydrogen Energy 2024, 52, 1026–1045. [Google Scholar] [CrossRef]
- Cabrera, E.; de Sousa, J.M.M. Use of Sustainable Fuels in Aviation—A Review. Energy 2022, 15, 2440. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, L.; Yang, B.; Dai, Y.; Xu, B.; Wang, F.; Xiong, N. Comparative Evaluation of Energy and Resource Consumption for Vacuum Carbothermal Reduction and Pidgeon Process Used in Magnesium Production. J. Magnes. Alloys 2022, 10, 697–706. [Google Scholar] [CrossRef]
- Andrieu, A.; Allgaier, O.; Leyssens, G.; Schönnenbeck, C.; Brilhac, J.-F. NOx Emissions in a Swirled-Stabilized Magnesium Flame. Fuel 2022, 321, 124011. [Google Scholar] [CrossRef]
Per FU | Seat Frame Material | |||
---|---|---|---|---|
Inventory Parameter | Magnesium Alloy | Alloy Steel | Aluminum 1060 Alloy | Titanium (Commercially Pure R50400) |
Frame Weight (kg) | 5478 | 24,845 | 8710 | 14,552 |
Importing (tkm) | 19,273 | 87,406 | 30,641 | 51,194 |
Fuel Use (L) | 1,482,770,596 | 6,724,596,335 | 2,367,373,564 | 3,938,609,395 |
Plane Use (tkm) | 393,655,910 | 1,785,291,062 | 625,851,389 | 1,045,648,512 |
Disposal (tkm) | 4448 | 20,174 | 7072 | 11,816 |
Recycling (kg) | 5478 | 24,845 | 8710 | 14,552 |
IPCC GWP 100a (kg CO2 eq) | Cradle/1 kg | Use/1 tkm | Disposal/1 kg |
---|---|---|---|
Aluminum 1060 Alloy Seat Frame | 15.82 | 0.11 | 1.89 |
Magnesium Alloy Seat Frame | 52.11 | 0.12 | 15.56 |
Steel Alloy Seat Frame | 2.15 | 0.11 | 51.86 |
Titanium CP R50400 Seat Frame | 6.46 | 0.11 | 6.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, Y.; Hasan, I.; Aliabadi, A.A.; Gharabaghi, B. Comparative Life Cycle Assessment (LCA) in the Aerospace Industry Regarding Aviation Seat Frame Options. Sustainability 2025, 17, 3188. https://doi.org/10.3390/su17073188
Hasan Y, Hasan I, Aliabadi AA, Gharabaghi B. Comparative Life Cycle Assessment (LCA) in the Aerospace Industry Regarding Aviation Seat Frame Options. Sustainability. 2025; 17(7):3188. https://doi.org/10.3390/su17073188
Chicago/Turabian StyleHasan, Yusra, Ishak Hasan, Amir A. Aliabadi, and Bahram Gharabaghi. 2025. "Comparative Life Cycle Assessment (LCA) in the Aerospace Industry Regarding Aviation Seat Frame Options" Sustainability 17, no. 7: 3188. https://doi.org/10.3390/su17073188
APA StyleHasan, Y., Hasan, I., Aliabadi, A. A., & Gharabaghi, B. (2025). Comparative Life Cycle Assessment (LCA) in the Aerospace Industry Regarding Aviation Seat Frame Options. Sustainability, 17(7), 3188. https://doi.org/10.3390/su17073188