Agricultural Sector Homologous Emission Inventory of Air Pollutants and Greenhouse Gases for China
Abstract
:1. Introduction
2. Methodology and Data
2.1. Study Domain and Source Categorization
2.1.1. Study Domain
2.1.2. Sources Categorization
2.2. Calculation of NH3, N2O and CH4 Emissions
2.2.1. Livestock Enteric Fermentation
2.2.2. Livestock Manure Management
2.2.3. Cropland Fertilizer
2.2.4. Paddy Cultivation
2.2.5. Aquaculture
2.3. Spatial Allocation
2.4. Uncertainty Analysis
3. Results and Discussion
3.1. Emission Inventory and Uncertainty
3.2. Comparison with Other Emission Inventories
3.3. Emission Contributions by Category
3.4. Regional Distributions and Discrepancies in Emission Sources
3.5. Spatial Distribution
4. Conclusions and Recommendations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, J.; Zhao, Z.; Fang, W.; Ma, Z.; Liu, M.; Bi, J. China’s progress in synergetic governance of climate change and multiple environmental issues. Proc. Nalt. Acad. Sci. Nexus 2024, 3, pgae351. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Ye, T.; Zhang, Y.; Xu, R.; Lei, Y.; Chen, Z.; Yang, Z.; Zhang, Y.; Song, J.; Yue, X.; et al. Global estimates of daily ambient fine particulate matter concentrations and unequal spatiotemporal distribution of population exposure: A machine learning modelling study. Lancet Planet. Health 2023, 7, e209–e218. [Google Scholar] [CrossRef]
- Chen, M.; Cui, Y.; Jiang, S.; Forsell, N. Toward carbon neutrality before 2060: Trajectory and technical mitigation potential of non-CO2 greenhouse gas emissions from Chinese agriculture. J. Clean. Prod. 2022, 368, 133186. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Zhou, T.; Wang, K.; Wang, C.; Wang, T.; Yuan, L.; An, K.; Zhou, C.; Lü, G. Mitigation of China’s carbon neutrality to global warming. Nat. Commun. 2022, 13, 5315. [Google Scholar] [CrossRef]
- Shi, Q.; Zheng, B.; Zheng, Y.; Tong, D.; Liu, Y.; Ma, H.; Hong, C.; Geng, G.; Guan, D.; He, K.; et al. Co-benefits of CO2 emission reduction from China’s clean air actions between 2013–2020. Nat. Commun. 2022, 13, 5061. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, J.; Jia, M.; Chen, S.; Zhang, S.; Bo, X.; Feng, X.; Dong, G. High spatial resolution emission inventory of air pollutants and carbon in China’s independent coking industry. Atmosphere 2023, 14, 348. [Google Scholar] [CrossRef]
- Zhang, Q.; Yin, Z.; Lu, X.; Gong, J.; Lei, Y.; Cai, B.; Cai, C.; Chai, Q.; Chen, H.; Dai, H.; et al. Synergetic roadmap of carbon neutrality and clean air for China. Environ. Sci. Ecotechnol. 2023, 16, 100280. [Google Scholar] [CrossRef]
- Lei, Y.; Yin, Z.; Lu, X.; Zhang, Q.; Gong, J.; Cai, B.; Cai, C.; Chai, Q.; Chen, H.; Chen, R. The 2022 report of synergetic roadmap on carbon neutrality and clean air for China: Accelerating transition in key sectors. Environ. Sci. Ecotechnol. 2024, 19, 100335. [Google Scholar] [CrossRef]
- Qian, H.; Xu, S.; Cao, J.; Ren, F.; Wei, W.; Meng, J.; Wu, L. Air pollution reduction and climate co-benefits in China’s industries. Nat. Sustain. 2021, 4, 417–425. [Google Scholar] [CrossRef]
- Shirsath, P.B.; Aggarwal, P.K. Trade-offs between agricultural production, GHG emissions and income in a changing climate, technology, and food demand scenario. Sustainability 2021, 13, 3190. [Google Scholar] [CrossRef]
- Wang, G.; Shi, R.; Mi, L.; Hu, J. Agricultural eco-efficiency: Challenges and progress. Sustainability 2022, 14, 1051. [Google Scholar] [CrossRef]
- Zhang, X.; Gu, B.; van Grinsven, H.; Lam, S.K.; Liang, X.; Bai, M.; Chen, D. Societal benefits of halving agricultural ammonia emissions in China far exceed the abatement costs. Nat. Commun. 2020, 11, 4357. [Google Scholar] [CrossRef]
- Huang, X.; Song, Y.; Li, M.; Li, J.; Huo, Q.; Cai, X.; Zhu, T.; Hu, M.; Zhang, H. A high-resolution ammonia emission inventory in China. Glob. Biogeochem. Cycles 2012, 26, 2011GB004161. [Google Scholar] [CrossRef]
- Xu, R.; Tian, H.; Pan, S.; Prior, S.A.; Feng, Y.; Batchelor, W.D.; Chen, J.; Yang, J. Global ammonia emissions from synthetic nitrogen fertilizer applications in agricultural systems: Empirical and process-based estimates and uncertainty. Glob. Change Biol. 2019, 25, 314–326. [Google Scholar] [CrossRef]
- Zhang, Y.; Dore, A.J.; Ma, L.; Liu, X.J.; Ma, W.Q.; Cape, J.N.; Zhang, F.S. Agricultural ammonia emissions inventory and spatial distribution in the North China Plain. Environ. Pollut. 2010, 158, 490–501. [Google Scholar] [CrossRef]
- Han, X.; Zhu, L.; Liu, M.; Song, Y.; Zhang, M. Numerical analysis of agricultural emissions impacts on PM2.5 in China using a high-resolution ammonia emission inventory. Atmos. Chem. Phys. 2020, 20, 9979–9996. [Google Scholar] [CrossRef]
- Lin, J.; Khanna, N.; Liu, X.; Teng, F.; Wang, X. China’s Non-CO2 greenhouse gas emissions: Future trajectories and mitigation options and potential. Sci. Rep. 2019, 9, 16095. [Google Scholar] [CrossRef]
- Duan, Y.; Gao, Y.; Zhao, J.; Xue, Y.; Zhang, W.; Wu, W.; Jiang, H.; Cao, D. Agricultural methane emissions in China: Inventories, driving forces and mitigation strategies. Environ. Sci. Technol. 2023, 57, 13292–13303. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, Y.; Han, Y.; Zhang, Y.; Zhang, Y.; Cheng, X.; Zhong, P.; Yuan, X.; Zhang, Y.; Li, Z. Advances in methane emissions from agricultural sources: Part I. Accounting and mitigation. J. Environ. Sci. 2024, 140, 279–291. [Google Scholar] [CrossRef]
- Peng, S.; Piao, S.; Bousquet, P.; Ciais, P.; Li, B.; Lin, X.; Tao, S.; Wang, Z.; Zhang, Y.; Zhou, F. Inventory of anthropogenic methane emissions in mainland China from 1980 to 2010. Atmos. Chem. Phys. 2016, 16, 14545–14562. [Google Scholar] [CrossRef]
- Feng, R.; Li, Z.; Qi, Z. China’s anthropogenic N2O emissions with analysis of economic costs and social benefits from reductions in 2022. J. Environ. Manag. 2024, 353, 120234. [Google Scholar] [CrossRef]
- Luo, Z.; Lam, S.K.; Fu, H.; Hu, S.; Chen, D. Temporal and spatial evolution of nitrous oxide emissions in China: Assessment, strategy and recommendation. J. Clean. Prod. 2019, 223, 360–367. [Google Scholar] [CrossRef]
- Tian, H.; Pan, N.; Thompson, R.L.; Canadell, J.G.; Suntharalingam, P.; Regnier, P.; Davidson, E.A.; Prather, M.; Ciais, P.; Muntean, M.; et al. Global nitrous oxide budget 1980–2020. Earth Syst. Sci. Data 2023, 16, 2543–2604. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, Z.X.; Shi, T.; Yang, N.; Yang, S.H.; Chen, J.L.; Mao, G.Z.; Qi, Z.F.; Rao, S.; Jiang, C.L. Climate synergistic benefits: A path to the Beautiful China through total control of major air pollutants. J. Clean. Prod. 2024, 469, 143158. [Google Scholar] [CrossRef]
- Li, S.; Wang, S.; Wu, Q.; Zhao, B.; Jiang, Y.; Zheng, H.; Wen, Y.; Zhang, S.; Wu, Y.; Hao, J. Integrated benefits of synergistically reducing air pollutants and carbon dioxide in China. Environ. Sci. Technol. 2024, 58, 14193–14202. [Google Scholar] [CrossRef]
- Chen, J.; Cheng, M.; Krol, M.; de Vries, W.; Zhu, Q.; Liu, X.; Zhang, F.; Xu, W. Trends in anthropogenic ammonia emissions in China since 1980: A review of approaches and estimations. Front. Environ. Sci. 2023, 11, 1133753. [Google Scholar] [CrossRef]
- Kang, Y.; Liu, M.; Song, Y.; Huang, X.; Yao, H.; Cai, X.; Zhang, H.; Kang, L.; Liu, X.; Yan, X.; et al. High-resolution ammonia emissions inventories in China from 1980 to 2012. Atmos. Chem. Phys. 2016, 16, 2043–2058. [Google Scholar] [CrossRef]
- Liang, M.; Zhou, Z.; Ren, P.; Xiao, H.; Xu, R.; Hu, Z.; Piao, S.; Tian, H.; Tong, Q.; Zhou, F.; et al. Four decades of full-scale nitrous oxide emission inventory in China. Natl. Sci. Rev. 2024, 11, nwad285. [Google Scholar] [CrossRef]
- Wang, G.; Liu, P.; Hu, J.; Zhang, F. Agriculture-induced N2O emissions and reduction strategies in China. Int. J. Environ. Res. Public Health 2022, 19, 12193. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, W.; Crippa, M.; Peng, S.; Han, P.; Zeng, N.; Yu, L.; Wang, G. A comparative study of anthropogenic CH4 emissions over China based on the ensembles of bottom-up inventories. Earth Syst. Sci. Data 2021, 13, 1073–1088. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, G.Q. China’s CH4 and CO2 emissions: Bottom-up estimation and comparative analysis. Ecol. Indic. 2014, 47, 112–122. [Google Scholar] [CrossRef]
- Zhao, Y.; Yuan, M.; Huang, X.; Chen, F.; Zhang, J. Quantification and evaluation of atmospheric ammonia emissions with different methods: A case study for the Yangtze River Delta region, China. Atmos. Chem. Phys. 2020, 20, 4275–4294. [Google Scholar] [CrossRef]
- Bian, Y.; Huang, Z.; Ou, J.; Zhong, Z.; Xu, Y.; Zhang, Z.; Xiao, X.; Ye, X.; Wu, Y.; Yin, X.; et al. Evolution of anthropogenic air pollutant emissions in Guangdong Province, China, from 2006 to 2015. Atmos. Chem. Phys. 2019, 19, 11701–11719. [Google Scholar] [CrossRef]
- Wang, C.; Yin, S.; Bai, L.; Zhang, X.; Gu, X.; Zhang, H.; Lu, Q.; Zhang, R. High-resolution ammonia emission inventories with comprehensive analysis and evaluation in Henan, China, 2006–2016. Atmos. Environ. 2018, 193, 11–23. [Google Scholar] [CrossRef]
- Crippa, M.; Solazzo, E.; Huang, G.; Guizzardi, D.; Koffi, E.; Muntean, M.; Schieberle, C.; Friedrich, R.; Janssens-Maenhout, G. High resolution temporal profiles in the Emissions Database for Global Atmospheric Research. Sci. Data 2020, 7, 121. [Google Scholar] [CrossRef]
- Amann, M.; Kejun, J.; Hao, J.; Wang, S.; Zhuang, X.; Xiang, D.; Hong, L.; Jia, X.; Zhang, C.; Bertok, I.; et al. GAINS Asia. Scenarios for Cost-Effective Control of Air Pollution and Greenhouse Gases in China; International Institute for Applied Systems Analysis (IIASA): Laxenburg, Austria, 2008.
- Ohara, T.; Akimoto, H.; Kurokawa, J.; Horii, N.; Yamaji, K.; Yan, X.; Hayasaka, T. An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmos. Chem. Phys. 2007, 7, 4419–4444. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, Y.; Liu, X.; Reis, S.; Jin, J.; Dragosits, U.; Van Damme, M.; Clarisse, L.; Whitburn, S.; Coheur, P.-F.; et al. Ammonia emissions may be substantially underestimated in China. Environ. Sci. Technol. 2017, 51, 12089–12096. [Google Scholar] [CrossRef]
- MCA. Administrative Division Code. Available online: https://www.mca.gov.cn/n156/n186/index.html (accessed on 15 November 2024).
- MEE. Technical Guidelines for the Preparation of Atmospheric Ammonia Source Emission Inventory (Trial). Available online: https://www.mee.gov.cn/gkml/hbb/bgth/201401/W020140124409251169140.pdf (accessed on 15 November 2024).
- NDRC. Guidelines on Provincial Greenhouse Gas Emission Inventory (Trial); National Development and Reform Commission of the People’s Republic of China: Beijing, China, 2011.
- NBS. China Statistical Yearbook (2021); China Statistics Press: Beijing, China, 2022. [Google Scholar]
- NBS. Compilation of Statistics Data of Chinese Agriculture, 2022; China Statistics Press: Beijing, China, 2022. [Google Scholar]
- MARA. China Animal Husbandry and Veterinary Yearbook; Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing, China, 2022.
- NDRC. National Cost and Profit of Agri-Products Materials Compilation, 2022; National Development and Reform Commission of the People’s Republic of China: Beijing, China, 2022.
- NESSDSI. National Earth System Science Data Sharing Infrastructure. Available online: http://www.geodata.cn (accessed on 15 November 2024).
- RESDC. Available online: http://www.resdc.cn (accessed on 15 November 2024).
- Misselbrook, T.H.; Sutton, M.A.; Scholefield, D. A simple process-based model for estimating ammonia emissions from agricultural land after fertilizer applications. Soil Use Manag. 2004, 20, 365–372. [Google Scholar] [CrossRef]
- Yue, Q.; Ledo, A.; Cheng, K.; Albanito, F.; Lebender, U.; Sapkota, T.B.; Brentrup, F.; Stirling, C.M.; Smith, P.; Sun, J.; et al. Re-assessing nitrous oxide emissions from croplands across Mainland China. Agric. Ecosyst. Environ. 2018, 268, 70–78. [Google Scholar] [CrossRef]
- Xu, X.F. Study on the Characteristics of Greenhouse Gas Emissions from Mariculture Ponds in Tianjin and Their Influencing Factors. Master’s Thesis, Tianjin Normal University, Tianjin, China, 2020. [Google Scholar]
- Zheng, J.Y.; Yin, S.S.; Kang, D.W.; Che, W.W.; Zhong, L.J. Development and uncertainty analysis of a high-resolution NH3 emissions inventory and its implications with precipitation over the Pearl River Delta region, China. Atmos. Chem. Phys. 2012, 12, 7041–7058. [Google Scholar] [CrossRef]
- Zhong, Z.; Zheng, J.; Zhu, M.; Huang, Z.; Zhang, Z.; Jia, G.; Wang, X.; Bian, Y.; Wang, Y.; Li, N. Recent developments of anthropogenic air pollutant emission inventories in Guangdong province, China. Sci. Total Environ. 2018, 627, 1080–1092. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, Z.; Jia, G.; Fan, M.; Cheng, L.; Chen, L.; Shao, M.; Zheng, J. Regional discrepancies in spatiotemporal variations and driving forces of open crop residue burning emissions in China. Sci. Total Environ. 2019, 671, 536–547. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Chen, L.; Shen, W.; Jin, J.; Wang, T.; Wang, P.; Yang, Y.; Liao, H. Improved gridded ammonia emission inventory in China. Atmos. Chem. Phys. 2021, 21, 15883–15900. [Google Scholar] [CrossRef]
- Fu, H.; Luo, Z.; Hu, S. A temporal-spatial analysis and future trends of ammonia emissions in China. Sci. Total Environ. 2020, 731, 138897. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Y.; Zhao, Y.; Henze, D.K.; Zhu, L.; Song, Y.; Paulot, F.; Liu, X.; Pan, Y.; Lin, Y. Agricultural ammonia emissions in China: Reconciling bottom-up and top-down estimates. Atmos. Chem. Phys. 2018, 18, 339–355. [Google Scholar] [CrossRef]
- Zhou, F.; Shang, Z.; Ciais, P.; Tao, S.; Piao, S.; Raymond, P.; He, C.; Li, B.; Wang, R.; Wang, X.; et al. A new high-resolution N2O emission inventory for China in 2008. Environ. Sci. Technol. 2014, 48, 8538–8547. [Google Scholar] [CrossRef]
- Huang, M.; Wang, T.; Zhao, X.; Xie, X.; Wang, D. Estimation of atmospheric methane emissions and its spatial distribution in China during 2015. Acta Sci. Circumst. 2019, 39, 1371–1380. [Google Scholar] [CrossRef]
- Gong, S.; Shi, Y. Evaluation of comprehensive monthly-gridded methane emissions from natural and anthropogenic sources in China. Sci. Total Environ. 2021, 784, 147116. [Google Scholar] [CrossRef]
- Qi, W.; Liu, S.; Liu, Z. The novel pattern and driving factors of population spatial distribution on both sides of the “Hu Line” based on seventh census in China. Acta Geogr. Sin. 2022, 77, 3023–3040. [Google Scholar] [CrossRef]
- MARA. National Grain-Saving Type Animal Husbandry Development with Plan (2011–2020). Available online: https://www.moa.gov.cn/gk/ghjh_1/201201/t20120105_2451041.htm (accessed on 15 November 2024).
- NDRC. National Beef and Mutton Production Development Plan (2013–2020). Available online: https://zfxxgk.ndrc.gov.cn/web/iteminfo.jsp?id=286 (accessed on 15 November 2024).
- MARA. Pig Industry Accelerates Transformation and Upgrading. Available online: http://www.ghs.moa.gov.cn/ghgl/202105/t20210511_6367525.htm (accessed on 15 November 2024).
- Zhang, Y.P. China’s dairy industry development opens a new page. China Anim. Husb. 2017, 13, 10–12. [Google Scholar]
- Wu, S.P.; Zhang, Y.J.; Schwab, J.J.; Li, Y.F.; Liu, Y.L.; Yuan, C.S. High-resolution ammonia emissions inventories in Fujian, China, 2009–2015. Atmos. Environ. 2017, 162, 100–114. [Google Scholar] [CrossRef]
Level I | Level II | Level III | Gas | Activity Data | Spatial Surrogates |
---|---|---|---|---|---|
LEF | Cattle; | Intensive; Free-range | CH4 | Livestock population a,b,c | Rural residential area e |
Pig; | |||||
Sheep; | |||||
Draft animals; | |||||
LMM | Cattle; | Intensive; Free-range | NH3; N2O; CH4 | Livestock population a,b,c | Rural residential area e |
Pig; | |||||
Sheep; | |||||
Draft animals; | |||||
Poultry; | |||||
CF | Rice; | Urea; ABC; NPK | NH3; N2O | Crop sown area a,b; Fertilization rate d | The cultivated land area includes upland and paddy areas f |
Maize; | |||||
Vegetables; | |||||
Fruits; | |||||
Wheat; | |||||
Others | |||||
PC | Early rice; | CH4 | Crop sown area a,b; | The area of land cultivated for paddy f | |
Single rice; | |||||
Late-rice | |||||
Aq | Mariculture; | N2O; CH4 | Aquaculture area b,c | Water bodies for rivers, lakes, and ponds f | |
Freshwater |
Level I | Level II | NH3 | N2O | CH4 |
---|---|---|---|---|
LEF | 5774.28 | |||
Sheep | 1625.75 | |||
Cattle | 2632.39 | |||
Pig | 456.07 | |||
Draft animals | 1060.07 | |||
LMM | 3758.48 | 336.83 | 2576.16 | |
Cattle | 1013.61 | 64.39 | 148.15 | |
Pig | 280.99 | 167.45 | 2020.45 | |
Sheep | 1104.69 | 41.99 | 52.26 | |
Draft animals | 252.76 | 17.86 | 62.67 | |
Poultry | 1106.44 | 45.14 | 292.63 | |
CF | 3798.37 | 146.24 | ||
Rice | 1127.91 | 24.79 | ||
Vegetable | 796.28 | 23.89 | ||
Fruits | 461.21 | 16.29 | ||
Wheat | 264.98 | 23.49 | ||
Maize | 508.25 | 21.25 | ||
Other crops | 639.73 | 36.53 | ||
PC | 6607.65 | |||
Single rice | 4310.81 | |||
Late rice | 1270.59 | |||
Early rice | 1026.26 | |||
Aq | 2.24 | 21.62 | ||
Freshwater | 2.2 | 21.51 | ||
Mariculture | 0.05 | 0.1 | ||
Total | 7556.85 | 485.32 | 14,979.71 |
Emission Study | Base Year | Total | Livestock (LMM + LEF) | Crops (CF + PC) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
NH3 | N2O | CH4 | NH3 | N2O | CH4 | NH3 | N2O | CH4 | ||
This study | 2021 | 7.56 | 0.49 | 14.97 | 3.76 | 0.34 | 8.35 | 3.76 | 0.14 | 6.60 |
EDGAR 8.0 | 2022 | 7.46 | 0.74 | 22.38 | 2.51 | 0.21 | 8.58 | 4.94 | 0.53 | 13.78 |
GAINS-China | 2015 | 14.32 | 1.33 | 17.34 | 6.56 | 1.18 | 11.47 | 7.76 | 0.15 | 5.87 |
REAS v2.1 | 2008 | 12.24 | 1.40 | 16.17 | 2.83 | 0.37 | 9.29 | 9.41 | 1.03 | 6.88 |
Li et al. [54] | 2016 | 10.10 | 5.42 | 4.67 | ||||||
Fu et al. [55] | 2016 | 11.99 | 5.09 | 6.9 | ||||||
Zhang et al. [56] | 2008 | 10.36 | 5.31 | 5.05 | ||||||
Kang et al. [27] | 2012 | 8.07 | 5.26 | 2.81 | ||||||
Liang et al. [28] | 2020 | 0.57 | 0.16 | 0.41 | ||||||
Feng et al. [21] | 2022 | 0.62 | 0.29 | 0.33 | ||||||
Luo et al. [22] | 2015 | 2.08 | 0.36 | 1.72 | ||||||
Wang et al. [29] | 2019 | 0.71 | 0.20 | 0.51 | ||||||
Zhou et al. [57] | 2008 | 1.33 | 0.61 | 0.72 | ||||||
Duan et al. [18] | 2020 | 23.39 | 13.59 | 9.79 | ||||||
Gong & Shi. [59] | 2015 | 26.56 | 15.01 | 11.45 | ||||||
Huang et al. [58] | 2015 | 19.98 | 10.21 | 9.77 | ||||||
Peng et al. [20] | 2010 | 15.79 | 10.03 | 5.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Sha, Q.; Liao, S.; Wang, J.; Wu, Z.; Chen, H.; Jiang, S.; Liu, L.; Zhang, C. Agricultural Sector Homologous Emission Inventory of Air Pollutants and Greenhouse Gases for China. Sustainability 2025, 17, 2966. https://doi.org/10.3390/su17072966
Zhang X, Sha Q, Liao S, Wang J, Wu Z, Chen H, Jiang S, Liu L, Zhang C. Agricultural Sector Homologous Emission Inventory of Air Pollutants and Greenhouse Gases for China. Sustainability. 2025; 17(7):2966. https://doi.org/10.3390/su17072966
Chicago/Turabian StyleZhang, Xiaotang, Qing’e Sha, Songdi Liao, Junchi Wang, Zeyan Wu, Haoqi Chen, Shan Jiang, Luyun Liu, and Citao Zhang. 2025. "Agricultural Sector Homologous Emission Inventory of Air Pollutants and Greenhouse Gases for China" Sustainability 17, no. 7: 2966. https://doi.org/10.3390/su17072966
APA StyleZhang, X., Sha, Q., Liao, S., Wang, J., Wu, Z., Chen, H., Jiang, S., Liu, L., & Zhang, C. (2025). Agricultural Sector Homologous Emission Inventory of Air Pollutants and Greenhouse Gases for China. Sustainability, 17(7), 2966. https://doi.org/10.3390/su17072966