Multi-Scale Assessments and Future Projections of Drought Vulnerability of Social–Ecological Systems: A Case Study from the Three-River Headwaters Region of the Tibetan Plateau
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Construction of Indicator System
2.4. Method
2.4.1. Entropy Weight Method
2.4.2. Calculation of Drought Vulnerability Index
2.4.3. Getis-Ord Gi* Model
2.4.4. Analysis of Obstacle Factors
2.4.5. MCE-CA-Markov Model
3. Results
3.1. Results of the Robustness Analysis
3.2. Spatiotemporal Evolution Characteristics of Drought Vulnerability at County-Level
3.3. Spatiotemporal Evolution Characteristics of Drought Vulnerability at Town-Level
3.4. Spatiotemporal Evolution Characteristics of Drought Vulnerability at Village-Level
3.5. Influencing Factors of Drought Vulnerability
3.6. Modeling Characteristics of Drought Vulnerability in 2050
4. Discussion
4.1. Policy Recommendations
4.2. Comparison with Previous Research Findings
4.3. Uncertainties
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, T.; Singh, R.K.; Pandey, R.; Liu, H.D.; Cui, L.Z.; Xu, Z.H.; Xia, A.Q.; Wang, F.; Tang, L.; Wu, W.C.; et al. Enhancing sustainable livelihoods in the Three Rivers Headwater Region: A geospatial and obstacles context. Ecol. Indic. 2023, 156, 111134. [Google Scholar]
- Yao, Y.; Fu, B.J.; Liu, Y.X.; Wang, Y.J.; Song, S. The contribution of ecosystem restoration to sustainable development goals in Asian drylands: A literature review. Land Degrad. Dev. 2021, 32, 4472–4483. [Google Scholar]
- Fu, B.J.; Pan, N.Q. Integrated studies of physical geography in China: Review and prospects. J. Geogr. Sci. 2016, 26, 771–790. [Google Scholar]
- Xu, D.Y.; Wang, Y.Q.; Wang, J.F. A review of social-ecological system vulnerability in desertified regions: Assessment, simulation, and sustainable management. Sci. Total Environ. 2024, 931, 172604. [Google Scholar]
- Peng, Y.T.; Welden, N.; Renaud, F.G. A framework for integrating ecosystem services indicators into vulnerability and risk assessments of deltaic social-ecological systems. J. Environ. Manag. 2023, 326, 116682. [Google Scholar]
- He, Y.Y.; Zhou, C.C.; Ahmed, T. Vulnerability assessment of rural social-ecological system to climate change: A case study of Yunnan Province, China. Int. J. Clim. Change Strateg. Manag. 2021, 13, 162–180. [Google Scholar]
- Chen, J.; Yang, X.J.; Yin, S.; Wu, K.S.; Deng, M.Q.; Wen, X. The vulnerability evolution and simulation of social-ecological systems in a semi-arid area: A case study of Yulin City, China. J. Geogr. Sci. 2018, 28, 152–174. [Google Scholar]
- Deng, H.Y.; Yin, Y.H.; Han, X. Vulnerability of vegetation activities to drought in Central Asia. Environ. Res. Lett. 2020, 15, 084005. [Google Scholar]
- Alba, C.; Sergi, M.B. Distribution, trade-offs and drought vulnerability of a high-mountain Pyrenean endemic plant species, Saxifraga longifolia. Glob. Ecol. Conserv. 2020, 22, e00916. [Google Scholar]
- Saha, S.; Kundu, B.; Paul, G.C.; Mukherjee, K.; Pradhan, B.; Dikshit, A.; Maulud, K.N.A.; Alamri, A.M. Spatial assessment of drought vulnerability using fuzzy analytical hierarchical process: A case study at the Indian state of Odisha. Geomat. Nat. Hazards Risk 2021, 12, 123–153. [Google Scholar]
- Zagade, N.D.; Umrikar, B.N. Drought severity modeling of upper Bhima river basin, western India, using GIS–AHP tools for effective mitigation and resource management. Nat. Hazards 2021, 105, 1165–1188. [Google Scholar]
- Hu, X.B.; Li, H.; Guo, X.M.; van Gelder, P.H.A.J.M.; Shi, P.J. Spatial vulnerability of network systems under spatially local hazards. Risk Anal. 2019, 39, 162–179. [Google Scholar] [PubMed]
- Derbile, E.K. Reducing vulnerability of rain-fed agriculture to drought through indigenous knowledge systems in North-eastern Ghana. Int. J. Clim. Change Strateg. Manag. 2013, 5, 71–94. [Google Scholar]
- Dabanli, I. Drought hazard, vulnerability, and risk assessment in Turkey. Arab. J. Geosci. 2018, 11, 538. [Google Scholar]
- Upadhyay, M.; Sherly, M.A. Multivariate framework for integrated drought vulnerability assessment—An application to India. Int. J. Disaster Risk Reduct. 2023, 85, 103515. [Google Scholar]
- Holling, C.S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar]
- Holling, C.S. Understanding the complexity of economic, ecological, and social systems. Ecosystems 2001, 4, 390–405. [Google Scholar]
- Leslie, H.M.; Basurto, X.; Nenadovic, M.; Sievanen, L.; Cavanaugh, K.C.; Cota-Nieto, J.J.; Erisman, B.E.; Finkbeiner, E.M.; Arango, G.H.; Moreno-Baez, M.; et al. Operationalizing the social-ecological systems framework to assess sustainability. Proc. Natl. Acad. Sci. USA 2015, 112, 5979–5984. [Google Scholar]
- Chen, Q.; Liu, F.G.; Chen, R.J.; Zhao, Z.L.; Zhang, Y.L.; Cui, P.; Zheng, D. Trends and risk evolution of drought disasters in Tibet Region, China. J. Geogr. Sci. 2019, 29, 1859–1875. [Google Scholar]
- Wu, X.T.; Wei, Y.P.; Fu, B.J.; Wang, S.; Zhao, Y.; Moran, E.F. Evolution and effects of the social-ecological system over a millennium in China’s Loess Plateau. Sci. Adv. 2020, 6, eabc0276. [Google Scholar]
- Fischer, J.; Gardner, T.A.; Bennett, E.M.; Balvanera, P.; Biggs, R.; Carpenter, S.; Daw, T.; Folke, C.; Hill, R.; Hughes, T.P.; et al. Advancing sustainability through mainstreaming a social-ecological systems perspective. Curr. Opin. Environ. Sustain. 2015, 14, 144–149. [Google Scholar] [CrossRef]
- Janssen, M.A.; Ostrom, E. Resilience, vulnerability, and adaptation: A cross-cutting theme of the international human dimensions programme on global environmental change. Glob. Environ. Change 2006, 16, 237–239. [Google Scholar] [CrossRef]
- Ostrom, E. A general framework for analyzing sustainability of social-ecological systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Yang, L.E.; Luo, J.; Liu, F.G.; Zhang, Y.L.; Zhou, Q.; Guo, R.; Gu, X.J. The 300-year cropland changes reflecting climate impacts and social resilience at the Yellow River-Huangshui River Valley, China. Environ. Res. Lett. 2021, 16, 065006. [Google Scholar] [CrossRef]
- Turner, B.L., II; Kasperson, R.E.; Matson, P.A.; McCarthy, J.J.; Corell, R.W.; Christensen, L.; Eckley, N.; Kasperson, J.X.; Luers, A.; Martello, M.L.; et al. A framework for vulnerability analysis in sustainability science. Proc. Natl. Acad. Sci. USA 2003, 100, 8074–8079. [Google Scholar] [CrossRef]
- Yin, S.; Yang, X.J.; Chen, J. Adaptive behavior of farmers’ livelihoods in the context of human-environment system changes. Habitat Int. 2020, 100, 102185. [Google Scholar] [CrossRef]
- Hung, L.S.; Wang, C.M.; Yarnal, B. Vulnerability of families and households to natural hazards: A case study of storm surge flooding in Sarasota County, Florida. Appl. Geogr. 2016, 76, 184–197. [Google Scholar] [CrossRef]
- Mclaughlin, B.C.; Blakey, R.; Weitz, A.P.; Feng, X.; Brown, B.; Ackerly, D.D.; Dawson, T.E.; Thompson, S.E. Weather underground: Subsurface hydrologic processes mediate tree vulnerability to extreme climatic drought. Glob. Change Biol. 2020, 26, 3091–3107. [Google Scholar] [CrossRef]
- Choat, B.; Jansen, S.; Brodribb, T.J.; Cochard, H.; Delzon, S.; Bhaskar, R.; Bucci, S.J.; Field, T.S.; Gleason, S.M.; Hacke, U.G.; et al. Global convergence in the vulnerability of forests to drought. Nature 2012, 491, 752–755. [Google Scholar] [CrossRef]
- Wang, T.T.; Sun, F.B. Integrated drought vulnerability and risk assessment for future scenarios: An indicator based analysis. Sci. Total Environ. 2023, 900, 165591. [Google Scholar] [CrossRef]
- Zhi, Y.; Liu, S.L.; Wang, T.; Duan, H.C.; Kang, W.P. Quantifying the impact of natural and human activity factors on desertification in the Qinghai-Tibetan Plateau. Catena 2024, 246, 108392. [Google Scholar]
- Nandintsetseg, B.; Chang, J.F.; Sen, O.L.; Reyer, C.P.O.; Kong, K.M.; Yetemen, O.; Ciais, P.; Davaadalai, J. Future drought risk and adaptation of pastoralism in Eurasian rangelands. NPJ Clim. Atmos. Sci. 2024, 7, 82. [Google Scholar]
- Ahmadalipour, A.; Moradkhani, H.; Castelletti, A.; Magliocca, N. Future drought risk in Africa: Integrating vulnerability, climate change, and population growth. Sci. Total Environ. 2019, 662, 672–686. [Google Scholar]
- Hagenlocher, M.; Meza, I.; Anderson, C.C.; Min, A.; Renaud, F.G.; Walz, Y.; Siebert, S.; Sebesvari, Z. Drought vulnerability and risk assessments: State of the art, persistent gaps, and research agenda. Environ. Res. Lett. 2019, 14, 083002. [Google Scholar]
- Liu, Y.J.; Chen, J. Future global socioeconomic risk to droughts based on estimates of hazard, exposure, and vulnerability in a changing climate. Sci. Total Environ. 2021, 751, 142159. [Google Scholar]
- Alamdarloo, H.E.; Khosravi, H.; Nasabpour, S.; Gholami, A. Assessment of drought hazard, vulnerability and risk in Iran using GIS techniques. J. Arid. Land 2020, 12, 984–1000. [Google Scholar]
- Kim, J.K.; Park, S.Y.; Hong, H.P.; Chen, J.; Choi, S.J.; Kim, T.W.; Lee, J.H. Drought risk assessment for future climate projections in the Nakdong River Basin, Korea. Int. J. Clim. 2020, 40, 4528–4540. [Google Scholar]
- Engström, J.; Jafarzadegan, K.; Moradkhani, H. Drought Vulnerability in the United States: An Integrated Assessment. Water 2020, 12, 2033. [Google Scholar]
- Khetwani, S.; Singh, R.B. Drought vulnerability of Marathwada region, India: A spatial analysis. GeoScape 2020, 14, 108–121. [Google Scholar]
- Liu, G.B.; Shao, Q.Q.; Fan, J.W.; Huang, H.B.; Liu, J.Y.; He, J.F. Assessment of Restoration Degree and Restoration Potential of Key Ecosystem-Regulating Services in the Three-River Headwaters Region Based on Vegetation Coverage. Remote Sens. 2023, 15, 523. [Google Scholar] [CrossRef]
- Shao, Q.Q.; Liu, S.C.; Ning, J.; Liu, G.B.; Yang, F.; Zhang, X.Y.; Niu, L.N.; Huang, H.B.; Fan, J.W.; Liu, J.Y. Remote sensing assessment of the ecological benefits provided by national key ecological projects in China during 2000–2019. J. Geogr. Sci. 2023, 33, 1587–1613. [Google Scholar] [CrossRef]
- Dou, Y.J.; Tong, X.Y.; Horion, S.; Feng, L.W.; Fensholt, R.; Shao, Q.Q.; Tian, F. The success of ecological engineering projects on vegetation restoration in China strongly depends on climatic conditions. Sci. Total Environ. 2024, 915, 170041. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Shao, Q.Q.; Wang, B.; Niu, X.; Ning, J.; Chen, M.Q.; Zhang, T.J.; Liu, G.B.; Liu, S.C.; Niu, L.N.; et al. Spatiotemporal Analysis of Ecosystem Status in China’s National Key Ecological Function Zones. Remote Sens. 2023, 15, 4641. [Google Scholar] [CrossRef]
- Zhu, S.; Xiao, Z.X.; Luo, X.G.; Zhang, H.R.; Liu, X.W.; Wang, R.; Zhang, M.Z.; Huo, Z.B. Multidimensional Response Evaluation of Remote-Sensing Vegetation Change to Drought Stress in the Three-River Headwaters, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2020, 13, 6249–6259. [Google Scholar] [CrossRef]
- Du, J.; Yu, X.J.; Zhou, L.; Li, X.D.; Ao, T.Q. Less concentrated precipitation and more extreme events over the Three River Headwaters region of the Tibetan Plateau in a warming climate. Atmos. Res. 2024, 303, 107311. [Google Scholar] [CrossRef]
- Miao, J.; An, R.; Zhang, Y.Q.; Xing, F. Substantial Reduction in Vegetation Photosynthesis Capacity during Compound Droughts in the Three-River Headwaters Region, China. Remote Sens. 2023, 15, 4943. [Google Scholar] [CrossRef]
- Li, S.S.; Yao, Z.J.; Wang, R.; Liu, Z.F. Dryness/wetness pattern over the Three-River Headwater Region: Variation characteristic, causes, and drought risks. Int. J. Clim. 2020, 40, 3550–3566. [Google Scholar] [CrossRef]
- Zhao, Z.L.; Zhang, Y.L.; Liu, L.S.; Hu, Z.Z. The impact of drought on vegetation conditions within the Damqu River Basin, Yangtze River Source Region, China. PLoS ONE 2018, 13, e0202966. [Google Scholar] [CrossRef]
- Wang, K.Y.; Li, T.J.; Wei, J.H. Exploring Drought Conditions in the Three River Headwaters Region from 2002 to 2011 Using Multiple Drought Indices. Water 2019, 11, 190. [Google Scholar] [CrossRef]
- Bai, Y.F.; Guo, C.C.; Degen, A.A.; Ahmad, A.A.; Wang, W.Y.; Zhang, T.; Li, W.Y.; Ma, L.; Huang, M.; Zeng, H.J.; et al. Climate warming benefits alpine vegetation growth in Three-River Headwater Region, China. Sci. Total Environ. 2020, 742, 140574. [Google Scholar]
- Xi, Y.; Miao, C.Y.; Wu, J.W.; Duan, Q.Y.; Lei, X.H.; Li, H. Spatiotemporal Changes in Extreme Temperature and Precipitation Events in the Three-Rivers Headwater Region, China. J. Geophys. Res. Atmos. 2018, 123, 5827–5844. [Google Scholar]
- Ashraf, M.; Routray, J.K.; Saeed, M. Determinants of farmers’ choice of coping and adaptation measures to the drought hazard in Northwest Balochistan, Pakistan. Nat. Hazards 2014, 73, 1451–1473. [Google Scholar]
- Fang, Y.P.; Zhao, C.; Rasul, G.; Wahid, S.M. Rural household vulnerability and strategies for improvement: An empirical analysis based on time series. Habitat Int. 2016, 53, 254–264. [Google Scholar]
- Singh, R.K.; Murty, H.R.; Gupta, S.K.; Dikshit, A.K. An overview of sustainability assessment methodologies. Ecol. Indic. 2009, 9, 189–212. [Google Scholar]
- Zhao, Z.L.; Hu, Z.Z.; Han, X.; Chen, L.; Li, Z.Y. Evaluation of Urban Resilience and Its Influencing Factors: A Case Study of the Yichang–Jingzhou–Jingmen–Enshi Urban Agglomeration in China. Sustainability 2024, 16, 7090. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, M.; Lu, J.; Zhou, Q.; Ma, W. Evaluation of ecological city and analysis of obstacle factors under the background of high-quality development: Taking cities in the Yellow River Basin as examples. Ecol. Indic. 2020, 118, 106771. [Google Scholar]
- Yin, Z.L.; Feng, Q.; Zhu, R.; Wang, L.G.; Chen, Z.X.; Fang, C.S.; Lu, R. Analysis and prediction of the impact of land use/cover change on ecosystem services value in Gansu province, China. Ecol. Indic. 2023, 154, 110868. [Google Scholar]
- Zhang, J.; Zhang, W.G.; Zhang, X.Y.; Li, Y.H.; Feng, M.M.; Qi, P.; Huang, Y.Q.; Li, R.; Jiang, M.; Zou, Y.C.; et al. Mechanisms for carbon stock driving and scenario modeling in typical mountainous watersheds of northeastern China. Environ. Monit. Assess. 2024, 196, 798. [Google Scholar]
- Ren, C.F.; Deng, X.K.; Zhang, H.B.; Yu, L.H. Assessing the Hydrological Response to Land Use Changes Linking SWAT and CA-Markov Models. Hydrol. Process. 2024, 38, e15341. [Google Scholar]
- Zhu, S.; Xu, Z.; Luo, X.; Liu, X.; Wang, R.; Zhang, M.; Huo, Z. Internal and external coupling of Gaussian mixture model and deep recurrent network for probabilistic drought forecasting. Int. J. Environ. Sci. Technol. 2021, 18, 1221–1236. [Google Scholar]
- Wang, L.C. Impacts of multiple temporal and spatial scale drought on grassland vegetation dynamics in the Tibetan Plateau region of China, 1982–2015. Environ. Dev. 2024, 51, 101033. [Google Scholar]
- Jin, J.; Wang, Q. Assessing ecological vulnerability in western China based on Time-Integrated NDVI data. J. Arid. Land 2016, 8, 533–545. [Google Scholar]
- Sharif, J.; Rafiq, M.K.; Rafiq, M.T.; Aziz, R.; Qayyum, A.; Saleem, A.R.; Nisa, W.U.; Jenks, M.A.; Li, Y. Climate change perceptions and adaptive actions by pastoral community on the Tibetan Plateau, China. Appl. Ecol. Environ. Res. 2019, 17, 7987–8009. [Google Scholar]
Domains | Indicators | Description | Variable |
---|---|---|---|
Exposure | Drought disaster record | the number of occurrences of drought | a1 |
Population density | person/km2 | a2 | |
Livestock quantity | the number of livestock | a3 | |
Yields of grain and oil crop | kg | a4 | |
Area of cropland | km2 | a5 | |
Area of grassland | km2 | a6 | |
Area of wetland | km2 | a7 | |
The proportion of agricultural and animal husbandry output value | the ratio of agricultural and animal husbandry output value to GDP (%) | a8 | |
Sensitivity | The proportion of cropland | the ratio of cropland area to total land area (%) | b1 |
The proportion of grassland | the ratio of grassland area to total land area (%) | b2 | |
The proportion of wetland | the ratio of wetland area to total land area (%) | b3 | |
Grain yield per unit area | kg | b4 | |
The proportion of large livestock | the ratio of the number of cattle, horses, mules, and donkeys to the number of livestock (%) | b5 | |
The proportion of employees in agriculture and animal husbandry | the ratio of the number of employees in agriculture and animal husbandry to the total population (%) | b6 | |
Urbanization rate | the ratio of urban population to total population (%) | b7 | |
Water consumption | ton | b8 | |
Adaptive | Per capita disposable income | CNY 10,000 | c1 |
capacity | Per capita cropland area | km2/person | c2 |
Per capita grassland area | km2/person | c3 | |
Per capita wetland area | km2/person | c4 | |
Grain yield per capita | kg/person | c5 | |
Per capita livestock quantity | the ratio of the number of livestock to the number of total populations | c6 | |
Area of water conservancy facilities | km2/person | c7 | |
Total power of agricultural machinery | kw | c8 | |
Working-age population | the number of people aged 16–59 who have the ability to work | c9 | |
Education | the number of teachers and students | c10 | |
Transportation | mileage of highways opened to traffic | c11 | |
Communication | the number of mobile phone users | c12 | |
Finance | financial expenditure (CNY 10,000) | c13 | |
The savings deposits in financial institutions | CNY 10,000 | c14 |
Level | Low | Relatively Low | Medium | Relatively High | High |
---|---|---|---|---|---|
Drought vulnerability value | [0.0, 0.2) | [0.2, 0.4) | [0.4, 0.6) | [0.6, 0.8) | [0.8, 1.0] |
Domains | Variable | Oj | r | p |
---|---|---|---|---|
Exposure | a1 | 0.1086 | 0.770 | 0.037 |
Exposure | a8 | 0.1267 | 0.943 | 0.002 |
Sensitivity | b2 | 0.1008 | 0.538 | 0.054 |
Sensitivity | b5 | 0.1234 | 0.827 | 0.000 |
Adaptive capacity | c1 | 0.1229 | −0.809 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Chen, L.; Li, T.; Zhang, W.; Han, X.; Hu, Z.; Hu, S. Multi-Scale Assessments and Future Projections of Drought Vulnerability of Social–Ecological Systems: A Case Study from the Three-River Headwaters Region of the Tibetan Plateau. Sustainability 2025, 17, 2912. https://doi.org/10.3390/su17072912
Zhao Z, Chen L, Li T, Zhang W, Han X, Hu Z, Hu S. Multi-Scale Assessments and Future Projections of Drought Vulnerability of Social–Ecological Systems: A Case Study from the Three-River Headwaters Region of the Tibetan Plateau. Sustainability. 2025; 17(7):2912. https://doi.org/10.3390/su17072912
Chicago/Turabian StyleZhao, Zhilong, Lu Chen, Tienan Li, Wanqing Zhang, Xu Han, Zengzeng Hu, and Shijia Hu. 2025. "Multi-Scale Assessments and Future Projections of Drought Vulnerability of Social–Ecological Systems: A Case Study from the Three-River Headwaters Region of the Tibetan Plateau" Sustainability 17, no. 7: 2912. https://doi.org/10.3390/su17072912
APA StyleZhao, Z., Chen, L., Li, T., Zhang, W., Han, X., Hu, Z., & Hu, S. (2025). Multi-Scale Assessments and Future Projections of Drought Vulnerability of Social–Ecological Systems: A Case Study from the Three-River Headwaters Region of the Tibetan Plateau. Sustainability, 17(7), 2912. https://doi.org/10.3390/su17072912