Ecological Adaptation Strategies of Desert Plants in the Farming–Pastoral Zone of Northern Tarim Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Plant Inventory Data
2.2. Determination of Leaf Traits and Environmental Predictors
2.3. Data Statistics and Analysis
3. Results
3.1. Functional Trait Characteristics of Desert Plants in Farming–Pastoral Zone
3.2. Classification of Desert Plants into Functional Groups in Farming–Pastoral Zone
3.3. Trait Variation Among Plant Functional Groups in Farming–Pastoral Zone
3.4. Correlation of Plant Functional Traits Within Each Functional Group in Farming–Pastoral Zone
3.5. Environmental Driven Niche Separation of Plant Functional Groups in Farming–Pastoral Zone
4. Discussion
4.1. Differences in Plant Functional Traits of Desert Plant Functional Groups in Farming–Pastoral Zone
4.2. Correlations Among Plant Functional Traits of Desert Plant Functional Groups in Farming–Pastoral Zone
4.3. Effects of Environmental Driving Factors on Ecological Adaptation of Plant Functional Groups in Farming–Pastoral Zone
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, H.; Liu, Y.; Chen, Y.; Fan, M.; Chen, Y.; Gang, C.; You, Y.; Wang, Z. Dynamics of global dryland vegetation were more sensitive to soil moisture: Evidence from multiple vegetation indices. Agric. For. Meteorol. 2023, 331, 109327. [Google Scholar] [CrossRef]
- Wu, X.; Li, Z.; Gong, L.; Li, R.; Zhang, X.; Zheng, Z. Ecological adaptation strategies of plant functional groups in the upper reaches of the Tarim River based on leaf functional traits. Environ. Exp. Bot. 2023, 215, 105490. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.C.; Diemer, M.; et al. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [PubMed]
- Zhang, P.; Ding, J.; Wang, Q.; McDowell, N.G.; Kong, D.; Tong, Y.; Yin, H. Contrasting coordination of non-structural carbohydrates with leaf and root economic strategies of alpine coniferous forests. New Phytol. 2024, 243, 580–590. [Google Scholar]
- Diaz, S.; Kattge, J.; Cornelissen, J.H.C.; Wright, I.J.; Lavorel, S.; Dray, S.; Reu, B.; Kleyer, M.; Wirth, C.; Prentice, I.C.; et al. The global spectrum of plant form and function. Nature 2016, 529, 167–171. [Google Scholar]
- Han, X.; Xu, Y.; Huang, J.; Zang, R. Species diversity regulates ecological strategy spectra of forest vegetation across different climatic zones. Front. Plant Sci. 2022, 13, 807369. [Google Scholar]
- Liu, X.; Yi, S.; Wu, P.; Wang, N.; Li, Q. Why are widely distributed species widely distributed? understanding from a quantified investment acquisition strategy. Ecol. Evol. 2024, 14, e70581. [Google Scholar]
- Tapolczai, K.; Bouchez, A.; Stenger-Kovacs, C.; Padisak, J.; Rimet, F. Trait-based ecological classifications for benthic algae: Review and perspectives. Hydrobiologia 2016, 776, 1–17. [Google Scholar] [CrossRef]
- Anderegg, L.D.L. Why can’t we predict traits from the environment? New Phytol. 2023, 237, 1998–2004. [Google Scholar]
- Gross, N.; Le Bagousse-Pinguet, Y.; Liancourt, P.; Berdugo, M.; Gotelli, N.J.; Maestre, F.T. Functional trait diversity maximizes ecosystem multifunctionality. Nat. Ecol. Evol. 2017, 1, 132. [Google Scholar] [CrossRef]
- Bruelheide, H.; Dengler, J.; Purschke, O.; Lenoir, J.; Jimenez-Alfaro, B.; Hennekens, S.M.; Botta-Dukat, Z.; Chytry, M.; Field, R.; Jansen, F.; et al. Global trait-environment relationships of plant communities. Nat. Ecol. Evol. 2018, 2, 1906–1917. [Google Scholar] [PubMed]
- Kraft, N.J.B.; Godoy, O.; Levine, J.M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl. Acad. Sci. USA 2015, 112, 797–802. [Google Scholar] [PubMed]
- Agudelo, C.M.; Benavides, A.M.; Taylor, T.; Feeley, K.J.; Duque, A. Functional composition of epiphyte communities in the Colombian Andes. Ecology 2019, 100, e02858. [Google Scholar]
- Silva, M.d.S.; Apgaua, D.M.G.; Silva, C.C.S.; da Silva, L.B.; Tng, D.Y.P. Expanding the wood anatomy economics spectrum: The correlates of vessel element lengths and pit apertures sizes in tropical forest trees. Plant Ecol. Divers. 2021, 14, 279–291. [Google Scholar]
- Pohl, M.; Stroude, R.; Buttler, A.; Rixen, C. Functional traits and root morphology of alpine plants. Ann. Bot. 2011, 108, 537–545. [Google Scholar]
- Ling-Ling, S.; Qing, T.; Guang, L.; Zong-Xing, L.; Meng-Qing, L.; Bin, X. Response of soil properties to C, N, and P stoichiometry of plants in Qilian Mountains, China. Ecol. Indic. 2023, 150, 110245. [Google Scholar]
- Niklas, K.J.; Cobb, E.D. N, P, and C stoichiometry of Eranthis hyemalis (Ranunculaceae) and the allometry of plant growth. Am. J. Bot. 2005, 92, 1256–1263. [Google Scholar]
- Wang, Y.; Yang, D.; Vargas, G.G.; Hao, G.; Powers, J.S.; Ke, Y.; Wang, Q.; Zhang, Y.; Zhang, J. Leaf habit differentiation explains trait tradeoffs across savanna woody plants. For. Ecosyst. 2024, 11, 100190. [Google Scholar] [CrossRef]
- Valencia, E.; Maestre, F.T.; Le Bagousse-Pinguet, Y.; Luis Quero, J.; Tamme, R.; Boerger, L.; Garcia-Gomez, M.; Gross, N. Functional diversity enhances the resistance of ecosystem multifunctionality to aridity in Mediterranean drylands. New Phytol. 2015, 206, 660–671. [Google Scholar]
- Burridge, J.D.; Grondin, A.; Vadez, V. Optimizing crop water use for drought and climate change adaptation requires a multi-scale approach. Front. Plant Sci. 2022, 13, 824720. [Google Scholar]
- Zhao, W.; Ji, X.; Du, Z.; Jin, B.; Zhao, L.; Chen, R.; Zhou, H. Variation and coordination among the plant functional traits of three coexisting shrub species in arid conditions. Environ. Exp. Bot. 2024, 226, 105925. [Google Scholar]
- Abreha, K.B.; Enyew, M.; Carlsson, A.S.; Vetukuri, R.R.; Feyissa, T.; Motlhaodi, T.; Ng’uni, D.; Geleta, M. Sorghum in dryland: Morphological, physiological, and molecular responses of sorghum under drought stress. Planta 2022, 255, 20. [Google Scholar]
- Song, H.; Cao, Y.; Zhao, L.; Zhang, J.; Li, S. Review: WRKY transcription factors: Understanding the functional divergence. Plant Sci. 2023, 334, 111770. [Google Scholar] [PubMed]
- Wen, Z.; Li, H.; Shen, Q.; Tang, X.; Xiong, C.; Li, H.; Pang, J.; Ryan, M.H.; Lambers, H.; Shen, J. Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species. New Phytol. 2019, 223, 882–895. [Google Scholar]
- Li, W.; Knops, J.M.H.; Brassil, C.E.; Lu, J.; Qi, W.; Li, J.; Liu, M.; Chang, S.; Li, W. Functional group dominance and not productivity drives species richness. Plant Ecol. Divers. 2016, 9, 141–150. [Google Scholar]
- Hooper, D.U.; Vitousek, P.M. The Effects of Plant Composition and Diversity on Ecosystem Processes. Science 1997, 277, 1302–1305. [Google Scholar]
- Semenova, G.V.; van der Maarel, E. Plant functional types—A strategic perspective. J. Veg. Sci. 2000, 11, 917–922. [Google Scholar]
- Zhang, S.; Zang, R.; Sheil, D. Rare and common species contribute disproportionately to the functional variation within tropical forests. J. Environ. Manag. 2022, 304, 114332. [Google Scholar] [CrossRef]
- Cruz, M.; Lasso, E. Insights into the functional ecology of paramo plants in Colombia. Biotropica 2021, 53, 1415–1431. [Google Scholar]
- Alvarez-Yepiz, J.C.; Burquez, A.; Martinez-Yrizar, A.; Teece, M.; Yepez, E.A.; Dovciak, M. Resource partitioning by evergreen and deciduous species in a tropical dry forest. Oecologia 2017, 183, 607–618. [Google Scholar]
- Ning, Z.; Li, Y.; Zhao, X.; Han, D.; Zhan, J. Comparison of leaf and fine root traits between annuals and perennials, implicating the mechanism of species changes in desertified grasslands. Front. Plant Sci. 2022, 12, 778547. [Google Scholar] [CrossRef] [PubMed]
- da Silva E Teodoro, E.D.M.; da Silva, A.P.A.; da Silva Brito, N.D.; Nogueira Rodal, M.J.; Shinozaki-Mendes, R.A.; Alves de Lima, A.L. Functional traits determine the vegetative phenology of woody species in riparian forest in semi-arid Brazil. Plant Ecol. 2022, 223, 1137–1153. [Google Scholar] [CrossRef]
- Duan, Z.; Chen, C.; Ni, C.; Xiong, J.; Wang, Z.; Cai, J.; Tan, W. How different is the remediation effect of biochar for cadmium contaminated soil in various cropping systems? A global meta-analysis. J. Hazard. Mater. 2023, 448, 130939. [Google Scholar] [CrossRef] [PubMed]
- Demo, A.H.; Asefa Bogale, G. Enhancing crop yield and conserving soil moisture through mulching practices in dryland agriculture. Front. Agron. 2024, 6, 1361697. [Google Scholar] [CrossRef]
- Zhao, J.; Gong, L.; Chen, X. Relationship between ecological stoichiometry and plant community diversity in the upper reaches of Tarim River, northwestern China. J. Arid Land 2020, 12, 227–238. [Google Scholar] [CrossRef]
- Yue, H.; Zhao, L.; Yang, D.; Zhang, M.; Wu, J.; Zhao, Z.; Xing, X.; Zhang, L.; Qin, Y.; Guo, F.; et al. Comparative analysis of the endophytic bacterial diversity of Populus euphratica Olive. in environments of different salinity intensities. Microbiol. Spectr. 2022, 10, e00500-22. [Google Scholar] [CrossRef]
- Bao, S. Soil Agrochemical Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Batjes, N.H. Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks. Geoderma 2016, 269, 61–68. [Google Scholar] [CrossRef]
- Luo, M.; Moorhead, D.L.; Ochoa-Hueso, R.; Mueller, C.W.; Ying, S.C.; Chen, J. Nitrogen loading enhances phosphorus limitation in terrestrial ecosystems with implications for soil carbon cycling. Funct. Ecol. 2022, 36, 2845–2858. [Google Scholar] [CrossRef]
- Jing, H.; Xiong, X.; Jiang, F.; Pu, X.; Ma, W.; Li, D.; Liu, Z.; Wang, Z. Climate change filtered out resource-acquisitive plants in a temperate grassland in Inner Mongolia, China. Sci. China Life Sci. 2024, 67, 403–413. [Google Scholar] [CrossRef]
- Du, L.; Tian, S.; Zhao, N.; Zhang, B.; Mu, X.; Tang, L.; Zheng, X.; Li, Y. Intraspecific trait variation regulates biodiversity and community productivity of shrublands in drylands. Forests 2024, 15, 911. [Google Scholar] [CrossRef]
- Sabine, G. N:P ratios in terrestrial plants: Variation and functional significance. New Phytol. 2004, 164, 243–266. [Google Scholar]
- Niklas, K.J.; Owens, T.; Reich, P.B.; Cobb, E.D. Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecol. Lett. 2005, 8, 636–642. [Google Scholar] [CrossRef]
- Zhao, G.; Chen, F.; Yuan, C.; Yang, J.; Shen, Y.; Zhang, S.; Yang, J.; Ayemele, A.G.; Li, X.; Xu, J. Response strategies of woody seedlings to shading and watering over time after topsoil translocation in dry-hot karst region of China. For. Ecol. Manag. 2022, 519, 120319. [Google Scholar]
- Yu, H.; Chen, Y.; Zhou, G.; Xu, Z. Coordination of leaf functional traits under climatic warming in an arid ecosystem. BMC Plant Biol. 2022, 22, 439. [Google Scholar]
- Prieto, I.; Leon-Sanchez, L.; Nicolas, E.; Nortes, P.; Querejeta, J.I. Warming reduces both photosynthetic nutrient use efficiency and water use efficiency in Mediterranean shrubsWarming reduces nutrient use efficiency. Environ. Exp. Bot. 2023, 210, 105331. [Google Scholar] [CrossRef]
- Du, L.; Tian, S.; Sun, J.; Zhang, B.; Mu, X.-H.; Tang, L.; Zheng, X.; Li, Y. Ecosystem multifunctionality, maximum height, and biodiversity of shrub communities affected by precipitation fluctuations in Northwest China. Front. Plant Sci. 2023, 14, 1259858. [Google Scholar]
- Le Bagousse-Pinguet, Y.; Soliveres, S.; Gross, N.; Torices, R.; Berdugo, M.; Maestre, F.T. Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality. Proc. Natl. Acad. Sci. USA 2019, 116, 8419–8424. [Google Scholar] [CrossRef]
- Yao, S.; Wang, J.; Huang, W.; Jiao, P.; Peng, C.; Li, Y.; Song, S. Adaptation Strategies of Populus euphratica to Arid Environments Based on Leaf Trait Network Analysis in the Mainstream of the Tarim River. Forests 2024, 15, 437. [Google Scholar] [CrossRef]
- Guo, W.; Wang, G.; Gou, Q.; Liu, J. Module growth and biomass allocation of three typical Chenopodiaceae annuals in a typical desert-oasis ecotone of the Hexi Corridor in Gansu Province, China. Acta Prataculturae Sin. 2022, 31, 25–38. [Google Scholar]
- Balao, F.; Medrano, M.; Bazaga, P.; Paun, O.; Alonso, C. Long-term methylome changes after experimental seed demethylation and their interaction with recurrent water stress in Erodium cicutarium (Geraniaceae). Plant Biol. 2024, 26, 1199–1212. [Google Scholar]
- Xiao, J.; Eziz, A.; Zhang, H.; Wang, Z.; Tang, Z.; Fang, J. Responses of four dominant dryland plant species to climate change in the Junggar Basin, northwest China. Ecol. Evol. 2019, 9, 13596–13607. [Google Scholar] [PubMed]
- Anderegg, L.D.L.; Loy, X.; Markham, I.P.; Elmer, C.M.; Hovenden, M.J.; HilleRisLambers, J.; Mayfield, M.M. Aridity drives coordinated trait shifts but not decreased trait variance across the geographic range of eight Australian trees. New Phytol. 2021, 229, 1375–1387. [Google Scholar] [PubMed]
- Javier Herrera-Sanchez, F.; Lopez, O.; Rodriguez-Siles, J.; Angel Diaz-Portero, M.; Arredondo, A.; Manuel Saez, J.; Alvarez, B.; Cancio, I.; de Lucas, J.; Perez, J.; et al. Feeding Ecology of the Cuvier’s Gazelle (Gazella cuvieri, Ogilby, 1841) in the Sahara Desert. Animals 2023, 13, 567. [Google Scholar] [CrossRef] [PubMed]
- Mu, X.; Du, L.; Zheng, X.; Tang, L.; Ma, J.; Li, Y. Population regeneration of two Haloxylon species in central Asian deserts as affected by groundwater depth. Environ. Exp. Bot. 2024, 225, 105834. [Google Scholar]
- Qian, H.; Tong, J.; Li, S.; Xie, J.; Wang, Z.; Li, Y.; Lu, S. Plant trait networks reveal the ecological strategies of Arabidopsis thaliana along ontogeny. Ecosphere 2025, 16, e70180. [Google Scholar]
- Kramer-Walter, K.R.; Bellingham, P.J.; Millar, T.R.; Smissen, R.D.; Richardson, S.J.; Laughlin, D.C. Root traits are multidimensional: Specific root length is independent from root tissue density and the plant economic spectrum. J. Ecol. 2016, 104, 1299–1310. [Google Scholar]
- Reich, P.B. The world-wide ‘fast-slow’ plant economics spectrum: A traits manifesto. J. Ecol. 2014, 102, 275–301. [Google Scholar]
- Siefert, A.; Violle, C.; Chalmandrier, L.; Albert, C.H.; Taudiere, A.; Fajardo, A.; Aarssen, L.W.; Baraloto, C.; Carlucci, M.B.; Cianciaruso, M.V.; et al. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecol. Lett. 2015, 18, 1406–1419. [Google Scholar]
- Violle, C.; Enquist, B.J.; McGill, B.J.; Jiang, L.; Albert, C.H.; Hulshof, C.; Jung, V.; Messier, J. The return of the variance: Intraspecific variability in community ecology. Trends Ecol. Evol. 2012, 27, 244–252. [Google Scholar]
- Poorter, H.; Lambers, H.; Evans, J.R. Trait correlation networks: A whole-plant perspective on the recently criticized leaf economic spectrum. New Phytol. 2014, 201, 378–382. [Google Scholar]
- Zheng, Z.; Zhang, Y.; Dong, F.; Chen, L.; Li, Z. Linkage between leaf anatomical structure and key leaf economic traits across co-existing species in temperate forests. Plant Soil 2024. [Google Scholar] [CrossRef]
- Oram, N.J.; De Deyn, G.B.; Bodelier, P.L.E.; Cornelissen, J.H.C.; van Groenigen, J.W.; Abalos, D. Plant community flood resilience in intensively managed grasslands and the role of the plant economic spectrum. J. Appl. Ecol. 2020, 57, 1524–1534. [Google Scholar] [CrossRef]
- Liu, Z.; Shi, X.; Yuan, Z.; Lock, T.R.; Kallenbach, R.L. Plant nutritional adaptations under differing resource supply for a dryland grass Leymus chinensis. J. Arid Environ. 2020, 172, 104037. [Google Scholar] [CrossRef]
- Mao, L.; Dong, Y.; Xing, B.; Chen, Y.; Dennett, J.; Bater, C.; Stadt, J.J.; Nielsen, S.E. Maximum canopy height is associated with community phylogenetic structure in boreal forests. J. Plant Ecol. 2023, 16, rtac104. [Google Scholar] [CrossRef]
- Moudry, V.; Gabor, L.; Marselis, S.; Pracna, P.; Bartak, V.; Prosek, J.; Navratilova, B.; Novotny, J.; Potuckova, M.; Gdulova, K.; et al. Comparison of three global canopy height maps and their applicability to biodiversity modeling: Accuracy issues revealed. Ecosphere 2024, 15, e70026. [Google Scholar] [CrossRef]
- Feng, X.; Liu, R.; Li, C.; Li, M.; Wang, Y.; Li, Y. Multi-level physiological and morphological adjustment of Haloxylon ammodendron related to groundwater drawdown in a desert ecosystem. Agric. For. Meteorol. 2022, 324, 109096. [Google Scholar] [CrossRef]
- Akram, M.A.; Zhang, Y.; Wang, X.; Shrestha, N.; Malik, K.; Khan, I.; Ma, W.; Sun, Y.; Li, F.; Ran, J.; et al. Phylogenetic independence in the variations in leaf functional traits among different plant life forms in an arid environment. J. Plant Physiol. 2022, 272, 153671. [Google Scholar] [CrossRef]
- Wang, L.; Jiao, W.; MacBean, N.; Rulli, M.C.; Manzoni, S.; Vico, G.; D’Odorico, P. Dryland productivity under a changing climate. Nat. Clim. Change 2022, 12, 981–994. [Google Scholar]
- Eldridge, D.J.; Maestre, F.T.; Koen, T.B.; Delgado-Baquerizo, M. Australian dryland soils are acidic and nutrient-depleted, and have unique microbial communities compared with other drylands. J. Biogeogr. 2018, 45, 2803–2814. [Google Scholar] [CrossRef]
- Litalien, A.; Zeeb, B. Curing the earth: A review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation. Sci. Total Environ. 2020, 698, 134235. [Google Scholar] [CrossRef]
- Ondrasek, G.; Rathod, S.; Manohara, K.K.; Gireesh, C.; Anantha, M.S.; Sakhare, A.S.; Parmar, B.; Yadav, B.K.; Bandumula, N.; Raihan, F.; et al. Salt stress in plants and mitigation approaches. Plants 2022, 11, 717. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Liu, Y.; Kueppers, L.M.; Li, E.; Zhang, C.; Yu, K.; Yang, X.; Li, X. Hydraulic sensitivity and stomatal regulation of two desert riparian species. J. Geophys. Res. Biogeosci. 2022, 127, e2022JG006971. [Google Scholar] [CrossRef]
- Li, M.; Petrie, M.D.; Chen, H.; Zeng, F.; Ahmed, Z.; Sun, X. Effects of groundwater and seasonal streamflow on the symbiotic nitrogen fixation of deep-rooted legumes in a dryland floodplain. Geoderma 2023, 434, 116490. [Google Scholar] [CrossRef]
Species | Class | Order | Family | Life-Form |
---|---|---|---|---|
Tamarix chinensis | Magnoliopsida | Caryophyllales | Tamaricaceae | Shrub |
Halostachys caspica | Magnoliopsida | Caryophyllales | Amaranthaceae | Shrub |
Halocnemum strobilaceum | Magnoliopsida | Caryophyllales | Amaranthaceae | Shrub |
Lycium ruthenicum | Magnoliopsida | Solanales | Solanaceae | Shrub |
Alhagi camelorum | Magnoliopsida | Fabales | Fabaceae | Shrub |
Ephedra equisetina | Pinopsida | Ephedrales | Ephedraceae | Shrub |
Calligonum mongolicum | Magnoliopsida | Caryophyllales | Polygonaceae | Shrub |
Salsola arbuscula | Magnoliopsida | Centrospermae | Amaranthaceae | Shrub |
Reaumuria songonica | Magnoliopsida | Parietales | Tamaricaceae | Shrub |
Kalidium foliatum | Magnoliopsida | Caryophyllales | Amaranthaceae | Shrub |
Sophora alopecuroides | Magnoliopsida | Fabales | Fabaceae | Herbaceous perennial |
Karelinia caspia | Magnoliopsida | Asterales | Asteraceae | Herbaceous perennial |
Artemisia desertorum | Magnoliopsida | Asterales | Asteraceae | Herbaceous perennial |
Leaf Functional Traits | Mean ± SD | Max | Min | Median | Coefficient of Variation |
---|---|---|---|---|---|
LA (cm2) | 2.02 ± 3.04 | 12.03 | 0.04 | 1.15 | 150.66 |
SLA (cm2·g−1) | 54.77 ± 27.36 | 118.03 | 10.10 | 51.59 | 49.95 |
LC (mg·g−1) | 36.09 ± 8.82 | 49.46 | 21.42 | 37.04 | 24.44 |
LN (mg·g−1) | 2.05 ± 0.59 | 3.48 | 0.97 | 1.98 | 29.25 |
LP (mg·g−1) | 1.09 ± 0.59 | 2.68 | 0.49 | 0.89 | 54.04 |
LC:LN | 23.05 ± 12.06 | 58.35 | 9.37 | 23.65 | 52.32 |
LN:LP | 5.19 ± 2.79 | 11.93 | 1.08 | 5.02 | 53.79 |
Height (m) | 1.16 ± 1.52 | 6.26 | 0.37 | 0.73 | 130.94 |
Canopy (m) | 1.69 ± 2.04 | 8.07 | 0.24 | 0.95 | 121 |
PC1 | PC2 | |
---|---|---|
eigenvalue | 3.71 | 2.19 |
portion of variance | 41.24 | 24.29 |
LA | −0.17 | −0.75 |
SLA | 0.67 | 0.17 |
LC | 0.59 | −0.64 |
LN | 0.75 | −0.01 |
LP | 0.76 | 0.14 |
LC:LN | 0.79 | −0.29 |
LN:LP | −0.90 | 0.20 |
Height | −0.18 | −0.83 |
Canopy | −0.51 | −0.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, B.; Cui, L.; Jin, M.; Dong, H. Ecological Adaptation Strategies of Desert Plants in the Farming–Pastoral Zone of Northern Tarim Basin. Sustainability 2025, 17, 2899. https://doi.org/10.3390/su17072899
Han B, Cui L, Jin M, Dong H. Ecological Adaptation Strategies of Desert Plants in the Farming–Pastoral Zone of Northern Tarim Basin. Sustainability. 2025; 17(7):2899. https://doi.org/10.3390/su17072899
Chicago/Turabian StyleHan, Baohua, Liyang Cui, Mengting Jin, and Hegan Dong. 2025. "Ecological Adaptation Strategies of Desert Plants in the Farming–Pastoral Zone of Northern Tarim Basin" Sustainability 17, no. 7: 2899. https://doi.org/10.3390/su17072899
APA StyleHan, B., Cui, L., Jin, M., & Dong, H. (2025). Ecological Adaptation Strategies of Desert Plants in the Farming–Pastoral Zone of Northern Tarim Basin. Sustainability, 17(7), 2899. https://doi.org/10.3390/su17072899