Integration of Nutritional and Sustainability Metrics in Food Security Assessment: A Scoping Review
Abstract
1. Introduction
2. Methodology
2.1. Protocol and Registration
2.2. Eligibility Criteria
2.3. Information Sources
2.4. Search Strategy
2.5. Evidence Source Selection
2.6. Data Extraction Process
2.7. Data Elements
2.8. Synthesis of Results
3. Results
3.1. Selection of Sources of Evidence
3.2. Characteristics of Sources of Evidence
3.2.1. Study Typology
3.2.2. Geographical Distribution of Studies
3.3. Results of Individual Sources of Evidence
3.3.1. Evolution of Indicator Usage over Time
3.3.2. Distribution of Indicator Categories in the Scientific Literature
3.3.3. Gap Analysis: Gaps in the Scientific Literature
3.4. Synthesis of Results
4. Discussion
4.1. Summary of Evidence
4.2. Challenges in Integrating Nutritional and Sustainability Metrics into Food Security Assessments
- Data Availability and Quality: Inconsistencies in the availability and quality of data on both nutritional and sustainability indicators across regions, as well as the lack of extensive and harmonized databases, reported in 23.5% of the sources [29].
- Standardization and Methodological Discrepancies: Absence of universally accepted methodologies for integrating diverse metrics, coupled with methodological discrepancies between countries. Developed countries predominantly use advanced quantitative methods, such as LCA and multi-criteria analysis, whereas resource-limited regions rely primarily on qualitative methods and incomplete data, thereby limiting the validity of global comparisons [22].
- Resource Limitations: Limited financial and human resources, along with challenges in data collection and analysis.
- Policy and Regulatory Gaps: Absence of coherent policies and regulatory frameworks to support the adoption of integrated metrics.
- Measurement Challenges: Difficulty in measuring and continuously monitoring the combined impact of nutritional and sustainability metrics.
- Longitudinal Data Limitations: Lack of longitudinal studies to assess the long-term impact of diets on health and the environment. Most existing research is cross-sectional, lacking detailed assessments of cumulative effects of different diet types, which limits the formulation of evidence-based sustainable policies [11].
- Lack of Clear Criteria for Evaluating Nutritional and Environmental Sustainability of Diets: The absence of universally accepted criteria to assess whether nutritionally optimized diets are also environmentally sustainable remains a significant challenge. Essential criteria include ensuring nutritional adequacy, evaluating environmental impact through carbon footprint, water footprint, and land use, and promoting biodiversity preservation. Additionally, resource efficiency, effective waste reduction, and economic feasibility are crucial. Social acceptability and the long-term health impact of diets should also be considered to ensure comprehensive and sustainable assessments.
4.3. Adapting Methodologies and Implications for the Republic of Moldova
4.3.1. Challenges in Implementing International Methodologies in the Republic of Moldova
4.3.2. Adapting Methodologies to the Specific Context of the Republic of Moldova
4.3.3. Establishing an Institutional and Infrastructure Framework for Sustainability Assessment
4.3.4. Implications for Public Policies and Sustainability
4.4. Future Research Directions
4.5. Practical Recommendations for Aligning Nutritional and Sustainability Goals
4.6. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AA | Amino Acids |
CF | carbon footprint |
DDI | Dietary Diversity Index |
EAA/NEAA ratio | Essential Amino Acids/Non-Essential Amino Acids ratio |
ENA | Ecological Network Analysis |
EwE | Ecopath with Ecosim |
GHG | greenhouse gas |
LCA | Life Cycle Assessment |
n-LCA | nutritional Life Cycle Assessment |
LIM | Linear Inverse Modeling |
LU | land use |
MD | Mediterranean diet |
N&PUE | Nitrogen and Phosphorus Use Efficiency |
NA | nutritional adequacy |
NAE | Nitrogen Agronomic Efficiency |
NQ | nutritional quality |
NQI | Nutritional Quality Index |
PEF | Product Environmental Footprint |
WF | water footprint |
Appendix A
References
- Drewnowski, A.; Detzel, P.; Klassen-Wigger, P. Perspective: Achieving Sustainable Healthy Diets Through Formulation and Processing of Foods. Curr. Dev. Nutr. 2022, 6, nzac089. [Google Scholar] [CrossRef]
- Siminiuc, R. Analiza exploratorie a securității nutriționale în Republica Moldova. Habilitation Thesis, Universitatea Tehnică a Moldovei, Chișinău, Moldova, 2024. [Google Scholar]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2023; FAO: Rome, Italy; IFAD: Rome, Italy; UNICEF: New York, NY, USA; WFP: Rome, Italy; WHO: Geneva, Switzerland, 2023; ISBN 978-92-5-137226-5. [Google Scholar]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2024; FAO: Rome, Italy; IFAD: Rome, Italy; UNICEF: New York, NY, USA; WFP: Rome, Italy; WHO: Geneva, Switzerland, 2024; ISBN 978-92-5-138882-2. [Google Scholar]
- Drewnowski, A.; Finley, J.; Hess, J.M.; Ingram, J.; Miller, G.; Peters, C. Toward Healthy Diets from Sustainable Food Systems. Curr. Dev. Nutr. 2020, 4, nzaa083. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Berretta, M.; Kupfer, M.; Shisler, S.; Lane, C. Rapid Evidence Assessment on Women’s Empowerment Interventions within the Food System: A Meta-Analysis. Agric. Food Secur. 2023, 12, 13. [Google Scholar] [CrossRef]
- Desiderio, E.; García-Herrero, L.; Hall, D.; Pertot, I.; Segrè, A.; Vittuari, M. From Youth Engagement to Policy Insights: Identifying and Testing Food Systems’ Sustainability Indicators. Environ. Sci. Policy 2024, 155, 103718. [Google Scholar] [CrossRef]
- Eini-Zinab, H.; Shoaibinobarian, N.; Ranjbar, G.; Norouzian Ostad, A.; Sobhani, S.R. Association between the Socio-Economic Status of Households and a More Sustainable Diet. Public Health Nutr. 2021, 24, 6566–6574. [Google Scholar] [CrossRef]
- Fernández-Ríos, A.; Laso, J.; Campos, C.; Ruiz-Salmón, I.; Hoehn, D.; Cristóbal, J.; Batlle-Bayer, L.; Bala, A.; Fullana-i-Palmer, P.; Puig, R.; et al. Towards a Water-Energy-Food (WEF) Nexus Index: A Review of Nutrient Profile Models as a Fundamental Pillar of Food and Nutrition Security. Sci. Total Environ. 2021, 789, 147936. [Google Scholar] [CrossRef]
- Guillen, J.; Natale, F.; Carvalho, N.; Casey, J.; Hofherr, J.; Druon, J.-N.; Fiore, G.; Gibin, M.; Zanzi, A.; Martinsohn, J.T. Global Seafood Consumption Footprint. Ambio 2019, 48, 111–122. [Google Scholar] [CrossRef]
- Olounlade, O.A.; Li, G.-C.; Kokoye, S.E.H.; Dossouhoui, F.V.; Akpa, K.A.A.; Anshiso, D.; Biaou, G. Impact of Participation in Contract Farming on Smallholder Farmers’ Income and Food Security in Rural Benin: PSM and LATE Parameter Combined. Sustainability 2020, 12, 901. [Google Scholar] [CrossRef]
- Donini, L.M.; Dernini, S.; Lairon, D.; Serra-Majem, L.; Amiot, M.-J.; del Balzo, V.; Giusti, A.-M.; Burlingame, B.; Belahsen, R.; Maiani, G.; et al. A Consensus Proposal for Nutritional Indicators to Assess the Sustainability of a Healthy Diet: The Mediterranean Diet as a Case Study. Front. Nutr. 2016, 3, 37. [Google Scholar] [CrossRef]
- Martins, C.F.; Ribeiro, D.M.; Costa, M.; Coelho, D.; Alfaia, C.M.; Lordelo, M.; Almeida, A.M.; Freire, J.P.B.; Prates, J.A.M. Using Microalgae as a Sustainable Feed Resource to Enhance Quality and Nutritional Value of Pork and Poultry Meat. Foods 2021, 10, 2933. [Google Scholar] [CrossRef] [PubMed]
- Petchoo, J.; Kaewchutima, N.; Tangsuphoom, N. Nutritional Quality of Lunch Meals and Plate Waste in School Lunch Programme in Southern Thailand. J. Nutr. Sci. 2022, 11, e35. [Google Scholar] [CrossRef]
- ȚuRcanu, R.S. Development of a model for evaluating the nutritional quality of bread and bakery products. J. Food Nutr. Res. 2024, 63, 155–164. [Google Scholar]
- Wrieden, W.; Halligan, J.; Goffe, L.; Barton, K.; Leinonen, I. Sustainable Diets in the UK-Developing a Systematic Framework to Assess the Environmental Impact, Cost and Nutritional Quality of Household Food Purchases. Sustainability 2019, 11, 4974. [Google Scholar] [CrossRef]
- Harrison, M.R.; Palma, G.; Buendia, T.; Bueno-Tarodo, M.; Quell, D.; Hachem, F. A Scoping Review of Indicators for Sustainable Healthy Diets. Front. Sustain. Food Syst. 2022, 5, 822263. [Google Scholar] [CrossRef]
- Mattas, K.; Raptou, E.; Alayidi, A.; Yener, G.; Baourakis, G. Assessing the Interlinkage between Biodiversity and Diet through the Mediterranean Diet Case. Adv. Nutr. 2023, 14, 570–582. [Google Scholar] [CrossRef]
- Qasim, S.; Ahmad, M.N.; Zia, A.; Alam, S.; Riaz, M.; Aziz, T.; Zahra, N.; Alhomrani, M.; Alsanie, W.F.; Alamri, A.S.; et al. Tropospheric Ozone Pollution: Implication for Food Security and Crop Nutrition in South Asia. Ital. J. Food Sci. 2024, 36, 1. [Google Scholar] [CrossRef]
- Tabaglio, V.; Fiorini, A.; Ndayisenga, V.; Ndereyimana, A.; Minuti, A.; Nyembo Nyembo, R.; Nyembo Ngoy, D.; Bertoni, G. Sustainable Intensification of Cassava Production towards Food Security in the Lomami Province (DR Congo): Role of Planting Method and Landrace. Agronomy 2023, 13, 228. [Google Scholar] [CrossRef]
- Acquah, C.; Ohemeng-Boahen, G.; Power, K.A.; Tosh, S.M. The Effect of Processing on Bioactive Compounds and Nutritional Qualities of Pulses in Meeting the Sustainable Development Goal 2. Front. Sustain. Food Syst. 2021, 5, 681662. [Google Scholar] [CrossRef]
- Foo, S.C.; Khoo, K.S.; Ooi, C.W.; Show, P.L.; Khong, N.M.H.; Yusoff, F.M. Meeting Sustainable Development Goals: Alternative Extraction Processes for Fucoxanthin in Algae. Front. Bioeng. Biotechnol. 2021, 8, 546067. [Google Scholar] [CrossRef]
- Pérez-Escamilla, R. Food Security and the 2015–2030 Sustainable Development Goals: From Human to Planetary Health. Curr. Dev. Nutr. 2017, 1, e000513. [Google Scholar] [CrossRef]
- Gustafson, D.I. Modeling Sustainable Nutrition Security. In Sustainable Nutrition in a Changing World; Biesalski, H.K., Drewnowski, A., Dwyer, J.T., Strain, J., Weber, P., Eggersdorfer, M., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 43–57. ISBN 978-3-319-55940-7. [Google Scholar]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Voinea, L.; Popescu, D.V.; Negrea, T.M.; Dina, R. Nutrient Profiling of Romanian Traditional Dishes—Prerequisite for Supporting the Flexitarian Eating Style. Information 2020, 11, 514. [Google Scholar] [CrossRef]
- Pedro, S.; Lemire, M.; Hoover, C.; Saint-Béat, B.; Janjua, M.Y.; Herbig, J.; Geoffroy, M.; Yunda-Guarin, G.; Moisan, M.-A.; Boissinot, J.; et al. Structure and Function of the Western Baffin Bay Coastal and Shelf Ecosystem. Elementa 2023, 11, 00015. [Google Scholar] [CrossRef]
- Kavle, R.R.; Bekhit, A.E.-D.A.; Carne, A.; Agyei, D. A Research Update on the Food Value of Prionoplus Reticularis (Huhu Grub), an Indigenous Edible Insect of New Zealand. N. Z. J. Agric. Res. 2024, 1–13. [Google Scholar] [CrossRef]
- Guvernul Republicii Moldova. Raport de Progres Privind Implementarea Agendei 2030 Pentru Dezvoltare Durabilă în Republica Moldova; Guvernul Republicii Moldova: Chișinau, Moldova, 2024; p. 214. [Google Scholar]
- Notarnicola, B.; Tassielli, G.; Renzulli, P.A.; Castellani, V.; Sala, S. Environmental Impacts of Food Consumption in Europe. J. Clean. Prod. 2017, 140, 753–765. [Google Scholar] [CrossRef]
- Rocchi, B.; Romano, D.; Hamza, R. Agriculture Reform and Food Crisis in Syria: Impacts on Poverty and Inequality. Food Policy 2013, 43, 190–203. [Google Scholar] [CrossRef]
- Shershunovich, Y.; Mirzabaev, A. Social Cost of Household Emissions: Cross-Country Comparison across the Economic Development Spectrum. Environ. Dev. Sustain. 2023, 26, 15285–15305. [Google Scholar] [CrossRef]
- Valasiuk, S.; Giergiczny, M.; Żylicz, T.; Klimkowska, A.; Angelstam, P. Conservation of Disappearing Cultural Landscape’s Biodiversity: Are People in Belarus Willing to Pay for Wet Grassland Restoration? Wetl. Ecol. Manag. 2018, 26, 943–960. [Google Scholar] [CrossRef]
- Zaporozhets, A.; Kulyk, M.; Babak, V.; Denysov, V. Modeling and Synchronizing Energy Systems of Ukraine and Europe: A 2050 Perspective. In Structure Optimization of Power Systems with Renewable Energy Sources; Studies in Systems, Decision and Control; Springer Nature: Cham, Switzerland, 2025; Volume 583, pp. 73–130. ISBN 978-3-031-83696-1. [Google Scholar]
- Siminiuc, R.; Țurcanu, D.; Siminiuc, S. Multidimensional Evaluation of Nutritional Security Policies in the Republic of Moldova: Gaps, Progress, and Alignment with International Standards. Front. Public Health 2025, 13, 1522097. [Google Scholar] [CrossRef]
- Guvernul Republicii Moldova. HG nr. 624 cu Privire la Aprobarea Programului Național de Adaptare la Schimbările Climatice Până în Anul 2030; Guvernul Republicii Moldova: Chișinau, Moldova, 2023. [Google Scholar]
- Siminiuc, R.; Țurcanu, D.; Vîrlan, A. Urban–Rural Disparities in Greenhouse Gas Emissions: Fuel Consumption in Moldovan Households and Implications for Energy Policies. Sustainability 2024, 16, 10820. [Google Scholar] [CrossRef]
- Commission Recommendation (EU) 2021/2279 of 15 December 2021 on the Use of the Environmental Footprint Methods to Measure and Communicate the Life Cycle Environmental Performance of Products and Organisations. Official Journal of the European Union, 21 December 2021, 396 p. Available online: https://itjfs.com/index.php/ijfs/article/view/2572/1217 (accessed on 16 March 2025).
- Dong, L.; Rashkova, I. Healthy Food Consumption: Challenges and the Path Forward. In Springer Series in Supply Chain Management; Springer: Berlin/Heidelberg, Germany, 2024; Volume 24, pp. 119–143. [Google Scholar]
- Mak, W.S.; Jones, C.P.; McBride, K.E.; Fritz, E.A.P.; Hirsch, J.; German, J.B.; Siegel, J.B. Acid-Active Proteases to Optimize Dietary Protein Digestibility: A Step towards Sustainable Nutrition. Front. Nutr. 2024, 11, 1291685. [Google Scholar] [CrossRef] [PubMed]
- Milbank, C. Associating Dietary Quality and Forest Cover in India. For. Policy Econ. 2023, 156, 103055. [Google Scholar] [CrossRef]
- Pérez-Neira, D.; Schneider, M.; Esche, L.; Armengot, L. Sustainability of Food Security in Different Cacao Production Systems: A Land, Labour, Energy and Food Quality Nexus Approach. Resour. Conserv. Recycl. 2023, 190, 106874. [Google Scholar] [CrossRef]
- Hassoun, A.; Boukid, F.; Pasqualone, A.; Bryant, C.J.; García, G.G.; Parra-López, C.; Jagtap, S.; Trollman, H.; Cropotova, J.; Barba, F.J. Emerging Trends in the Agri-Food Sector: Digitalisation and Shift to Plant-Based Diets. Curr. Res. Food Sci. 2022, 5, 2261–2269. [Google Scholar] [CrossRef]
- Lindgren, E.; Harris, F.; Dangour, A.D.; Gasparatos, A.; Hiramatsu, M.; Javadi, F.; Loken, B.; Murakami, T.; Scheelbeek, P.; Haines, A. Sustainable Food Systems—A Health Perspective. Sustain. Sci. 2018, 13, 1505–1517. [Google Scholar] [CrossRef]
- Ahmed, S.; Warne, T.; Stewart, A.; Byker Shanks, C.; Dupuis, V. Role of Wild Food Environments for Cultural Identity, Food Security, and Dietary Quality in a Rural American State. Front. Sustain. Food Syst. 2022, 6, 774701. [Google Scholar] [CrossRef]
- Franco, C.C.; Rebolledo-Leiva, R.; González-García, S.; Feijoo, G.; Moreira, M.T. Addressing the Food, Nutrition and Environmental Nexus: The Role of Socio-Economic Status in the Nutritional and Environmental Sustainability Dimensions of Dietary Patterns in Chile. J. Clean. Prod. 2022, 379, 134723. [Google Scholar] [CrossRef]
- Mead, B.R.; Christiansen, P.; Davies, J.A.C.; Falagán, N.; Kourmpetli, S.; Liu, L.; Walsh, L.; Hardman, C.A. Is Urban Growing of Fruit and Vegetables Associated with Better Diet Quality and What Mediates This Relationship? Evidence from a Cross-Sectional Survey. Appetite 2021, 163, 105218. [Google Scholar] [CrossRef]
- Koç, A.A.; Bayaner, A.; Koç, G. Agri-Food Policy Trends and State of Sustainable Food System in Türkiye. New Medit 2024, 23, 17–36. [Google Scholar] [CrossRef]
- Varma, A. Biology and Biotechnology of Quinoa: Super Grain for Food Security; 2022; p. 466. Available online: https://www.scopus.com/record/display.uri?eid=2-s2.0-85152813135&doi=10.1007%2f978-981-16-3832-9&origin=inward&txGid=dd9cec2ca08d06b0e48bf80db70162c5 (accessed on 9 March 2025).
- Kidane, B.; Urugo, M.M.; Hirpha, H.H.; Paulos, T.; Hundea, W.; Tessema, F. Nutritional Challenges of Staple Crops Due to Increasing Atmospheric Carbon Dioxide Levels: Case of Sub-Saharan Africa. J. Agric. Food Res. 2025, 19, 101592. [Google Scholar] [CrossRef]
- Allen, T.; Prosperi, P.; Cogill, B.; Padilla, M.; Peri, I. A Delphi Approach to Develop Sustainable Food System Metrics. Soc. Indic. Res. 2019, 141, 1307–1339. [Google Scholar] [CrossRef]
- Borrego-Ruiz, A.; González-Domenech, C.M.; Borrego, J.J. The Role of Fermented Vegetables as a Sustainable and Health-Promoting Nutritional Resource. Appl. Sci. 2024, 14, 10853. [Google Scholar] [CrossRef]
- Zotte, A.D.; Cullere, M. Rabbit and Quail: Little Known but Valuable Meat Sources. Czech J. Anim. Sci. 2024, 69, 39–47. [Google Scholar] [CrossRef]
- Merchant, E.V.; Odendo, M.; Ndinya, C.; Nyabinda, N.; Maiyo, N.; Downs, S.; Hoffman, D.J.; Simon, J.E. Barriers and Facilitators in Preparation and Consumption of African Indigenous Vegetables: A Qualitative Exploration From Kenya. Front. Sustain. Food Syst. 2022, 6, 801527. [Google Scholar] [CrossRef]
- Vogliano, C.; Raneri, J.E.; Coad, J.; Tutua, S.; Wham, C.; Lachat, C.; Burlingame, B. Dietary Agrobiodiversity for Improved Nutrition and Health Outcomes within a Transitioning Indigenous Solomon Island Food System. Food Secur. 2021, 13, 819–847. [Google Scholar] [CrossRef]
- Gururani, K.; Sood, S.; Kumar, A.; Joshi, D.C.; Pandey, D.; Sharma, A.R. Mainstreaming Barahnaja Cultivation for Food and Nutritional Security in the Himalayan Region. Biodivers. Conserv. 2021, 30, 551–574. [Google Scholar] [CrossRef]
- Ray, S.; Maitra, S.; Sairam, M.; Sravya, M.; Priyadarshini, A.; Shubhadarshi, S.; Padhi, D.P. An Unravelled Potential of Foliar Application of Micro and Beneficial Nutrients in Cereals for Ensuring Food and Nutritional Security. Int. J. Exp. Res. Rev. 2024, 41, 19–42. [Google Scholar] [CrossRef]
- Dhankher, O.P.; Foyer, C.H. Climate Resilient Crops for Improving Global Food Security and Safety. Plant Cell Environ. 2018, 41, 877–884. [Google Scholar] [CrossRef]
- Brennan, A.; Browne, S. Food Waste and Nutrition Quality in the Context of Public Health: A Scoping Review. Int. J. Environ. Res. Public Health 2021, 18, 5379. [Google Scholar] [CrossRef]
- Rempelos, L.; Baranski, M.; Wang, J.; Adams, T.N.; Adebusuyi, K.; Beckman, J.J.; Brockbank, C.J.; Douglas, B.S.; Feng, T.; Greenway, J.D.; et al. Integrated Soil and Crop Management in Organic Agriculture: A Logical Framework to Ensure Food Quality and Human Health? Agronomy 2021, 11, 2494. [Google Scholar] [CrossRef]
- Zhang, Y.; Lei, M.; Lan, X.; Zhang, X.; Fan, S.; Gao, J. The Multiple Effects of Farmland Infrastructure Investment on Agrifood Systems in China—An Interdisciplinary Model Analysis. China Agric. Econ. Rev. 2024, 16, 320–339. [Google Scholar] [CrossRef]
- Khayeka-Wandabwa, C.; Choge, J.K.; Linnemann, A.R.; Schoustra, S. Linking Fermented Foods to Microbial Composition and Valorisation: Blueprint for Kenya. Food Rev. Int. 2024, 40, 3424–3444. [Google Scholar] [CrossRef]
- Kizilgeci, F.; Yildirim, M.; Islam, M.S.; Ratnasekera, D.; Iqbal, M.A.; Sabagh, A.E.L. Normalized Difference Vegetation Index and Chlorophyll Content for Precision Nitrogen Management in Durum Wheat Cultivars under Semi-Arid Conditions. Sustainability 2021, 13, 3725. [Google Scholar] [CrossRef]
- Dobermann, A.; Bruulsema, T.; Cakmak, I.; Gerard, B.; Majumdar, K.; McLaughlin, M.; Reidsma, P.; Vanlauwe, B.; Wollenberg, L.; Zhang, F.; et al. Responsible Plant Nutrition: A New Paradigm to Support Food System Transformation. Glob. Food Secur. 2022, 33, 100636. [Google Scholar] [CrossRef]
- Birch, J.; Benkendorff, K.; Liu, L.; Luke, H. The Nutritional Composition of Australian Native Grains Used by First Nations People and Their Re-Emergence for Human Health and Sustainable Food Systems. Front. Sustain. Food Syst. 2023, 7, 1237862. [Google Scholar] [CrossRef]
- Nair, A.; Fischer, A.R.H.; Moscatelli, S.; Socaciu, C.; Kohl, C.; Stetkiewicz, S.S.; Menary, J.; Baekelandt, A.; Nanda, A.K.; Jorasch, P.; et al. European Consumer and Societal Stakeholders’ Response to Crop Improvements and New Plant Breeding Techniques. Food Energy Secur. 2023, 12, e417. [Google Scholar] [CrossRef]
- Smith, J.P.; Lande, B.; Johansson, L.; Baker, P.; Bærug, A. The Contribution of Breastfeeding to a Healthy, Secure and Sustainable Food System for Infants and Young Children: Monitoring Mothers’ Milk Production in the Food Surveillance System of Norway. Public Health Nutr. 2022, 25, 2693–2701. [Google Scholar] [CrossRef]
- Mariutti, L.R.B.; Rebelo, K.S.; Bisconsin-Junior, A.; de Morais, J.S.; Magnani, M.; Maldonade, I.R.; Madeira, N.R.; Tiengo, A.; Maróstica, M.R.; Cazarin, C.B.B. The Use of Alternative Food Sources to Improve Health and Guarantee Access and Food Intake. Food Res. Int. 2021, 149, 110709. [Google Scholar] [CrossRef]
- De Santis, M.A.; Giuzio, L.; Tozzi, D.; Soccio, M.; Flagella, Z. Impact of No Tillage and Low Emission N Fertilization on Durum Wheat Sustainability, Profitability and Quality. Agronomy 2024, 14, 2794. [Google Scholar] [CrossRef]
- Matías, J.; Rodríguez, M.J.; Carrillo-Vico, A.; Casals, J.; Fondevilla, S.; Haros, C.M.; Pedroche, J.; Aparicio, N.; Fernández-García, N.; Aguiló-Aguayo, I.; et al. From ‘Farm to Fork’: Exploring the Potential of Nutrient-Rich and Stress-Resilient Emergent Crops for Sustainable and Healthy Food in the Mediterranean Region in the Face of Climate Change Challenges. Plants 2024, 13, 1914. [Google Scholar] [CrossRef] [PubMed]
- Prasanna, S.; Verma, P.; Bodh, S. The Role of Food Industries in Sustainability Transition: A Review. Environ. Dev. Sustain. 2024. [Google Scholar] [CrossRef]
- Harbinson, J.; Parry, M.A.J.; Davies, J.; Rolland, N.; Loreto, F.; Wilhelm, R.; Metzlaff, K.; Lankhorst, R.K. Designing the Crops for the Future; the Cropbooster Program. Biology 2021, 10, 690. [Google Scholar] [CrossRef]
- Anghinoni, G.; Anghinoni, F.B.G.; Tormena, C.A.; Braccini, A.L.; de Carvalho Mendes, I.; Zancanaro, L.; Lal, R. Conservation Agriculture Strengthen Sustainability of Brazilian Grain Production and Food Security. Land Use Policy 2021, 108, 105591. [Google Scholar] [CrossRef]
- Iannotti, L.; Kleban, E.; Fracassi, P.; Oenema, S.; Lutter, C. Evidence for Policies and Practices to Address Global Food Insecurity. Annu. Rev. Public Health 2024, 45, 375–400. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Hamid, A.; Imtiaz, H.; Rizwan, M.; Imran, M.; Sheikh, U.A.A.; Saira, I. Cactus Pear: A Weed of Dry-Lands for Supplementing Food Security under Changing Climate. Planta Daninha 2020, 38, e020191761. [Google Scholar] [CrossRef]
- Akshit; Kumar, S.; Sheoran, N.; Devi, P.; Sharma, K.; Kamboj, E.; Kumar, P. Legumes in Cropping Systems: A Way Toward Agricultural Sustainability and Diversification. Commun. Soil Sci. Plant Anal. 2024, 55, 596–608. [Google Scholar] [CrossRef]
- Banerjee, A.; Roychoudhury, A. Rice Physiology and Sustainability in the Face of Increasing Carbon Dioxide Concentration. In Crop Sustainability and Intellectual Property Rights; Apple Academic Press: New York, NY, USA, 2023; pp. 111–118. Available online: https://www.taylorfrancis.com/chapters/edit/10.1201/9781003383024-6/rice-physiology-sustainability-face-increasing-carbon-dioxide-concentration-aditya-banerjee-aryadeep-roychoudhury (accessed on 16 March 2025).
- Ishfaq, M.; Wang, Y.; Xu, J.; Hassan, M.U.; Yuan, H.; Liu, L.; He, B.; Ejaz, I.; White, P.J.; Cakmak, I.; et al. Improvement of Nutritional Quality of Food Crops with Fertilizer: A Global Meta-Analysis. Agron. Sustain. Dev. 2023, 43, 74. [Google Scholar] [CrossRef]
- Sarker, P.K. Microorganisms in Fish Feeds, Technological Innovations, and Key Strategies for Sustainable Aquaculture. Microorganisms 2023, 11, 439. [Google Scholar] [CrossRef]
- Gartaula, H.; Patel, K.; Johnson, D.; Devkota, R.; Khadka, K.; Chaudhary, P. From Food Security to Food Wellbeing: Examining Food Security through the Lens of Food Wellbeing in Nepal’s Rapidly Changing Agrarian Landscape. Agric. Hum. Values 2017, 34, 573–589. [Google Scholar] [CrossRef]
- Dave, L.A.; Hodgkinson, S.M.; Roy, N.C.; Smith, N.W.; McNabb, W.C. The Role of Holistic Nutritional Properties of Diets in the Assessment of Food System and Dietary Sustainability. Crit. Rev. Food Sci. Nutr. 2023, 63, 5117–5137. [Google Scholar] [CrossRef]
- Ahmed, S.; Downs, S.; Fanzo, J. Advancing an Integrative Framework to Evaluate Sustainability in National Dietary Guidelines. Front. Sustain. Food Syst. 2019, 3, 76. [Google Scholar] [CrossRef]
- Nabuuma, D.; Reimers, C.; Hoang, K.T.; Stomph, T.; Swaans, K.; Raneri, J.E. Impact of Seed System Interventions on Food and Nutrition Security in Low- and Middle-Income Countries: A Scoping Review. Glob. Food Secur. 2022, 33, 100638. [Google Scholar] [CrossRef]
- Nelson, M.E.; Hamm, M.W.; Hu, F.B.; Abrams, S.A.; Griffin, T.S. Alignment of Healthy Dietary Patterns and Environmental Sustainability: A Systematic Review. Adv. Nutr. 2016, 7, 1005–1025. [Google Scholar] [CrossRef] [PubMed]
- Sundin, N.; Bartek, L.; Persson Osowski, C.; Strid, I.; Eriksson, M. Sustainability Assessment of Surplus Food Donation: A Transfer System Generating Environmental, Economic, and Social Values. Sustain. Prod. Consum. 2023, 38, 41–54. [Google Scholar] [CrossRef]
- Njuki, J.; Eissler, S.; Malapit, H.; Meinzen-Dick, R.; Bryan, E.; Quisumbing, A. A Review of Evidence on Gender Equality, Women’s Empowerment, and Food Systems. Glob. Food Secur. 2022, 33, 100622. [Google Scholar] [CrossRef]
- Nani, M.; Krishnaswamy, K. Physical and Functional Properties of Ancient Grains and Flours and Their Potential Contribution to Sustainable Food Processing. Int. J. Food Prop. 2021, 24, 1529–1547. [Google Scholar] [CrossRef]
- Han, Z.; Zheng, X.; Hou, L.; Xiao, N.; Deng, X. Changes in China’s Food Security Driven by Nutrition Security and Resource Constraints. Environ. Dev. Sustain. 2024, 26, 7927–7945. [Google Scholar] [CrossRef]
- Rochefort, G.; Lapointe, A.; Mercier, A.-P.; Parent, G.; Provencher, V.; Lamarche, B. A Rapid Review of Territorialized Food Systems and Their Impacts on Human Health, Food Security, and the Environment. Nutrients 2021, 13, 3345. [Google Scholar] [CrossRef]
- Setsoafia, E.D.; Ma, W.; Renwick, A. Effects of Sustainable Agricultural Practices on Farm Income and Food Security in Northern Ghana. Agric. Econ. 2022, 10, 9. [Google Scholar] [CrossRef]
- Vinci, G.; Prencipe, S.A.; Pucinischi, L.; Perrotta, F.; Ruggeri, M. Sustainability Assessment of Waste and Wastewater Recovery for Edible Mushroom Production through an Integrated Nexus. A Case Study in Lazio. Sci. Total Environ. 2023, 903, 166044. [Google Scholar] [CrossRef]
- Sousa, M.M.; Ferreira, D.M.; Machado, S.; Lobo, J.C.; Costa, A.S.G.; Palmeira, J.D.; Nunes, M.A.; Alves, R.C.; Ferreira, H.; Oliveira, M.B.P.P. Effect of Different Time/Temperature Binomials on the Chemical Features, Antioxidant Activity, and Natural Microbial Load of Olive Pomace Paste. Molecules 2023, 28, 2876. [Google Scholar] [CrossRef]
- Speck, M.; Bienge, K.; Wagner, L.; Engelmann, T.; Schuster, S.; Teitscheid, P.; Langen, N. Creating Sustainable Meals Supported by the NAHGAST Online Tool—Approach and Effects on GHG Emissions and Use of Natural Resources. Sustainability 2020, 12, 1136. [Google Scholar] [CrossRef]
- Ramenzoni, V.C.; Vázquez Sánchez, V.; Valdés Massó, D.; Rangel Rivero, A.; Borroto Escuela, D.Y.; Hoffman, D.J. When the Sugar Runs Out: Transitioning Agricultural Systems and Their Effect on Dietary Diversity in Yaguajay, Central Cuba. Sustainability 2023, 15, 13073. [Google Scholar] [CrossRef]
- Goicoechea, N.; Antolín, M.C. Increased Nutritional Value in Food Crops. Microb. Biotechnol. 2017, 10, 1004–1007. [Google Scholar] [CrossRef]
- Bellamy, A.S.; Furness, E.; Mills, S.; Clear, A.; Finnigan, S.M.; Meador, E.; Milne, A.E.; Sharp, R.T. Promoting Dietary Changes for Achieving Health and Sustainability Targets. Front. Sustain. Food Syst. 2023, 7, 1160627. [Google Scholar] [CrossRef]
- Ashagidigbi, W.M.; Orilua, O.O.; Olagunju, K.A.; Omotayo, A.O. Gender, Empowerment and Food Security Status of Households in Nigeria. Agriculture 2022, 12, 956. [Google Scholar] [CrossRef]
- Lucas, E.; Galán-Martín, Á.; Pozo, C.; Guo, M.; Guillén-Gosálbez, G. Global Environmental and Nutritional Assessment of National Food Supply Patterns: Insights from a Data Envelopment Analysis Approach. Sci. Total Environ. 2021, 755, 142826. [Google Scholar] [CrossRef]
- Ayhan, D.; Mendoza, F.A.; Gul, M.R.; Ari, I.; Alpas, H.; Oztop, M.H. Social Life Cycle Sustainability Assessment of Dried Tomato Products Based on Material and Process Selection through Multi-criteria Decision Making. J. Sci. Food Agric. 2025, 105, 1978–1992. [Google Scholar] [CrossRef]
- Bindraban, P.S.; Dimkpa, C.O.; White, J.C.; Franklin, F.A.; Melse-Boonstra, A.; Koele, N.; Pandey, R.; Rodenburg, J.; Senthilkumar, K.; Demokritou, P.; et al. Safeguarding Human and Planetary Health Demands a Fertilizer Sector Transformation. Plants People Planet 2020, 2, 302–309. [Google Scholar] [CrossRef]
- Bordoni, A. Insight into the Sustainability of the Mediterranean Diet: The Water Footprint of the Recommended Italian Diet. Nutrients 2023, 15, 2204. [Google Scholar] [CrossRef] [PubMed]
- Hansen, L.; Sorgho, R.; Mank, I.; Nayna Schwerdtle, P.; Agure, E.; Bärnighausen, T.; Danquah, I. Home Gardening in sub-Saharan Africa: A Scoping Review on Practices and Nutrition Outcomes in Rural Burkina Faso and Kenya. Food Energy Secur. 2022, 11, e388. [Google Scholar] [CrossRef]
- Vansant, E.C.; Mausch, K.; Ickowitz, A.; McMullin, S.; Karanja, A.; Rasmussen, L.V. What Are the Links between Tree-based Farming and Dietary Quality for Rural Households? A Review of Emerging Evidence in Low- and Middle-income Countries. People Nat. 2022, 4, 296–311. [Google Scholar] [CrossRef]
- Lin, S.Y.; Khine, H.N.; Deuja, A.; Thongdara, R.; Surinkul, N.; Holden, N.M.; Gheewala, S.H.; Prapaspongsa, T. Towards Calorie-Adequate Diets to Mitigate Environmental Impacts from Food Consumption in Asia. Sustain. Prod. Consum. 2024, 49, 545–559. [Google Scholar] [CrossRef]
- Green, A.; Nemecek, T.; Mathys, A. A Proposed Framework to Develop Nutrient Profiling Algorithms for Assessments of Sustainable Food: The Metrics and Their Assumptions Matter. Int. J. Life Cycle Assess. 2023, 28, 1326–1347. [Google Scholar] [CrossRef]
- Ramos, M.P.; Custodio, E.; Jiménez, S.; Mainar-Causapé, A.J.; Boulanger, P.; Ferrari, E. Do Agri-Food Market Incentives Improve Food Security and Nutrition Indicators? A Microsimulation Evaluation for Kenya. Food Sec. 2022, 14, 209–227. [Google Scholar] [CrossRef]
- Obiero, K.; Meulenbroek, P.; Drexler, S.; Dagne, A.; Akoll, P.; Odong, R.; Kaunda-Arara, B.; Waidbacher, H. The Contribution of Fish to Food and Nutrition Security in Eastern Africa: Emerging Trends and Future Outlooks. Sustainability 2019, 11, 1636. [Google Scholar] [CrossRef]
- Joensuu, K.; Harrison, E.; Hartikainen, H. What to Do with Food Waste? A Holistic Feasibility Framework to Evaluate Different Solutions. Sustainability 2022, 14, 13004. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Abdul, H.; Muzammil, H.S.; Imtiaz, H.; Tanveer, A.; Saira, I.; Anser, A. A Meta-Analysis of the Impact of Foliar Feeding of Micronutrients on Productivity and Revenue Generation of Forage Crops. Planta Daninha 2019, 37, e019189237. [Google Scholar] [CrossRef]
- Rangasami, S.R.S.; Purnima, M.; Pushpam, R.; Ajaykumar, R.; Thirunavukkarasu, M.; Sathiya, K.; Rajanbabu, V.; Yazhini, G. Enhancing Animal Nutritional Security Through Biofortification in Forage Crops: A Comprehensive Review. Indian J. Anim. Res. 2024, 58, 1838–1845. [Google Scholar] [CrossRef]
- Fanzo, J.; Miachon, L. Harnessing the Connectivity of Climate Change, Food Systems and Diets: Taking Action to Improve Human and Planetary Health. Anthropocene 2023, 42, 100381. [Google Scholar] [CrossRef]
- Bull, C.; Belobrajdic, D.; Hamzelou, S.; Jones, D.; Leifert, W.; Ponce-Reyes, R.; Terefe, N.S.; Williams, G.; Colgrave, M. How Healthy Are Non-Traditional Dietary Proteins? The Effect of Diverse Protein Foods on Biomarkers of Human Health. Foods 2022, 11, 528. [Google Scholar] [CrossRef] [PubMed]
- Kaput, J.; Kussmann, M.; Mendoza, Y.; Le Coutre, R.; Cooper, K.; Roulin, A. Enabling Nutrient Security and Sustainability through Systems Research. Genes Nutr. 2015, 10, 12. [Google Scholar] [CrossRef]
- Maudrie, T.L.; Colón-Ramos, U.; Harper, K.M.; Jock, B.W.; Gittelsohn, J. A Scoping Review of the Use of Indigenous Food Sovereignty Principles for Intervention and Future Directions. Curr. Dev. Nutr. 2021, 5, nzab093. [Google Scholar] [CrossRef]
- Leisner, C.P. Review: Climate Change Impacts on Food Security- Focus on Perennial Cropping Systems and Nutritional Value. Plant Sci. 2020, 293, 110412. [Google Scholar] [CrossRef]
- Ilhan, A.; Yenicag, R.; Yalcin Pehlivan, E.; Ozturk, E.; Karahan, S.; Rakıcıoğlu, N. Greenhouse Gas Emission and Water Footprint of the National Diet in Turkey: Results from Turkey Nutrition and Health Survey 2017. Sustainability 2023, 15, 9768. [Google Scholar] [CrossRef]
- Ebbisa, A. Mechanisms Underlying Cereal/Legume Intercropping as Nature-Based Biofortification: A Review. Food Prod. Process Nutr. 2022, 4, 19. [Google Scholar] [CrossRef]
- Lee, M.R.F.; McAuliffe, G.A.; Tweed, J.K.S.; Griffith, B.A.; Morgan, S.A.; Rivero, M.J.; Harris, P.; Takahashi, T.; Cardenas, L. Nutritional Value of Suckler Beef from Temperate Pasture Systems. Animal 2021, 15, 100257. [Google Scholar] [CrossRef]
- Picchioni, F.; Goulao, L.F.; Roberfroid, D. The Impact of COVID-19 on Diet Quality, Food Security and Nutrition in Low and Middle Income Countries: A Systematic Review of the Evidence. Clin. Nutr. 2022, 41, 2955–2964. [Google Scholar] [CrossRef]
- An, R.; He, L.; Shen, M.J. Impact of Neighbourhood Food Environment on Diet and Obesity in China: A Systematic Review. Public Health Nutr. 2020, 23, 457–473. [Google Scholar] [CrossRef]
- Khuri, J.; Wang, Y.; Holden, K.; Fly, A.D.; Mbogori, T.; Mueller, S.; Kandiah, J.; Zhang, M. Dietary Intake and Nutritional Status among Refugees in Host Countries: A Systematic Review. Adv. Nutr. 2022, 13, 1846–1865. [Google Scholar] [CrossRef] [PubMed]
- Ngoma, H.; Simutowe, E.; Manyanga, M.; Thierfelder, C. Sustainable Intensification and Household Dietary Diversity in Maize-Based Farming Systems of Zambia and Zimbabwe. Outlook Agric. 2023, 52, 34–46. [Google Scholar] [CrossRef]
- Maffioli, E.M.; Headey, D.; Lambrecht, I.; Oo, T.Z.; Zaw, N.T. A Prepandemic Nutrition-Sensitive Social Protection Program Has Sustained Benefits for Food Security and Diet Diversity in Myanmar during a Severe Economic Crisis. J. Nutr. 2023, 153, 1052–1062. [Google Scholar] [CrossRef]
- Evans, J.; Roggio, A. The College Campus as a Living Laboratory for Meaningful Food System Transformation. J. Agric. Food Syst. Community Dev. 2023, 12, 11–23. [Google Scholar] [CrossRef]
- Montoli, P.; Ares, G.; Aschemann-Witzel, J.; Curutchet, M.R.; Giménez, A. Food Donation as a Strategy to Reduce Food Waste in an Emerging Latin American Country: A Case Study in Uruguay. Nutrire 2023, 48, 22. [Google Scholar] [CrossRef]
- Hlatshwayo, S.I.; Slotow, R.; Ngidi, M.S.C. The Role of Smallholder Farming on Rural Household Dietary Diversity. Agriculture 2023, 13, 595. [Google Scholar] [CrossRef]
- Vittuari, M.; De Menna, F.; Gaiani, S.; Falasconi, L.; Politano, A.; Dietershagen, J.; Segrè, A. The Second Life of Food: An Assessment of the Social Impact of Food Redistribution Activities in Emilia Romagna, Italy. Sustainability 2017, 9, 1817. [Google Scholar] [CrossRef]
- Zotor, F.B.; Ellahi, B.; Amuna, P. Applying the Food Multimix Concept for Sustainable and Nutritious Diets. Proc. Nutr. Soc. 2015, 74, 505–516. [Google Scholar] [CrossRef]
- Chibarabada, T.; Modi, A.; Mabhaudhi, T. Expounding the Value of Grain Legumes in the Semi- and Arid Tropics. Sustainability 2017, 9, 60. [Google Scholar] [CrossRef]
- Nsevolo Miankeba, P.; Taofic, A.; Kiatoko, N.; Mutiaka, K.; Francis, F.; Caparros Megido, R. Protein Content and Amino Acid Profiles of Selected Edible Insect Species from the Democratic Republic of Congo Relevant for Transboundary Trade across Africa. Insects 2022, 13, 994. [Google Scholar] [CrossRef]
- Chaudhary, A.; Gustafson, D.; Mathys, A. Multi-Indicator Sustainability Assessment of Global Food Systems. Nat. Commun. 2018, 9, 848. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siminiuc, R.; Țurcanu, D.; Siminiuc, S.; Vîrlan, A. Integration of Nutritional and Sustainability Metrics in Food Security Assessment: A Scoping Review. Sustainability 2025, 17, 2804. https://doi.org/10.3390/su17072804
Siminiuc R, Țurcanu D, Siminiuc S, Vîrlan A. Integration of Nutritional and Sustainability Metrics in Food Security Assessment: A Scoping Review. Sustainability. 2025; 17(7):2804. https://doi.org/10.3390/su17072804
Chicago/Turabian StyleSiminiuc, Rodica, Dinu Țurcanu, Sergiu Siminiuc, and Anna Vîrlan. 2025. "Integration of Nutritional and Sustainability Metrics in Food Security Assessment: A Scoping Review" Sustainability 17, no. 7: 2804. https://doi.org/10.3390/su17072804
APA StyleSiminiuc, R., Țurcanu, D., Siminiuc, S., & Vîrlan, A. (2025). Integration of Nutritional and Sustainability Metrics in Food Security Assessment: A Scoping Review. Sustainability, 17(7), 2804. https://doi.org/10.3390/su17072804