Gradient Optimization Algorithm for Structural Optimization and Performance Analysis of the Solar Air Collector
Abstract
:1. Introduction
2. Mathematical Model and Experimental Validation
2.1. Structure of TSAC
2.2. Mathematical Model of TSAC
- (a)
- The solar rays are parallel, with refraction through the transparent cover ignored.
- (b)
- The TSAC components’ optical and thermal properties remain unchanged, and the change in density of the recirculating air is ignored.
- (c)
- The recirculating air flow velocity is uniformly distributed across the TSAC cross-section.
- (d)
- Heat loss through the insulation materials is ignored.
- (e)
- The rays escaping through the air inlet and outlet are ignored.
2.2.1. The Heat Transfer Model
2.2.2. The Optical Model
2.3. Experimental Validation
3. TSAC Structure Optimization
- i.
- Input the TSAC’s geometrical and physical parameters and input the boundary and initial conditions according to the operating conditions.
- ii.
- Parallel optimization of the absorber angles for TSACs with different side materials, and there are three options for single-sided materials, resulting in a total of nine TSACs.
- iii.
- Use the mathematical model of the TSAC to calculate the partial derivatives of the heat collection for each of the three absorber angles and update the absorber angles according to Equation (13).
- iv.
- Calculate the heat collection of the TSAC before and after the update of the absorber angles, and if the residual is greater than the threshold, the updated absorber angles are iterated as the original absorber angles until convergence.
- v.
- Compare the heat collection of the nine TSACs under the optimal absorber angles, select the TSAC with the largest heat collection, and output the required parameters.
4. Result and Discussion
4.1. Optimization Results
4.2. Performance Comparison
4.3. Applicability Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
A | Area (m2) |
cp | Specific heat capacitance (J/(kg·K)) |
h | Height (m) |
hconv | Convective heat transfer |
coefficients (W/(m2·K)) | |
I | Solar irradiance (W/m2) |
ls | Gradient algorithm learning rate |
M | Quality (kg) |
m | Mass flow velocity (kg/s) |
Pr | Prandtl number (-) |
Pu | Collection power (W) |
q | Energy (W) |
Qu | Heat collection (J) |
Re | Reynolds number (-) |
s | Absorbed solar radiation (W) |
T | Temperature (°C) |
Tmin | Coldest month temperature (°C) |
u | Flow velocity (m/s) |
V | Volume (m3) |
Subscripts | |
ab | Absorber |
air | Recirculating air |
conv | Convection heat exchange |
wind | Ambient wind |
env | Environment |
in | Inlet |
ins | Insulation |
out | Outlet |
rad | Radiation |
sid | Side |
sol | Solar |
tc | Transparent cover |
year | Annual |
Greek symbols | |
α | Absorptivity (-) |
ε | Emissivity (-) |
ηo | Optical efficiency (%) |
ηt | Thermal efficiency (%) |
θ | Angle (°) |
λ | Coefficient of heat conductivity (W/(m·K)) |
τ | Time (s) |
τtc | Transparent cover transmissivity (-) |
Abbreviations | |
FSAC | Flat-plate solar air collector |
SAC | Solar air collectors |
TSAC | Triangular solar air collector |
SM | Side material |
Appendix A
References
- Deng, M.; Ma, R.; Lu, F.; Nie, Y.; Li, P.; Ding, X.; Yuan, Y.; Shan, M.; Yang, X. Techno-economic performances of clean heating solutions to replace raw coal for heating in Northern rural China. Energy Build. 2021, 240, 110881. [Google Scholar] [CrossRef]
- National Energy Administration. Guidance on Energy Work in 2020. Available online: https://www.nea.gov.cn/ (accessed on 11 December 2022).
- Şafak, A.; İlhan, C.; Egemen, T.O. Designing of energy saving system with heat recovery and solar air collector. Sustain. Energy Technol. Assess. 2023, 57, 103167. [Google Scholar] [CrossRef]
- Xiangfei, K.; Lanlan, Z.; Han, L.; Yongzhen, W.; Man, F. Experimental thermal and electrical performance analysis of a concentrating photovoltaic/thermal system integrated with phase change material (PV/T-CPCM). Sol. Energy Mater. Sol. Cells 2022, 234, 111415. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, C.; Zhang, J.; Jing, J.; An, Z.; Wang, L. Thermal economic analysis of a double-channel solar air collector coupled with draught fan: Based on energy grade. Renew. Energy 2021, 170, 936–947. [Google Scholar] [CrossRef]
- China Energy Conservation Association. China Solar Thermal Utilization Industry Operation Status Report. 2020. Available online: https://www.cecaweb.org.cn/ (accessed on 11 December 2022).
- Ji, Z.; Tingting, Z. Systematic review of solar air collector technologies: Performance evaluation, structure design and application analysis. Sustain. Energy Technol. Assess. 2022, 54, 102885. [Google Scholar] [CrossRef]
- Khimsuriya, Y.D.; Patel, D.; Said, Z.; Panchal, H.; Jaber, M.M.; Natrayan, L.; Patel, V.; El-Shafay, A. Artificially roughened solar air heating technology—A comprehensive review. Appl. Therm. Eng. 2022, 214, 118817. [Google Scholar] [CrossRef]
- Biplab, D.; Deb, M.J.; Sushant, N.; Mervyn, S.; Adrian, P. Experimental performance analysis of a novel sand coated and sand filled polycarbonate sheet based solar air collector. Renew. Energy 2021, 164, 990–1004. [Google Scholar] [CrossRef]
- Hu, J.; Guo, M.; Guo, J.; Zhang, G.; Zhang, Y. Numerical and experimental investigation of solar air collector with internal swirling flow. Renew. Energy 2020, 162, 2259–2271. [Google Scholar] [CrossRef]
- Singh, S.; Chaurasiya, S.K.; Negi, B.S.; Chander, S.; Nemś, M.; Negi, S. Utilizing circular jet impingement to enhance thermal performance of solar air heater. Renew. Energy 2020, 154, 1327–1345. [Google Scholar] [CrossRef]
- Ashutosh, S.; Anchal, A.; Tej, S.; Raj, K.; Ranchan, C. Experimental investigation and optimization of potential parameters of discrete V down baffled solar thermal collector using hybrid Taguchi-TOPSIS method. Appl. Therm. Eng. 2022, 209, 118250. [Google Scholar] [CrossRef]
- Agrawal, Y.; Bhagoria, J.L.; Pagey, V.S. Enhancement of thermal efficiency of solar air collector by using discrete double arc reverse shaped roughness on the absorber plate. Mater. Today Proc. 2021, 51, 1548–1553. [Google Scholar] [CrossRef]
- Shreyas, P.S.; NMadhwesh, N.; Karanth, K.V. Numerical analysis of a solar air heater with circular perforated absorber plate. Sol. Energy 2021, 215, 416–433. [Google Scholar] [CrossRef]
- Kareem, M.W.; Habib, K.; Amjad, A.P.; Irshad, K.; Afolabi, L.O.; Bidyut, B.S. Experimental study of multi-pass solar air thermal collector system assisted with sensible energy-storing matrix. Energy 2022, 245, 123153. [Google Scholar] [CrossRef]
- Handawy, M.K.M.; Driss, Z.; Khelifa, A.; Attia, M.E.; Abdelgaied, M.; Harby, K. Experimental investigation of enhanced thermal performance of solar air collectors through optimized selection of manufacturing materials: Energy, exergy, economic, and environmental analysis. Environ. Prog. Sustain. Energy 2024, 11, e14508. [Google Scholar] [CrossRef]
- Tuncer, A.D.; Sözen, A.; Khanlari, A.; Amini, A.; Şirin, C. Thermal performance analysis of a quadruple-pass solar air collector assisted pilot-scale greenhouse dryer. Sol. Energy 2020, 203, 304–316. [Google Scholar] [CrossRef]
- Subhash, C.; Prabha, C.; Harish, K.G. Thermal performance enhancement of solar air heater using louvered fins collector. Sol. Energy 2022, 239, 10–24. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, H.; Wang, Y.; You, S.; Wu, Z.; Fan, M.; Wang, L.; Wei, S. A comparative study on the performance of a novel triangular solar air collector with tilted transparent cover plate. Sol. Energy 2021, 227, 224–235. [Google Scholar] [CrossRef]
- Khanlari, A.; Aytaç, I.; Tuncer, A.D.; Variyenli, H.B.; Sahin, H.N. Improving the performance of a PCM integrated solar air collector by adding porous fins over the bottom side of the absorber: A transient CFD study. J. Energy Storage 2024, 90, 111847. [Google Scholar] [CrossRef]
- Emad, M.S.E.-S.; Mohammed, A.G.; Ali, A.; Gamal, B.A. Performance enhancement of a double pass solar air heater by using curved reflector: Experimental investigation. Appl. Therm. Eng. 2022, 202, 117867. [Google Scholar]
- Emad, M.S.E.-S.; Al-Sood, M.M.A.; Elsharkawy, E.A.; Gamal, B.A. Tubular solar air heater using finned semi-cylindrical absorber plate with swirl flow: Experimental investigation. Sol. Energy 2022, 236, 879–897. [Google Scholar] [CrossRef]
- Shetty, S.P.; Paineni, A.; Kande, M.; Madhwesh, N.; Sharma, N.Y.; Karanth, K.V. Experimental investigations on a cross flow solar air heater having perforated circular absorber plate for thermal performance augmentation. Sol. Energy 2020, 197, 254–265. [Google Scholar] [CrossRef]
- Rahul, K.; Sujit, K.V. Performance estimation of Triangular Solar air heater roughened absorber surface: An experimental and simulation modeling. Sustain. Energy Technol. Assess. 2022, 52, 102208. [Google Scholar] [CrossRef]
- Saxena, A.; Agarwal, N.; Cuce, E. Thermal performance evaluation of a solar air heater integrated with helical tubes carrying phase change material. J. Energy Storage 2020, 30, 101406. [Google Scholar] [CrossRef]
- Manuel, O.; Carlos, C.D.J. The impact of the V-corrugation on the thermal efficiency of a solar collector. Sol. Energy 2023, 255, 460–473. [Google Scholar] [CrossRef]
- Ambarish, M.; Tuhin, D.; Gautam, C. Numerical investigation and optimisation of flat plate solar collectors using two swarm-based metaheuristic algorithms. Eng. Anal. Bound. Elem. 2023, 156, 78–89. [Google Scholar] [CrossRef]
- Shivam, P.; Namith, N.; Chandramohan, V.P. Numerical solution of solar air heater with triangular corrugations for indirect solar dryer: Influence of pitch and an optimized pitch of corrugation for enhanced performance. Sol. Energy 2022, 243, 1–12. [Google Scholar] [CrossRef]
- Li, S.; Lin, W.; Gong, X.; Sun, Y.; Ma, Z. Corrugated transpired solar collectors: Mathematical modeling, experimental investigation, and performance analysis. Sol. Energy 2023, 262, 111839. [Google Scholar] [CrossRef]
- Khademi, S.; Carriveau, R.; Ting, D.S.K. Evaluating the effect of runoff on an agricultural retention stormwater pond temperature using an experimentally validated TRNSYS model. Sustain. Water Resour. Manag 2025, 11, 14. [Google Scholar] [CrossRef]
- Watmuff, J.H.; Charters, W.W.S.; Proctor, D. Solar and Wind Induced External Coefficients—Solar Collectors. 1977, pp. 2–56. Available online: https://www.researchgate.net/publication/234355019_Solar_and_wind_induced_external_coefficients_-_Solar_collectors (accessed on 16 January 2025).
- Zheng, W.; Li, B.; Zhang, H.; You, S.; Li, Y.; Ye, T. Thermal characteristics of a glazed transpired solar collector with perforating corrugated plate in cold regions. Energy 2016, 109, 781–790. [Google Scholar] [CrossRef]
The Section Size of TSAC: 2.4 × 2.1 × 1.2 (m×m×m), Width: 0.7 (m) | |||
---|---|---|---|
Component | Material | Thickness | Physical Parameter |
Transparent cover | Polycarbonate | / | λtc = 0.2/0.06 (W/(m·K)) αtc = 0.1; εtc = 0.67; τtc = 0.89/0.79 |
Permeable absorber | Stainless steel | 0.15 (mm) | λab = 14.8 (W/(m·K)) αab = 0.92; εab = 0.2 |
Insulation | Polystyrene board and galvanized sheet | / | λins = 0.028 (W/(m·K)) αins = 0.2; εins = 0.1 |
Structure | Pre-Optimization | Post-Optimization |
---|---|---|
East side material | Insulation | Insulation |
West side material | Insulation | Double-layer transparent cover |
Absorbers angle from bottom to top | 30°, 120°, 52° | 32.6°, 89°, 79.1° |
Zones | Climate | Solar Resource | Tmin (°C) | Iyear (MJ/m2) |
---|---|---|---|---|
Lhasa | Cold | Rich | −8~8 | 7473.3 |
Shenyang | Severe cold | General | −18~8 | 4965.5 |
Hohhot | Severe cold | Less Rich | −15~5 | 6241.2 |
Shijiazhuang | Cold | General | −6~3 | 5368.0 |
Xiamen | Hot summer and cold winter | General | 11~18 | 5066.8 |
Chengdu | Hot summer and cold winter | Lack | 3~10 | 3347.2 |
Kunming | Temperate | Less Rich | 3~17 | 5430.0 |
Chuxiong | Temperate | General | 4~17 | 6571.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhang, Y.; Ji, F.; Fan, W.; Jiang, Y.; Zhao, R.; Pu, J.; He, Z.; Wei, S. Gradient Optimization Algorithm for Structural Optimization and Performance Analysis of the Solar Air Collector. Sustainability 2025, 17, 2695. https://doi.org/10.3390/su17062695
Wang Y, Zhang Y, Ji F, Fan W, Jiang Y, Zhao R, Pu J, He Z, Wei S. Gradient Optimization Algorithm for Structural Optimization and Performance Analysis of the Solar Air Collector. Sustainability. 2025; 17(6):2695. https://doi.org/10.3390/su17062695
Chicago/Turabian StyleWang, Yaran, Yuran Zhang, Fang Ji, Wei Fan, Yan Jiang, Rui Zhao, Jiaxuan Pu, Zhihao He, and Shen Wei. 2025. "Gradient Optimization Algorithm for Structural Optimization and Performance Analysis of the Solar Air Collector" Sustainability 17, no. 6: 2695. https://doi.org/10.3390/su17062695
APA StyleWang, Y., Zhang, Y., Ji, F., Fan, W., Jiang, Y., Zhao, R., Pu, J., He, Z., & Wei, S. (2025). Gradient Optimization Algorithm for Structural Optimization and Performance Analysis of the Solar Air Collector. Sustainability, 17(6), 2695. https://doi.org/10.3390/su17062695