Effectiveness of N Fertilizers with Nitrification Inhibitors on Winter Barley Nutrition and Yield
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Object
2.2. Establishment and Organization of the Winter Barley Experiment
2.3. Fertilizer Characteristics in the Evaluated Experiments
- Technical Specifications:
- Total N: 26% by weight
- Ammoniacal N: 18.5% by weight
- Nitrate N: 7.5% by weight
- Water-soluble sulfur: 13% by weight.
2.4. Agrochemical Soil Analyses Before Establishing the Trials
2.5. Agrochemical Analyses of Soil Samples for Ammonium and Nitrate N Content in the Soil During the Vegetation of Winter Barley
- P is the ratio of nitrate or ammonium N from the total inorganic N content in the soil (%);
- A is the nitrate or ammonium N content in the soil (mg·kg−1);
- B is the inorganic N content in the soil (mg·kg−1).
- ΔY is an increase in grain yield compared with the control treatment (kg.ha−1);
- 140 = total rate of N (kg.ha−1).
2.6. Establishment of 2-Year Pot Experiment with Barley
2.7. Statistical Evaluation of the Results
3. Results
3.1. Evaluation of the Effect of Fertilization on the Grain Yield of Winter Barley
3.2. Evaluation of the Fertilization Efficiency of Winter Barley
3.3. Assessment of Ammonium and Nitrate N Content in the Soil Under Winter Barley
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NIs | Nitrification inhibitors |
TMN | Total mineral N |
IPCC | Intergovernmental Panel on Climate Change |
LSD | Least Significant Difference |
References
- Guan, D.-X.; Menezes-Blackburn, D.; Li, G. The Importance of Mineral Elements for Sustainable Crop Production. Agronomy 2024, 14, 209. [Google Scholar] [CrossRef]
- Beeckman, F.; Motte, H.; Beeckman, T. Nitrification in Agricultural Soils: Impact, Actors and Mitigation. Curr. Opin. Biotechnol. 2018, 50, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Zayed, O.; Hewedy, O.A.; Abdelmoteleb, A.; Ali, M.; Youssef, M.S.; Roumia, A.F.; Seymour, D.; Yuan, Z.C. N Journey in Plants: From Uptake to Metabolism, Stress Response, and Microbe Interaction. Biomolecules 2023, 13, 1443. [Google Scholar] [CrossRef]
- Garnier, J.; Billen, G.; Aguilera, E.; Lassaletta, L.; Einarsson, R.; Serra, J.; Cameira, M.D.R.; Marques-dos-Santos, C.; Sanz-Cobena, A. How Much Can Changes in the Agro-food System Reduce Agricultural N Losses to the Environment? Example of a Temperate-Mediterranean gradient. J. Environ. Manag. 2023, 337, 117732. [Google Scholar] [CrossRef]
- Rütting, T.; Aronsson, H.; Delin, S. Efficient Use of N in Agriculture. Nutr. Cycl. Agroecosyst. 2018, 110, 1–5. [Google Scholar] [CrossRef]
- Marcos, M.S.; Bertiller, M.B.; Saravi Cisneros, H.; Olivera, N.L. Nitrification and Ammonia-Oxidizing Bacteria Shift in Response to Soil Moisture and Plant Litter Quality in Arid Soils from the Patagonian Monte. Pedobiologia 2016, 59, 37–40. [Google Scholar] [CrossRef]
- Xu, C.; Zhu, H.; Wang, J.; Ji, C.; Liu, Y.; Chen, D.; Zhang, H.; Wang, J.; Zhang, Y.-C. Fertilizer N Triggers Native Soil N-Derived N2O Emissions by Priming Gross N Mineralization. Soil Biol. Biochem. 2023, 178, 108961. [Google Scholar] [CrossRef]
- Wang, C.; Amon, B.; Schulz, K.; Mehdi, B. Factors That Influence Nitrous Oxide Emissions from Agricultural Soils as Well as Their Representation in Simulation Models: A Review. Agronomy 2021, 11, 770. [Google Scholar] [CrossRef]
- Roche, L.; Forrestal, P.J.; Lanigan, G.J.; Richards, K.G.; Shaw, L.J.; Wall, D.P. Impact of Fertilizer N Formulation and N Stabilizers on Nitrous Oxide Emissions in Spring Barley. Agric. Ecosyst. Environ. 2016, 233, 229–237. [Google Scholar] [CrossRef]
- Norton, J.; Ouyang, Y. Controls and Adaptive Management of Nitrification in Agricultural Soils. Front. Microbiol. 2019, 10, 1931. [Google Scholar] [CrossRef]
- Torabian, S.; Farhangi-Abriz, S.; Qin, R.; Noulas, C.; Wang, G. Performance of N Fertilization and Nitrification Inhibitors in the Irrigated Wheat Fields. Agronomy 2023, 13, 366. [Google Scholar] [CrossRef]
- Barth, G.; Otto, R.; Almeida, R.F.; Cardoso, E.J.B.N.; Cantarella, H.; Vitti, G.C. Conversion of Ammonium to Nitrate and Abundance of Ammonium-Oxidizing Microorganisms in Tropical Soils with Nitrification Inhibitor. Sci. Agric. 2020, 77, e20180370. [Google Scholar] [CrossRef]
- Antošovský, J.; Škarpa, P.; Ryant, P. The Effect of N-Sulphur Fertilizer with Nitrification Inhibitor on Winter Wheat (Triticum aestivum L.) Nutrition. Heliyon 2024, 10, e33035. [Google Scholar] [CrossRef]
- Listina registrovaných odrôd. 2004. In Vestník Ministerstva pôdohospodárstva Slovenskej republiky, roč. 36, čiastka 17, s. 165. Available online: https://www.mpsr.sk/ (accessed on 4 March 2025). (In Slovak).
- Varenyiova, M.; Ducsay, L. Vplyv Hnojenia s Využitím Inhibítorov Nitrifikácie na Výšku Urody Semena Kapusty Repkovej Pravej (Brassica napus L.). In Proceedings of the Conference with International Participation, Jaslovské Bohunice, Czech Republic, 12 September 2016; pp. 25–28, ISBN 978-80-552-1587-7. [Google Scholar]
- Rabbai, A.; Barba, J.; Canducci, M.; Hart, K.M.; MacKenzie, A.R.; Kettridge, N.; Curioni, G.; Ullah, S.; Krause, S. Fertilization-Induced Greenhouse Gas Emissions Partially Offset Carbon Sequestration during Afforestation. Soil Biol. Biochem. 2024, 199, 109577. [Google Scholar] [CrossRef]
- Li, Y.; Shah, S.H.H.; Wang, J. Modelling of Nitrification Inhibitor and Its Effects on Emissions of Nitrous Oxide (N2O) in the UK. Sci. Total Environ. 2020, 709, 136156. [Google Scholar] [CrossRef]
- Hu, Y.; Schraml, M.; von Tucher, S.; Li, F.; Schmidhalter, U. Influence of Nitrification Inhibitors on Yields of Arable Crops: A Meta-Analysis of Recent Studies in Germany. Int. J. Plant Prod. 2013, 8, 33–50. [Google Scholar]
- Boy-Roura, M.; Cameron, K.C.; Di, H.J. Identification of Nitrate Leaching Loss Indicators Through Regression Methods Based on a Meta-Analysis of Lysimeter Studies. Environ. Sci. Pollut. Res. Int. 2016, 23, 3671–3680. [Google Scholar] [CrossRef]
- Meng, Y.; Wang, J.; Wei, Z.; Dodla, S.; Fultz, L.; Gaston, L.; Xiao, R.; Park, J.; Scaglia, G. Nitrification Inhibitors Reduce N Losses and Improve Soil Health in a Subtropical Pastureland. Geoderma 2021, 388, 114947. [Google Scholar] [CrossRef]
- Ayiti, O.E.; Babalola, O.O. Factors Influencing Soil Nitrification Process and the Effect on Environment and Health. Front. Sustain. Food Syst. 2022, 6, 821994. [Google Scholar] [CrossRef]
- Pasda, G.; Hähndel, R.; Zerulla, W. Effect of Fertilizers with the New Nitrification Inhibitor DMPP (3,4-dimethylpyrazole phosphate) on Yield and Quality of Agricultural and Horticultural crops. Biol. Fertil. Soils 2001, 34, 85–97. [Google Scholar] [CrossRef]
- Školníková, M.; Škarpa, P.; Ryant, P.; Kozáková, Z.; Antošovský, J. Response of Winter Wheat (Triticum aestivum L.) to Fertilizers with N-Transformation Inhibitors and Timing of Their Application under Field Conditions. Agronomy 2022, 12, 223. [Google Scholar] [CrossRef]
- Li, S.-X.; Wang, Z.-H.; Stewart, B.A. Chapter Five—Responses of Crop Plants to Ammonium and Nitrate N. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2013; Volume 118, pp. 205–397. [Google Scholar] [CrossRef]
- Abbasi, M.K.; Hina, M.; Tahir, M.M. Effect of Azadirachta indica (neem), Sodium Thiosulphate, and Calcium Chloride on Changes in Nitrogen Transformations and Inhibition of Nitrification in Soil Incubated under Laboratory Conditions. Chemosphere 2011, 82, 1629–1635. [Google Scholar] [CrossRef] [PubMed]
- Hachiya, T.; Sakakibara, H. Interactions between Nitrate and Ammonium in Their Uptake, Allocation, Assimilation, and Signaling in Plants. J. Exp. Bot. 2017, 68, 2501–2512. [Google Scholar] [CrossRef]
- Slamka, P.; Hanáčková, E.; Benčíková, M.; Macák, M.; Demjanová, E. Effect of Nitrogen Supply Level in Soil on Malt Characteristics of Winter Barley Grain. Cereal Res. Commun. 2008, 36, 1439–1442. [Google Scholar]
- Nascimento, C.S.; Nascimento, C.S.; Cecílio Filho, A.B. Doses and Split N Fertilizer Applications on the Productivity and Quality of Arugula. Rev. Caatinga 2021, 34, 824–829. [Google Scholar] [CrossRef]
- Singh, A.; Rudnick, D.; Snow, D.D.; Proctor, C.; Puntel, L.; Iqbal, J. Impact of Split N Applications on Nitrate Leaching and Maize Yield in Irrigated Loamy Sand Soils of Northeast Nebraska. Agrosyst. Geosci. Environ. 2024, 7, e20554. [Google Scholar] [CrossRef]
- Hu, C.; Sadras, V.O.; Lu, G.; Zhang, P.; Han, Y.; Liu, L.; Xie, J.; Yang, X.; Zhang, S. A Global Meta-Analysis of Split N Application for Improved Wheat Yield and Grain Protein Content. Soil Tillage Res. 2021, 213, 105111. [Google Scholar] [CrossRef]
- Kabir, T.; De Laporte, A.; Nasielski, J.; Weersink, A. Adjusting N Rates with Split Applications: Modelled Effects on N Losses and Profits Across Weather Scenarios. Eur. J. Agron. 2021, 129, 126328. [Google Scholar] [CrossRef]
Nutrient Management Variant | Fertilizer | Regenerative Fertilization (First Decade of April, Tillering Phase) BBCH25 | Production Fertilization (“First Node Detectable” Stage) BBCH 32 | Quality Fertilization (the Flag Leaf Ligule Visible to Flowering Stages) BBCH 49–51 | |||
---|---|---|---|---|---|---|---|
Nutrient Doses in kg ha−1 | |||||||
N | S | N | S | N | S | ||
1 | Control | - | - | - | - | - | - |
2 | DASA 26/13 split application | 60 | 30 | 50 | 25 | 30 | 15 |
3 | ENSIN split application | 60 | 30 | 50 | 25 | 30 | 15 |
4 | DASA 26/13 one-time application | 140 | 70 | - | - | - | - |
5 | ENSIN one-time application | 140 | 70 | - | - | - | - |
Soil Sampling | Sampling Date | |
---|---|---|
First Experimental Year | Second Experimental Year | |
Sampling | 2.5 | 29.3 |
2. Sampling | 24.5 | 20.4 |
3. Sampling | 10.6 | 12.5 |
4. Sampling | 29.6 | 2.6 |
Sampling of Lysimetric Solutions | Sampling Date | |
---|---|---|
First Experimental Year | Second Experimental Year | |
1. Sampling | 5.11 | 10.11 |
2. Sampling | 25.2 | 28.2 |
3. Sampling | 20.4 | 19.4 |
4. Sampling | 22.5 | 30.5 |
Nutrient Variant | Grain Yield (Mg.hm−2) | Relative % | ||||
---|---|---|---|---|---|---|
1: Control, without N | 4.44 a | 100.0 | ||||
2: DASA split application | 7.25 bd | 163.3 | 100.0 | |||
3: ENSIN split application | 5.15 c | 116.0 | 71.0 | 100.0 | ||
4: DASA one-time application | 6.68 b | 150.5 | 92.1 | 129.7 | 100.0 | |
5: ENSIN one-time application | 7.85 d | 176.8 | 108.3 | 152.4 | 117.5 | |
LSD | α = 0.05 | 0.71 |
Nutrient Variant | Grain Yield (Mg.hm−2) | Relative, % | ||||
---|---|---|---|---|---|---|
1: Control, without N | 4.58 a | 100 | ||||
2: DASA split application | 8.69 bc | 189.7 | 100 | |||
3: ENSIN split application | 8.70 bd | 190.0 | 100.1 | 100 | ||
4: DASA one-time application | 8.33 c | 181.9 | 95.9 | 95.8 | 100 | |
5: ENSIN one-time application | 8.85 d | 193.2 | 101.8 | 101.7 | 106.2 | |
LSD | α = 0.05 | 0.37 |
Nutrient Variant | Grain Yield (Mg.hm−2) | Relative % | ||||
---|---|---|---|---|---|---|
1: Control, without N | 4.51 a | 100.0 | ||||
2: DASA split application | 7.97 bd | 176.7 | 100 | |||
3: ENSIN split application | 6.92 c | 153.4 | 86.8 | 100 | ||
4: DASA one-time application | 7.50 bc | 166.3 | 94.1 | 108.4 | 100 | |
5: ENSIN one-time application | 8.35 d | 185.1 | 104.8 | 120.7 | 111.3 | |
First experimental year | 6.27 a | |||||
Second experimental year | 7.83 b | |||||
LSD variants | α = 0.05 | 0.69 | ||||
LSD years | α = 0.05 | 0.37 |
Treatment | First Year | Second Year | Average | |||
---|---|---|---|---|---|---|
ΔY | NUE | ΔY | NUE | ΔY | NUE | |
1: Control, without N | - | - | - | |||
2: DASA split application | 2810 | 20.1 | 4110 | 29.4 | 3460 | 24.7 ad |
3: ENSIN split application | 710 | 5.1 | 4120 | 29.4 | 2410 | 17.2 b |
4: DASA one-time application | 2240 | 16.0 | 3750 | 26.8 | 3000 | 21.4 c |
5: ENSIN one-time application | 3410 | 24.4 | 4270 | 30.5 | 3840 | 27.4 d |
Treatment | Depth of Soil Profile | N Content (mg·kg−1 Soil) | |||||
---|---|---|---|---|---|---|---|
First Experimental Year | Second Experimental Year | ||||||
N-NH4+ | N-NO3− | Nin | N-NH4+ | N-NO3− | Nin | ||
1: Control, without N | 0.0–0.3 | 4.4 | 3.4 | 7.8 | 2.1 | 3.7 | 5.8 |
0.3–0.6 | 3.4 | 3.4 | 6.8 | 1.6 | 3.7 | 5.3 | |
2: DASA split application | 0.0–0.3 | 17.4 | 7.6 | 25.0 | 8.7 | 6.1 | 14.8 |
0.3–0.6 | 10.1 | 5.2 | 15.3 | 4.5 | 5.6 | 10.1 | |
3: ENSIN split application | 0.0–0.3 | 32.1 | 9.5 | 41.6 | 35.0 | 7.7 | 42.7 |
0.3–0.6 | 20.9 | 10.6 | 31.5 | 11.0 | 5.7 | 16.7 | |
4: DASA one-time application | 0.0–0.3 | 19.3 | 6.2 | 25.5 | 11.5 | 7.8 | 19.3 |
0.3–0.6 | 10.5 | 5.0 | 15.5 | 6.9 | 7.8 | 14.7 | |
5: ENSIN one-time application | 0.0–0.3 | 22.7 | 7.7 | 30.4 | 22.4 | 7.8 | 30.2 |
0.3–0.6 | 16.7 | 5.1 | 21.8 | 12.4 | 8.9 | 21.3 |
Treatment | Depth (m) | First Year | Second Year |
---|---|---|---|
1: Control, without N | 0.0–0.3 | 56.4 | 36.2 |
0.3–0.6 | 50.0 | 30.2 | |
2: DASA split application | 0.0–0.3 | 69.6 | 58.8 |
0.3–0.6 | 66.0 | 44.6 | |
3: ENSIN split application | 0.0–0.3 | 77.2 | 82.0 |
0.3–0.6 | 66.3 | 65.9 | |
4: DASA one-time application | 0.0–0.3 | 75.7 | 59.6 |
0.3–0.6 | 67.7 | 46.9 | |
5: ENSIN one-time application | 0.0–0.3 | 74.7 | 74.2 |
0.3–0.6 | 76.6 | 58.2 |
Treatment | Depth of Soil Profile (m) | N Content (mg·kg−1 Soil) | N-NH4+/Nmin × 100 (%) | ||
---|---|---|---|---|---|
N-NH4+ | N-NO3− | Nmin | |||
1: Control, without N | 0.0–0.3 | 3.25 | 3.55 | 6.80 | 47.8 |
0.3–0.6 | 2.50 | 3.55 | 6.05 | 41.3 | |
2: DASA split application | 0.0–0.3 | 13.05 | 6.85 | 19.90 | 65.6 |
0.3–0.6 | 7.30 | 5.40 | 12.70 | 57.5 | |
3: ENSIN split application | 0.0–0.3 | 33.55 | 8.60 | 42.15 | 79.7 |
0.3–0.6 | 15.95 | 8.15 | 24.10 | 66.2 | |
4: DASA one-time application | 0.0–0.3 | 15.40 | 7.00 | 22.40 | 68.8 |
0.3–0,6 | 8.70 | 6.40 | 15.10 | 57.6 | |
5: ENSIN one-time application | 0.0–0.3 | 22.55 | 7.75 | 30.30 | 74.4 |
0.3–0.6 | 14.55 | 7.00 | 21.55 | 67.5 |
Treatment | N Content (mg·kg−1 Soil) | N-NH4+/Nmin × 100 (%) | ||
---|---|---|---|---|
N-NH4+ | N-NO3− | Nmin | ||
1: Control, without N | 2.875 a | 3.550 | 6.425 | 44.7 a |
2: DASA split application | 10.175 b | 6.125 | 16.300 | 62.4 b |
3: ENSIN split application | 24.750 c | 8.375 | 33.125 | 74.7 c |
4: DASA one-time application | 12.050 b | 6.700 | 18.750 | 64.3 bd |
5: ENSIN one-time application | 18.550 d | 7.375 | 25.925 | 71.6 cd |
Treatment | N-NH4+ | N-NO3− |
---|---|---|
1: Control, without N | 0.0 | 4.0 a |
2: DASA | 0.0 | 183 b |
3: DASA 1/2 + 1/2 | 2.2 | 87 c |
4: ENSIN | 0.2 | 73 c |
5: ENSIN 1/2 + 1/2 | 1.8 | 40 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olšovská, K.; Rybarova, Z.; Sytar, O. Effectiveness of N Fertilizers with Nitrification Inhibitors on Winter Barley Nutrition and Yield. Sustainability 2025, 17, 2610. https://doi.org/10.3390/su17062610
Olšovská K, Rybarova Z, Sytar O. Effectiveness of N Fertilizers with Nitrification Inhibitors on Winter Barley Nutrition and Yield. Sustainability. 2025; 17(6):2610. https://doi.org/10.3390/su17062610
Chicago/Turabian StyleOlšovská, Katarína, Zuzana Rybarova, and Oksana Sytar. 2025. "Effectiveness of N Fertilizers with Nitrification Inhibitors on Winter Barley Nutrition and Yield" Sustainability 17, no. 6: 2610. https://doi.org/10.3390/su17062610
APA StyleOlšovská, K., Rybarova, Z., & Sytar, O. (2025). Effectiveness of N Fertilizers with Nitrification Inhibitors on Winter Barley Nutrition and Yield. Sustainability, 17(6), 2610. https://doi.org/10.3390/su17062610