Urban Integration and Firm Technological Complexity: Evidence from China’s Urban Agglomerations
Abstract
:1. Introduction
2. Literature Review
2.1. Collaborative Development of Urban Agglomerations
2.2. The Impact of Urban Agglomeration Development
2.3. Factors Influencing Corporate Innovation Levels
3. Methods and Analysis
3.1. Econometric Estimation Strategy
3.2. Variable Selection
3.2.1. Dependent Variable
3.2.2. Mechanism Variables
3.3. Data Sources
4. Results
4.1. Main Results
4.1.1. Baseline Regression
4.1.2. Robustness Test
4.2. Mechanism Test
4.2.1. Mechanism of Financial Concentration
4.2.2. Mechanism of Collaborative Agglomeration
4.2.3. Mechanism of Corporate Specialization
4.3. Further Exploration
5. Discussion
5.1. Urban Agglomeration Integration and Enterprise Innovation Quality
5.2. The Mechanistic Pathways of Urban Agglomeration Integration and Enterprise Innovation Quality
5.3. Heterogeneity Analysis of the Main Finding
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, J.; Yu, X.; Xu, Q. Standard Radiation: A New Perspective Leading the Coordinated Development of Urban Agglomerations. Sustainability 2023, 15, 1282. [Google Scholar] [CrossRef]
- Huang, Y.; Li, L.; Yu, Y. Does Urban Cluster Promote the Increase of Urban Eco-efficiency? Evidence from Chinese Cities. J. Clean. Prod. 2018, 197, 957–971. [Google Scholar] [CrossRef]
- Li, H.; Huang, X.; Xu, Q.; Wang, S.; Guo, W.; Liu, Y.; Huang, Y.; Wang, J. A New Approach to Evaluate the Sustainability of Ecological and Economic Systems in Megacity Clusters: A Case Study of the Guangdong–Hong Kong–Macau Bay Area. Sustainability 2023, 15, 5881. [Google Scholar] [CrossRef]
- Luo, X.; Cheng, C.; Pan, Y.; Yang, T. Coupling Coordination and Influencing Factors of Land Development Intensity and Urban Resilience of the Yangtze River Delta Urban Agglomeration. Water 2022, 14, 1083. [Google Scholar] [CrossRef]
- Liu, Y.; He, Z. Synergistic Industrial Agglomeration, New Quality Productive Forces and High-quality Development of the Manufacturing Industry. Int. Rev. Econ. Financ. 2024, 94, 103373. [Google Scholar] [CrossRef]
- Zhou, T. Analysis of the Interactive Development of Urban “Space-Industry” from the Perspective of Spatial Production and Spatial Innovation. Bus. Econ. Res. 2016, 12, 187–189. [Google Scholar]
- Fang, C. The Basic Law of the Formation and Expansion in Urban Agglomerations. J. Geogr. Sci. 2019, 29, 1699–1712. [Google Scholar] [CrossRef]
- Fu, W.; Luo, C.; He, S. Does Urban Agglomeration Promote the Development of Cities? An Empirical Analysis Based on Spatial Econometrics. Sustainability 2022, 14, 14512. [Google Scholar] [CrossRef]
- Wang, S.; Yang, C.; Hou, D.; Dai, L. How Do Urban Agglomerations Drive Economic Development? A Policy Implementation and Spatial Effects Perspective. Econ. Anal. Policy 2023, 80, 1224–1238. [Google Scholar] [CrossRef]
- Wang, S.; Wang, F. The Common Prosperity Effect of the National-level Urban Cluster–Evidence from Adjacent Countries Surrounding Provincial Borders. Inq. Econ. Issues 2024, 11, 124–144. [Google Scholar]
- Yuan, C.; Ren, S.; Han, Z.; Shang, M.; Hu, Z. Do National Urban Agglomeration Policies Reduce Regional Disparity? Evidence from Nineteen Urban Agglomerations in China. Int. J. Urban Sci. 2024, 1–35. [Google Scholar] [CrossRef]
- Hu, P.; Huang, Y.; He, Q.; Zhang, G. Can Urban Agglomeration Policies Promote Regional Economic Agglomeration? Evidence from the Yangtze River Economic Belt in China. Environ. Plan. B Urban Anal. City Sci. 2024, 23998083241293217. [Google Scholar] [CrossRef]
- Zhang, Q.; Mao, Y. Will Urban Integration Development Improve the “Agglomeration Shadow”? J. Fin. Econ. 2024, 50, 19–32. [Google Scholar]
- Liu, R.; Wang, H.; Ning, X.; Cai, X.; Zhang, X. The Impact of Coordinated Development Policy on the Spatiotemporal Changes of Industrial Structure of Beijing–Tianjin–Hebei Urban Agglomeration. Sustainability 2023, 15, 8427. [Google Scholar] [CrossRef]
- Zhang, W.; Cui, R.; Li, C.; Ge, H.; Zhang, Z.; Tang, X. Impact of Urban Agglomeration Construction on Urban Air Quality–Empirical Test Based on PSM–DID Model. Sci. Rep. 2023, 13, 15099. [Google Scholar] [CrossRef]
- Hu, R.; Xu, W.; Liu, L.; Cui, Z.; Zhao, C. The Impact of Urban Agglomerations on Carbon Emissions in China: Spatial Scope and Mechanism. J. Clean. Prod. 2023, 419, 138250. [Google Scholar] [CrossRef]
- Liao, B.; Li, L. How Can Urban Agglomeration Market Integration Promote Urban Green Development: Evidence from China’s Yangtze River Economic Belt. Environ. Sci. Pollut. Res. 2022, 29, 10649–10664. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, R.; Zhang, D.; Zhou, C. Urban Agglomerations in China: Characteristics and Influencing Factors of Population Agglomeration. Chin. Geogr. Sci. 2023, 33, 719–735. [Google Scholar] [CrossRef]
- Chkir, I.; Hassan, B.E.H.; Rjiba, H.; Saadi, S. Does Corporate Social Responsibility Influence Corporate Innovation? International Evidence. Emerg. Mark. Rev. 2021, 46, 100746. [Google Scholar] [CrossRef]
- Li, Q.; Wang, J.; Cao, G.; Zhang, J. Financial Constraints, Government Subsidies, and Corporate Innovation. PLoS ONE 2021, 16, e0259642. [Google Scholar] [CrossRef]
- Luo, Y.; Xiong, G.; Mardani, A. Environmental Information Disclosure and Corporate Innovation: The “Inverted U-shaped” Regulating Effect of Media Attention. J. Bus. Res. 2022, 146, 453–463. [Google Scholar] [CrossRef]
- Xu, E.; Zhang, H. The Impact of State Shares on Corporate Innovation Strategy and Performance in China. Asia Pac. J. Manag. 2008, 25, 473–487. [Google Scholar] [CrossRef]
- Chemmanur, T.J.; Tang, D.; Wu, C. Lonely Leadership: The Influence of Single-Child CEOs on Corporate Innovation and Culture. Rev. Financ. 2025, rfaf005. [Google Scholar] [CrossRef]
- Shen, H.; Lan, F.; Xiong, H.; Lv, J.; Jian, J. Does Top Management Team’s Academic Experience Promote Corporate Innovation? Evidence from China. Econ. Model. 2020, 89, 464–475. [Google Scholar] [CrossRef]
- Adhikari, B.K.; Agrawal, A. Religion, Gambling Attitudes and Corporate Innovation. J. Corp. Financ. 2016, 37, 229–248. [Google Scholar] [CrossRef]
- Ucar, E. Local Creative Culture and Corporate Innovation. J. Bus. Res. 2018, 91, 60–70. [Google Scholar] [CrossRef]
- Chen, Y.; Podolski, E.J.; Veeraraghavan, M. National Culture and Corporate Innovation. Pac. Basin Financ. J. 2017, 43, 173–187. [Google Scholar] [CrossRef]
- Wen, H.; Lee, C.C.; Zhou, F. How Does Fiscal Policy Uncertainty Affect Corporate Innovation Investment? Evidence from China’s New Energy Industry. Energy Econ. 2022, 105, 105767. [Google Scholar] [CrossRef]
- Cui, X.; Wang, C.; Liao, J.; Fang, Z.; Cheng, F. Economic Policy Uncertainty Exposure and Corporate Innovation Investment: Evidence from China. Pac. Basin Financ. J. 2021, 67, 101533. [Google Scholar] [CrossRef]
- Shen, H.; Hou, F. Trade Policy Uncertainty and Corporate Innovation Evidence from Chinese Listed Firms in New Energy Vehicle Industry. Energy Econ. 2021, 97, 105217. [Google Scholar] [CrossRef]
- Amore, M.D.; Schneider, C.; Žaldokas, A. Credit Supply and Corporate Innovation. J. Financ. Econ. 2013, 109, 835–855. [Google Scholar] [CrossRef]
- Tu, C.; Shi, Y. Market-Incentive Environmental Regulation and the Quality of Corporate Innovation. Sustainability 2023, 15, 5924. [Google Scholar] [CrossRef]
- Wang, S. How Does Stock Market Liberalization Influence Corporate Innovation? Evidence from Stock Connect Scheme in China. Emerg. Mark. Rev. 2021, 47, 100762. [Google Scholar] [CrossRef]
- Gordon, E.A.; Hsu, H.T.; Huang, H. Peer R&D Disclosure and Corporate Innovation: Evidence from American Depositary Receipt Firms. Adv. Account. 2020, 49, 100471. [Google Scholar]
- Xu, R.; He, C.; Li, Y.; Kong, L. Peer Effects of Corporate Green Innovation: Evidence from China’s Listed Firms. Fin. Res. Lett. 2024, 61, 105025. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, W. Has Catch-up Strategy of Innovation Inhibited the Quality of China’s Patents? Econ. Res. J. 2018, 53, 28–41. [Google Scholar]
- Li, H.; Wang, Y.; Wu, D. Research on Patent Quality’s Impact Mechanism on the Competitiveness of Enterprises for Export: The Exploration from Perspective of Knowledge Width. World Econ. Stud. 2021, 1, 32–46+134. [Google Scholar]
- Zhao, S.; Guo, N.; Li, C.; Smith, C. Megacities, the World’s Largest Cities Unleashed: Major Trends and Dynamics in Contemporary Global Urban Development. World Dev. 2017, 98, 257–289. [Google Scholar] [CrossRef]
- Wang, R.; Wang, Z.; Liang, Q.; Chen, J. Financial Agglomeration and Urban Hierarchy. Econ. Res. J. 2019, 54, 165–179. [Google Scholar]
- Cai, Q.; Shu, S. Financial Development Empowers the Cultivation and Innovation of “Little Giant” Enterprises: From Financial Agglomeration to Fintech. Financ. Trade Econ. 2024, 45, 72–88. [Google Scholar]
- Deng, K.; Kuang, P. Urban Agglomeration Policy and Urban Commercial Banks’ Liquidity Creation: Dual Perspectives Based on Agglomeration Effect and Market Integration Effect. Financ. Trade Res. 2024, 35, 17–34. [Google Scholar]
- Helsley, R.W.; Strange, W.C. Coagglomeration, Clusters, and the Scale and Composition of Cities. J. Political Econ. 2014, 122, 1064–1093. [Google Scholar] [CrossRef]
- Zhuang, R.; Mi, K.; Feng, Z. Industrial Co-agglomeration and Air Pollution Reduction: An Empirical Evidence Based on Provincial Panel Fata. Int. J. Environ. Res. Public Health 2021, 18, 12097. [Google Scholar] [CrossRef]
- Ellison, G.; Glaeser, E.L.; Kerr, W.R. What Causes Industry Agglomeration? Evidence from Coagglomeration Patterns. Am. Econ. Rev. 2010, 100, 1195–1213. [Google Scholar] [CrossRef]
- Yang, Z.; Song, T.; Chahine, T. Spatial Representations and Policy Implications of Industrial Co-agglomerations, A Case Study of Beijing. Habitat Int. 2016, 55, 32–45. [Google Scholar] [CrossRef]
- Zheng, H.; He, Y. How Does Industrial Co-agglomeration Affect High-quality Economic Development? Evidence from Chengdu-Chongqing Economic Circle in China. J. Clean. Prod. 2022, 371, 133485. [Google Scholar] [CrossRef]
- Buzzell, R.D. Is Vertical Integration Profitable? Harv. Bus. Rev. 1983, 61, 92–102. [Google Scholar]
- Fan, Z.; Peng, F. The Effects of “Business Tax Replaced with VAT Reform” on Firms’ Tax Cuts and Industrial Division Based on the Perspective of Industrial Interconnection. Econ. Res. J. 2017, 52, 82–95. [Google Scholar]
- Yuan, C.; Xiao, T.; Geng, C.; Sheng, Y. Digital Transformation and Division of Labor between Enterprises: Vertical Specialization or Certical Integration. China Ind. Econ. 2021, 9, 137–155. [Google Scholar]
- Di Giuli, A.; Laux, P.A. The Effect of Media-linked Directors on Financing and External Governance. J. Financ. Econ. 2022, 145, 103–131. [Google Scholar] [CrossRef]
- Cheng, D.; Huang, W. The Location and Regional Specialization of Service Industry in China. Financ. &Trade Econ. 2005, 7, 73–81. [Google Scholar]
- Zhang, W.; Wu, Q.; Wang, B.; Huang, J. Multidimensional Study of Specialized Agglomeration and Diversified Agglomeration on Urban Land Use Efficiency. China Popul. Resour. Environ. 2019, 29, 100–110. [Google Scholar]
- Krugman, P. Geography and Trade; MIT press: Cambridge, MA, USA, 1992. [Google Scholar]
- Kaplan, S.N.; Zingales, L. Do Investment-cash Flow Sensitivities Provide Useful Measures of Financing Constraints? Q. J. Econ. 1997, 112, 169–215. [Google Scholar] [CrossRef]
- Xu, W.; Liu, C. External Environment Uncertainty, Key Resources Acquisition, and Corporate Technological Innovation. Manag. Decis Econ. 2024, 45, 4–18. [Google Scholar] [CrossRef]
- Cao-Alvira, J.J.; Gomez-Gonzalez, J.E. On Regional Bank Concentration and Firm Leverage: The Case of Colombia. Emerg. Mark. Finance Trade 2025, 61, 80–93. [Google Scholar] [CrossRef]
- Cui, D.; Cheng, L.; You, J. Financing Constraints and Patent Investment in Small and Medium-sized Enterprises: A Family Entrepreneurial Perspective. Financ. Res. Lett 2024, 63, 105318. [Google Scholar] [CrossRef]
- Li, H.; Wang, L. Research on the Influence of Urban Agglomeration Development Planning on the Flow and Efficient Agglomeration of Elements. Economist 2020, 12, 52–61. [Google Scholar]
- Wang, Y.; Zhang, H.; He, X.; Li, R. Can Urban Agglomeration Policy Promote Enterprise Specialization? Evidence from Chinese Listed Companies. J. Financ. Rcon. 2023, 49, 19–33. [Google Scholar]
- Williamson, O.E. The Economic Institutions of Capitalism; Free Press: New York, NY, USA, 1985. [Google Scholar]
- Corts, K.S. Focused Firms and the Incentive to Innovate. J. Econ. Manag. Strat. 2000, 9, 339–362. [Google Scholar] [CrossRef]
- Zhou, L.; Tian, L.; Gao, Y.; Ling, Y.; Fan, C.; Hou, D.; Shen, T.; Zhou, W. How Did Industrial Land Supply Respond to Transitions in State Strategy? An Analysis of Prefecture-level Cities in China from 2007 to 2016. Land Use Policy 2019, 87, 104009. [Google Scholar] [CrossRef]
Variables | Official Launch Date |
---|---|
Xi’an, Xianyang | December, 2002 |
Urumqi, Changji | December, 2004 |
Taiyuan, Jinzhong | January, 2007 |
Shenyang, Fushun | September, 2007 |
Hefei, Huainan | December, 2007 |
Xiamen, Quanzhou, Zhangzhou | September, 2011 |
Lanzhou, Baiyin | September, 2011 |
Wuhu, Ma’anshan | November, 2011 |
Fuzhou, Putian, Ningde | March, 2012 |
Shantou, Chaozhou, Jieyang | September, 2012 |
Nanchang, Jiujiang | November, 2013 |
Nanjing, Zhenjiang, Yangzhou | August, 2014 |
Neijiang, Zigong | November, 2018 |
Chengdu, Deyang, Meishan, Ziyang | July, 2020 |
Changchun, Jilin | August, 2020 |
Zhengzhou, Kaifeng | September, 2020 |
Hangzhou, Shaoxing, Ningbo | May, 2020 |
Kunming, Yuxi | December, 2020 |
Hefei, Lu’an | October, 2021 |
Wuhan, Huangshi, Ezhou, Huanggang | May, 2021 |
Changsha, Zhuzhou, Xiangtan | March, 2022 |
Guiyang, Gui’an, Anshun | August, 2022 |
Shenzhen, Dongguan, Huizhou | December, 2023 |
Hohhot, Baotou | December, 2023 |
Variables | N | S.D. | Mean | Min | Max |
---|---|---|---|---|---|
Complex1 | 6728 | 0.2627 | 0.2065 | 0 | 0.88 |
Complex2 | 6728 | 0.1962 | 0.2540 | 0 | 0.88 |
Complex3 | 6728 | 0.2387 | 0.8319 | 0 | 1 |
Integ | 6728 | 0.3171 | 0.1134 | 0 | 1 |
FCI | 6728 | 2.1363 | 1.8552 | 0.0280 | 6.9362 |
Collagg | 6728 | 0.5768 | 3.0568 | 1.3479 | 4.2548 |
Spec | 6728 | 0.1984 | 0.5534 | 0 | 0.9986 |
Size | 6728 | 1.1894 | 21.7827 | 19.7888 | 25.7313 |
Lev | 6728 | 0.2038 | 0.3932 | 0.0366 | 0.8639 |
Cash | 6728 | 1.5650 | 18.7738 | 14.7248 | 23.2595 |
ROA | 6728 | 0.0555 | 0.0603 | −0.0972 | 0.2358 |
Grow | 6728 | 0.2914 | 0.1711 | −0.3613 | 1.5714 |
Top10 | 6728 | 0.2088 | 0.4633 | 0.1009 | 0.9849 |
RDP | 1192 | 12.3053 | 16.0557 | 0.7 | 65.18 |
Innov | 6728 | 1.6447 | 8.6132 | 2.4849 | 11.2717 |
GDPg | 6728 | 4.2013 | 10.7792 | −19.38 | 109 |
Trade | 1612 | 0.5795 | 0.8911 | 0.0052 | 1.8723 |
Urban | 6728 | 0.1843 | 0.6944 | 0.1513 | 1 |
Second | 6728 | 10.4414 | 46.7009 | 19.25 | 85.08 |
Third | 6728 | 12.8616 | 48.0676 | 11.8 | 79.65 |
Complex1 | ||||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Integ | 0.0441 *** (0.0123) | 0.0965 *** (0.0200) | 0.1011 *** (0.0192) | 0.1034 *** (0.0190) |
Size | −0.0001 (0.0084) | 0.0020 (0.0082) | 0.0048 (0.0090) | |
Lev | 0.0061 (0.0323) | 0.0342 (0.0362) | 0.0174 (0.0413) | |
Cash | −0.0077 (0.0052) | −0.0112 (0.0048) | −0.0122 ** (0.0049) | |
ROA | 0.2625 * (0.1421) | 0.2474 (0.1515) | ||
Grow | −0.0120 (0.0149) | −0.0103 (0.0168) | ||
Top10 | 0.0163 (0.0279) | |||
Innov | −0.0006 (0.0431) | 0.0233 (0.0042) | 0.0291 (0.0538) | 0.0306 (0.0604) |
GDPg | −0.0009 (0.0040) | 0.0026 (0.0042) | 0.0061 ** (0.0026) | 0.0019 (0.0041) |
Trade | 0.0647 ** (0.0262) | 0.0762 ** (0.0316) | −0.0157 (0.0314) | 0.0770 (0.0301) |
Industry Fixed Effects | YES | YES | YES | YES |
City Fixed Effects | YES | YES | YES | YES |
Time Fixed Effects | YES | YES | YES | YES |
Observations | 2941 | 1791 | 1775 | 1775 |
Adj R2 | 0.1603 | 0.2011 | 0.1765 | 0.2053 |
Complex2 | Complex3 | Complex1 | Complex1 | |
---|---|---|---|---|
Control Variables Lagged by One Period | PSM-DID | |||
(1) | (2) | (3) | (4) | |
Integ | 0.0363 *** (0.0092) | 0.0400 ** (0.0174) | 0.0907 *** (0.0223) | 0.0537 ** (0.0208) |
Size | 0.0129 ** (0.0049) | 0.0416 *** (0.0097) | −0.0129 * (0.0074) | −0.0043 (0.0123) |
Lev | −0.0018 (0.0193) | −0.0333 (0.0480) | 0.0253 (0.0482) | 0.0214 (0.0443) |
Cash | −0.0074 ** (0.0029) | −0.0064 (0.0041) | 0.0019 (0.0042) | −0.0053 (0.0089) |
ROA | 0.1465 *** (0.2901) | 0.1624 (0.2012) | 0.1014 (0.1678) | 0.0871 (0.1742) |
Grow | −0.0133 * (0.0074) | −0.0412 * (0.0209) | 0.0394 ** (0.0172) | −0.0167 (0.0193) |
Top10 | 0.0167 (0.0134) | 0.0345 * (0.0195) | −0.0249 (0.0367) | 0.0781 (0.0411) |
Innov | 0.0203 (0.0313) | 0.0291 (0.0538) | −0.1798 ** (0.0660) | −0.0050 (0.1244) |
GDPg | 0.0019 (0.0021) | 0.0061 ** (0.0026) | −0.0073 (0.0660) | 0.0040 (0.0031) |
Trade | 0.0586 *** (0.0182) | −0.0157 (0.0314) | −0.0611 (0.0528) | 0.0876 (0.0832) |
Industry Fixed Effects | YES | YES | YES | YES |
City Fixed Effects | YES | YES | YES | YES |
Time Fixed Effects | YES | YES | YES | YES |
Observations | 1775 | 1775 | 1221 | 849 |
Adj R2 | 0.1817 | 0.1765 | 0.2213 | 0.2062 |
Complex1 | Complex3 | |
---|---|---|
Using Industrial Enterprises Data (2000–2014) | ||
(1) | (2) | |
Integ | 0.0143 ** (0.0058) | 0.0279 * (0.0155) |
Size | −0.0028 (0.0025) | 0.0751 *** (0.0059) |
Lev | −0.0018 (0.0193) | 0.0357 (0.0215) |
ROA | 0.1465 *** (0.2901) | 0.2406 *** (0.0588) |
Grow | 0.0141 *** (0.0050) | 0.0161 ** (0.0063) |
PER | 0.0455 *** (0.0130) | 0.0712 (0.0563) |
Innov | 0.0195 ** (0.0091) | −0.0035 (0.0333) |
GDPg | −0.0047 ** (0.0021) | 0.0038 (0.0037) |
Trade | 0.0096 (0.0244) | −0.0604 (0.0487) |
Industry Fixed Effects | YES | YES |
City Fixed Effects | YES | YES |
Time Fixed Effects | YES | YES |
Observations | 7625 | 7625 |
Adj R2 | 0.1046 | 0.1919 |
Complex1 | FCI | Complex1 | Complex1 | Complex1 | |
---|---|---|---|---|---|
Low FCI | High FCI | ||||
(1) | (2) | (3) | (4) | (5) | |
Integ | 0.1003 *** (0.0209) | 0.2213 ** (0.1068) | 0.0769 *** (0.0170) | −0.0140 (0.0801) | 0.1119 *** (0.0315) |
FCI | 0.3298 ** (0.1287) | ||||
Size | 0.0044 (0.0105) | 0.0047 (0.0096) | −0.0247 (0.0217) | 0.0203 ** (0.0076) | |
Lev | 0.0260 (0.0454) | 0.0202 (0.0427) | −0.0812 (0.0097) | −0.0907 (0.0582) | |
Cash | −0.0120 ** (0.0055) | −0.0103 ** (0.0049) | 0.0083 (0.0097) | −0.0218 ** (0.0076) | |
ROA | 0.2519 (0.1521) | 0.2409 (0.1583) | −0.1511 (0.2379) | −0.0073 (0.1822) | |
Grow | −0.0050 (0.0176) | −0.0122 (0.0163) | 0.0037 (0.0330) | 0.0342 (0.0340) | |
Top10 | 0.0099 (0.0325) | 0.0175 (0.0316) | −0.5534 (0.0703) | −0.0793 *** (0.0224) | |
Innov | 0.0410 (0.0614) | 0.0466 (0.0648) | −0.0578 ** (0.0272) | 0.0413 (0.0435) | |
GDPg | −0.0012 (0.0037) | 0.0110 (0.0093) | −0.0027 (0.0037) | −0.0005 (0.0040) | −0.0119 ** (0.0045) |
Trade | 0.0650 * (0.0349) | 0.4963 *** (0.1467) | 0.0064 (0.0592) | 0.1871 * (0.0956) | −0.0411 (0.0223) |
FD | 0.0005 (0.0204) | 0.1939 (0.2132) | −0.0323 (0.0299) | 0.0048 (0.0347) | 0.0081 (0.0151) |
Industry Fixed Effects | YES | NO | YES | YES | YES |
City Fixed Effects | YES | YES | YES | YES | YES |
Time Fixed Effects | YES | YES | YES | YES | YES |
Observations | 1644 | 216 | 1575 | 928 | 849 |
Adj R2 | 0.2227 | 0.6434 | 0.2224 | 0.3941 | 0.2335 |
Complex1 | Collagg | Complex1 | Complex1 | Complex1 | |
---|---|---|---|---|---|
(2003–2015) | Low Collagg | High Collagg | |||
(1) | (2) | (3) | (4) | (5) | |
Integ | 0.1052 *** (0.0209) | 0.1983 ** (0.0980) | 0.0776 ** (0.0328) | −0.0516 (0.0689) | 0.0889 * (0.0482) |
Collagg | 0.0729 * (0.0415) | ||||
Size | 0.0044 (0.0103) | 0.0013 (0.0106) | −0.0067 (0.0204) | 0.0045 (0.0108) | |
Lev | 0.0211 (0.0403) | 0.0189 (0.0423) | −0.0456 (0.0849) | 0.0336 (0.0409) | |
Cash | −0.0123 ** (0.0055) | −0.0096 * (0.0055) | −0.0141 (0.0106) | −0.0089 (0.0052) | |
ROA | 0.2049 (0.1627) | 0.2639 (0.1711) | 0.2643 (0.2076) | 0.0825 (0.1655) | |
Grow | −0.0034 (0.0171) | −0.0051 (0.0175) | −0.0012 (0.0413) | −0.0096 (0.0129) | |
Top10 | 0.0099 (0.0325) | 0.0189 (0.0277) | 0.0745 (0.0546) | −0.0353 (0.0304) | |
Innov | 0.0438 (0.0635) | 0.0074 (0.0162) | 0.0239 (0.0360) | −0.0072 (0.0303) | |
GDPg | 0.0004 (0.0033) | 0.0206 (0.0173) | −0.0013 (0.0038) | −0.0001 (0.0049) | −0.0216 (0.0250) |
Second | −0.0018 (0.0356) | 0.0307 *** (0.0055) | −0.0061 (0.0041) | 0.0003 (0.0057) | 0.0111 (0.0240) |
Third | 0.0024 (0.0341) | 0.0247 *** (0.0069) | −0.0081 * (0.0045) | −0.0004 (0.0085) | 0.0064 (0.0239) |
Trade | 0.0690 ** (0.0276) | 0.8022 *** (0.1146) | 0.0408 (0.0301) | 0.0417 (0.2278) | 0.0553 (0.0638) |
Industry Fixed Effects | YES | NO | YES | YES | YES |
City Fixed Effects | YES | YES | YES | YES | YES |
Time Fixed Effects | YES | YES | YES | YES | YES |
Observations | 1641 | 236 | 1608 | 509 | 1132 |
Adj R2 | 0.2098 | 0.5688 | 0.1862 | 0.2144 | 0.1782 |
Complex1 | Spec | Complex1 | Complex1 | Complex1 | |
---|---|---|---|---|---|
(2003–2015) | Low Spec | High Spec | |||
(1) | (2) | (3) | (4) | (5) | |
Integ | 0.1217 *** (0.0422) | 0.0655 ** (0.0302) | 0.1249 ** (0.0612) | 0.0538 (0.0498) | 0.1361 ** (0.0569) |
Spec | 0.1633 * (0.0978) | ||||
Size | −0.0136 ** (0.0054) | 0.0163 *** (0.0045) | −0.0148 ** (0.0066) | −0.0044 (0.0108) | −0.0192 ** (0.0094) |
Lev | −0.0060 (0.0401) | 0.2956 *** (0.0319) | −0.0191 (0.0443) | −0.0527 (0.0625) | −0.0207 (0.0784) |
Cash | −0.0089 (0.0100) | −0.0346 ** (0.0156) | −0.0103 (0.0124) | 0.0009 (0.0110) | 0.0055 (0.0330) |
ROA | −0.0079 (0.1385) | 0.4460 *** (0.1299) | −0.0167 (0.1160) | 0.1303 (0.1499) | −0.2827 (0.2396) |
Grow | −0.0051 (0.0180) | −0.0168 (0.0159) | −0.0093 (0.0171) | 0.0135 (0.0206) | −0.0282 (0.0358) |
Top10 | 0.0099 (0.0325) | 0.0478 * (0.0259) | −0.0294 (0.0319) | −0.0214 (0.0613) | 0.0366 (0.0532) |
RDP | 0.0001 (0.0007) | −0.0007 * (0.0004) | 0.0002 (0.0006) | 0.0004 (0.0007) | −0.0007 (0.0010) |
Innov | −0.0070 (0.0481) | 0.0016 (0.0583) | 0.1545 * (0.0783) | 0.0969 (0.0644) | |
GDPg | −0.0015 (0.0081) | 0.0061 (0.0051) | −0.0004 (0.0103) | 0.0114 (0.0132) | −0.0147 (0.0180) |
Urban | 0.8710 *** (0.2802) | −0.1818 (0.3369) | 0.5989 (0.4840) | −0.3203 (0.3959) | 0.5604 (0.8040) |
Second | −0.0162 (0.0182) | −0.0061 (0.0141) | −0.0097 (0.0205) | −0.0115 (0.0236) | −0.0135 (0.0324) |
Third | 0.0099 (0.0195) | −0.0138 (0.0152) | −0.0019 (0.0227) | −0.0228 (0.0282) | 0.0070 (0.0395) |
Trade | 0.0596 (0.1294) | 0.0635 (0.1208) | 0.3138 *** (0.1057) | −0.4647 ** (0.1874) | |
Industry Fixed Effects | YES | YES | YES | YES | YES |
City Fixed Effects | YES | YES | YES | YES | YES |
Time Fixed Effects | YES | YES | YES | YES | YES |
Observations | 1298 | 1455 | 1252 | 758 | 538 |
Adj R2 | 0.1700 | 0.3699 | 0.1674 | 0.1543 | 0.2178 |
Complex1 | |||
---|---|---|---|
The Research Sample Is Limited to City Clusters That Have Implemented “Urban Integration” | |||
(1) | (2) | (3) | |
Integ | 0.1541 *** (0.0552) | 0.1181 ** (0.0541) | |
Integ × Core_city | 0.1219 ** (0.0559) | ||
Integ × Urban_Spec | −0.0906 *** (0.0286) | ||
Integ × FD | −0.0665 ** (0.0269) | ||
Firm-level controls | YES | YES | YES |
City-level controls | YES | YES | YES |
Industry Fixed Effects | YES | YES | YES |
City Fixed Effects | YES | YES | YES |
Time Fixed Effects | YES | YES | YES |
Observations | 551 | 1719 | 1764 |
Adj R2 | 0.2209 | 0.1843 | 0.1815 |
Complex1 | ||||
---|---|---|---|---|
Low FC | High FC | Low IA | High IA | |
(1) | (2) | (3) | (4) | |
Integ | 0.0871 ** (0.0332) | −0.1164 (0.1235) | 0.0544 (0.0451) | 0.1557 *** (0.0301) |
Firm-level Controls | YES | YES | YES | YES |
Industry Fixed Effects | YES | YES | YES | YES |
City Fixed Effects | YES | YES | YES | YES |
Time Fixed Effects | YES | YES | YES | YES |
Observations | 1178 | 547 | 678 | 1089 |
Adj R2 | 0.2267 | 0.1703 | 0.2027 | 0.2252 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Z.; Liu, Y. Urban Integration and Firm Technological Complexity: Evidence from China’s Urban Agglomerations. Sustainability 2025, 17, 2608. https://doi.org/10.3390/su17062608
Lin Z, Liu Y. Urban Integration and Firm Technological Complexity: Evidence from China’s Urban Agglomerations. Sustainability. 2025; 17(6):2608. https://doi.org/10.3390/su17062608
Chicago/Turabian StyleLin, Zhe, and Yue Liu. 2025. "Urban Integration and Firm Technological Complexity: Evidence from China’s Urban Agglomerations" Sustainability 17, no. 6: 2608. https://doi.org/10.3390/su17062608
APA StyleLin, Z., & Liu, Y. (2025). Urban Integration and Firm Technological Complexity: Evidence from China’s Urban Agglomerations. Sustainability, 17(6), 2608. https://doi.org/10.3390/su17062608